Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. Digital Elevation Model (DEM)
2.2.2. Land Use Data
2.2.3. Soil Type
2.2.4. Hydrometeorological Data
2.3. Soil and Water Assessment Tool
2.4. Research Methodology
2.4.1. Baseflow Partitioning Method
2.4.2. Evaluation Criteria
2.4.3. Land Use Dynamic Index and Transfer Matrix
2.4.4. Snowmelt Runoff Segmentation Results
3. Results and Analysis
3.1. Future Scenario—Declining Water Changes
3.1.1. Annual Precipitation Changes during Snowmelt Runoff Periods
3.1.2. Changes in Daily Precipitation during Snowmelt Runoff Periods
3.2. Temperature Changes under Future Scenarios
3.2.1. Annual Temperature Changes during Snowmelt Runoff Periods
3.2.2. Daily Temperature Changes during Snowmelt Runoff
3.3. Land Use Change Analysis
3.4. Sensitivity Analysis of SWAT Model Parameters
3.5. SWAT Model Runoff Simulation
3.6. Future Runoff Changes
3.6.1. Annual Runoff Changes
3.6.2. Annual Snowmelt Runoff Change in Years
3.6.3. Change in Runoff during the Year
4. Discussion and Results
4.1. SWAT Modeling and Parametric Sensitivity Analysis
4.2. Future Land Use Shift Analysis
4.3. Analysis of Future Meteorological and Hydrological Changes
4.4. Snowmelt Runoff Simulation Analysis
5. Conclusions
- The snowmelt runoff in the Tangwang River basin was successfully simulated by the SWAT model in conjunction with the Bflow digital filtering method. The model calibration results demonstrated that the correlation coefficients and Nash coefficients were within acceptable ranges, indicating a high level of simulation accuracy and a good match with the measured data.
- Variability is evident in projected runoff trends under many climatic scenarios. It appears that climate change is significantly affecting the hydrologic cycle in the watershed because runoff is predicted to decrease under the SSP2-4.5 scenario and to increase under the SSP1-2.6 and SSP5-8.5 scenarios.
- Monthly runoff in non-summer months may drop due to higher evaporation and worsening drought conditions, presenting a challenge to water availability; monthly runoff in summer months is predicted to climb due to increased temperatures and precipitation, raising the danger of flooding.
- The Tangwang River Basin’s flood early warning systems and water resource management may likely face difficulties as a result of future climate change, which will also likely lead to more frequent and intense extreme weather events. Adaptive management strategies will be needed to address these possible problems with water security.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, L.; Cai, T. Changes in magnitude and timing of high flows in large rain-dominated watersheds in the cold region of north-eastern China. Water 2018, 10, 1658. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Jia, M.; Su, Q.; Kong, D.; Zhang, Y. Integrated use of GIS and USLE models for LULC change analysis and soil erosion risk assessment in the Hulan river basin, Northeastern China. Water 2024, 16, 241. [Google Scholar] [CrossRef]
- Hongling, Z.; Hongyan, L.; Yunqing, X.; Changhai, L.; Heshan, N. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data. Remote Sens. 2022, 14, 5823. [Google Scholar] [CrossRef]
- Wei, Q.; Lian, F.; Hong, Y.; Junguo, L. Warming winter, drying spring and shifting hydrological regimes in Northeast China under climate change. J. Hydrol. 2022, 606, 127390. [Google Scholar]
- Xuejiao, W.; Wei, Z.; Hongyi, L.; Yinping, L.; Xiaoduo, P.; Yongping, S. Analysis of seasonal snowmelt contribution using a distributed energy balance model for a river basin in the Altai Mountains of northwestern China. Hydrol. Process. 2021, 35, 14046. [Google Scholar]
- Wu, Z.; Fang, H. Snowmelt erosion: A review. Earth-Sci. Rev. 2024, 250, 104704. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Y.; Jiang, B.; Bailey, R.T.; Masud, B.; Smerdon, B.; Faramarzi, M. Modelling impacts of climate change on snow drought, groundwater drought, and their feedback mechanism in a snow-dominated watershed in western Canada. J. Hydrol. 2024, 636, 131342. [Google Scholar] [CrossRef]
- Abudu, S.; Cui, C.-L.; Saydi, M.; King, J.P. Application of snowmelt runoff model (SRM) in mountainous watersheds: A review. Water Sci. Eng. 2012, 5, 123–136. [Google Scholar]
- Duan, Y.; Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Xing, W.; Maeyer, P.D. Sub-Daily Simulation of Mountain Flood Processes Based on the Modified Soil Water Assessment Tool (SWAT) Model. Int. J. Environ. Res. Public Health 2019, 16, 3118. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Wang, Z.; Li, Z. Identifying components and controls of streamflow in a cold and arid headwater catchment. J. Hydrol. 2024, 633, 131022. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Sabaghzadeh, M.; Niazkar, M. Evaluation of snowmelt impacts on flood flows based on remote sensing using SRM model. Water 2023, 15, 1650. [Google Scholar] [CrossRef]
- Elmer, C.; Abel, M.; Elgar, B.; Fredy, C.; Fernando, C.; Rolando, S.; Héctor, V.; Efrain, T. Modelling snowmelt runoff from tropical Andean glaciers under climate change scenarios in the Santa river sub-basin (Peru). Water 2021, 13, 3535. [Google Scholar] [CrossRef]
- Tian, L.; Li, H.; Li, F.; Li, X.; Du, X.; Ye, X. Identification of key influence factors and an empirical formula for spring snowmeltrunoff A case study in midtemperate zone of northeast China. Sci. Rep. 2018, 8, 16950. [Google Scholar] [CrossRef]
- Soumyadip, B.; Sujata, B. Estimation of monthly snowmelt contribution to runoff using gridded meteorological data in SWAT model for upper Alaknanda river basin, India. Environ. Monit. Assess. 2023, 196, 86. [Google Scholar]
- Chengde, Y.; Min, X.; Congsheng, F.; Shichang, K.; Yi, L. The coupling of glacier melt module in SWAT+ model based on multi-source remote sensing data: A case study in the upper Yarkant river basin. Remote Sens. 2022, 14, 6080. [Google Scholar] [CrossRef]
- Sanjay, K.J.; Sandeep, S.; Kansal, M.L. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Sci. Total Environ. 2021, 795, 148871. [Google Scholar]
- Singh, V.; Jain, S.K.; Goyal, M.K. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stoch. Environ. Res. Risk Assess. 2021, 35, 2067–2092. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, G.; Li, H. Optimization and application of snow melting modules in SWAT model for the alpine regions of northern China. Water 2020, 12, 636. [Google Scholar] [CrossRef]
- Liqing, Z.; Wang, X.; Jiaqi, L. Evaluation of Arctic sea ice extent according to Chinese CMIP6 models. Chin. J. Polar Res. 2022, 34, 460–470. (In Chinese) [Google Scholar]
- Zhou, T.-J.; Zou, L.-W.; Chen, X.L. Commentary on the coupled model intercomparison project phase 6 (CMIP6). Clim. Chang. Res. 2019, 15, 445–456. (In Chinese) [Google Scholar]
- Yu, W.; Huixin, L.; Huijun, W.; Bo, S.; Huopo, C. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorol. Sin. 2021, 79, 360–386. (In Chinese) [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of cmip5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Shi, X.; Chen, X.; Dai, Y.; Hu, G. Climate sensitivity and feedbacks of BCC-CSM to idealized CO2 forcing from CMIP5 to CMIP6. J. Meteorol. Res. 2020, 34, 865–878. [Google Scholar] [CrossRef]
- Zhang, S.B.; Chen, J. Uncertainty in projection of climate extremes: A comparison of CMIP5 and CMIP6. J. Meteorol. Res. 2021, 35, 646–662. [Google Scholar] [CrossRef]
- Thrasher, B.; Xiong, J.; Wang, W.; Melton, F.; Michaelis, A.; Nemani, R. Downscaled climate projections suitable for resource management. EOS 2013, 94, 321–323. [Google Scholar] [CrossRef]
- Chen, H.-P.; Sun, J.-Q.; Li, H.-X. Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmos. Ocean. Sci. Lett. 2017, 10, 403–410. [Google Scholar] [CrossRef]
- Bao, Y.; Wen, X. Projection of China’s near- and long-term climate in a new high-resolution daily downscaled dataset NEX-GDDP. J. Meteorol. Res. 2017, 31, 236–249. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Li, X. Projections of temperature extremes based on preferred CMIP5 models: A case study in the Kaidu-Kongqi River basin in Northwest China. J. Arid. Land 2021, 13, 568–580. [Google Scholar] [CrossRef]
- Tong, M.; Li, L.; Li, Z.; Tian, Z. Spatiotemporal analysis of future precipitation changes in the Huaihe river basin based on the NEX-GDDP-CMIP6 dataset and monitoring data. Water 2023, 15, 3805. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, L.; Li, Y.; Tang, H.; Zhang, T.; Yang, B. Evaluation and projection of extreme high temperature indices in southwestern China using NEX-GDDP-CMIP6. J. Meteorol. Res. 2024, 38, 88–107. [Google Scholar] [CrossRef]
- Muhadaisi, A.; Shuangcheng, L.; Abudurexiti, A.; Yueyao, W.; Lijin, Z. Prediction of extreme climate on the Tibetan plateau based on NEX-GDDP-CMIP6. Human and Ecol. Risk Assess. 2023, 29, 1261–1275. [Google Scholar]
- Liu, W.; Cai, T.; Fu, G.; Zhang, A.; Liu, C.; Yu, H. The streamflow trend in Tangwang River basin in northeast China and its difference response to climate and land use change in sub-basins. Environ. Earth Sci. 2013, 69, 51–62. [Google Scholar] [CrossRef]
- Junbo, Z.X.H.Z.L.X. Study of runoff variation in Tangwang river basin. J. China Three Gorges Univ. 2018, 40, 12–14. (In Chinese) [Google Scholar]
- Ridwansyah, I.; Yulianti, M.; Apip, A.; Onodera, S.-I.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology 2020, 21, 487–498. [Google Scholar] [CrossRef]
- Nkwasa, A.; Chawanda, C.J.; Msigwa, A.; Komakech, H.C.; Verbeiren, B.; van Griensven, A. How can we represent seasonal land use dynamics in SWAT and SWAT plus models for African cultivated catchments? Water 2020, 12, 1541. [Google Scholar] [CrossRef]
- Long, S.; Gao, J.; Shao, H.; Wang, L.; Zhang, X.; Gao, Z. Developing SWAT-S to strengthen the soil erosion forecasting performance of the SWAT model. Land Degrad. Dev. 2024, 35, 280–295. [Google Scholar] [CrossRef]
- Che, L.; Wan, L. Water Quality Analysis and Evaluation of Eutrophication in a Swamp Wetland in the Permafrost Region of the Lesser Khingan Mountains, China. Bull. Environ. Contam. Toxicol. 2021, 108, 234–242. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Allen, P.M. Continental scale simulation of the hydrologic balance. J. Am. Water Resour. Assoc. 1995, 35, 1037–1051. [Google Scholar] [CrossRef]
- Chanasyk, D.S.; Mapfumo, E.; Willms, W. Quantification and simulation of surface runoff from fescue grassland watersheds. Agric. Water Manag. 2003, 59, 137–153. [Google Scholar] [CrossRef]
- Vu, M.T.; Raghavan, S.V.; Liong, S.Y. SWAT use of gridded observations for simulating runoff—A Vietnam river basin study. Hydrol. Earth Syst. Sci. 2012, 16, 2801–2811. [Google Scholar] [CrossRef]
- Su, Q.; Dai, C.; Zhang, Z.; Zhang, S.; Li, R.; Qi, P. Runoff simulation and climate change analysis in Hulan river basin based on SWAT model. Water 2023, 15, 2845. [Google Scholar] [CrossRef]
- Liu, G.W.; Dai, C.L.; Shao, Z.X.; Xiao, R.H.; Guo, H.C. Assessment of ecological flow in Hulan river basin utilizing SWAT model and diverse hydrological approaches. Sustainability 2024, 16, 2513. [Google Scholar] [CrossRef]
- McNamara, J.P.; Kane, D.L.; Hinzman, L.D. Hydrograph separations in an arctic watershed using mixing model and graphical techniques. Water Resour. Res. 1997, 33, 1707–1719. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, D.; Jiang, W.; Yu, G.; Haijun, Q.; Mingming, C.; Jinxi, S.; Honglin, W. Spatiotemporal variation characteristics of baseflow in the Bahe river basin based on digital filter method and SWAT model. Sci. Geogr. Sin. 2017, 37, 455–463. [Google Scholar]
- Lee, J.; Park, M.; Min, J.-H.; Na, E.H. Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model. Sustainability 2023, 15, 12465. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ren, W.; Li, X.; Zheng, D.; Zeng, R.; Su, J.; Mu, T.; Wang, Y. Enhancing flood simulation in data-limited glacial river basins through hybrid modeling and multi-source remote sensing data. Remote Sens. 2023, 15, 4527. [Google Scholar] [CrossRef]
- Charles, W.; Robert, L. A hydrograph-based approach to improve satellite-derived snow water equivalent at the watershed scale. Water 2022, 14, 3575. [Google Scholar] [CrossRef]
- Hayashi, M.; van der Kamp, G. Simple equations to represent the volume–area–depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 2000, 237, 74–85. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, C.; Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 2023, 10, 748. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Yuan, D.; Mao, X. Effects of land-use data resolution on hydrologic modelling, a case study in the upper reach of the Heihe River, Northwest China. Ecol. Model. 2019, 404, 61–68. [Google Scholar] [CrossRef]
- Wang, B.; Guo, S.S.; Feng, J.; Huang, J.B.; Gong, X.L. Simulation on effect of snowmelt on cropland soil moisture within basin in high latitude cold region using SWAT. Trans. Chin. Soc. Agric. Mach. 2022, 53, 271–278. [Google Scholar]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram river basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef]
- Luoman, P.; Jiuchun, Y.; Lingxue, Y.; Changsheng, X.; Fengqin, Y.; Yubo, Z.; Shuwen, Z. Simulating land-use changes and predicting maize potential yields in northeast China for 2050. Int. J. Environ. Res. Public Health 2021, 18, 938. [Google Scholar] [CrossRef]
- Mo, C.; Bao, M.; Lai, S.; Deng, J.; Tang, P.; Xing, Z.; Tang, G.; Li, L. Impact of future climate and land use changes on runoff in a typical Karst basin, southwest China. Water 2023, 15, 2240. [Google Scholar] [CrossRef]
- Kashif, H.; Ullah, K.A.; Sohail, A.; Mansoor, K.; Ahmad, K.F.; Wisal, K.; Jehanzeb, K. Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. J. Water Clim. Chang. 2022, 13, 758–770. [Google Scholar]
- Xue, R.; Sun, B.; Li, W.; Li, H.; Zhou, B.; Luo, X.; Ai, W. Future projections of meteorological, agricultural and hydrological droughts in China using the emergent constraint. J. Hydrol. Reg. Stud. 2024, 53, 101767. [Google Scholar] [CrossRef]
Abbreviation | Land Use Category | Percentage (%) |
---|---|---|
AGRL | Agricultural Land | 5.53 |
FRST | Forest | 86.49 |
PAST | Pasture | 5.47 |
WATR | Water Body | 0.49 |
URHD | Residential—High Density | 0.23 |
URLD | Residential—Low Density | 0.80 |
UIDU | Industrial Land | 0.05 |
WETL | Wetland | 0.94 |
Abbreviation | Soil Type after Reclassification | Percentage (%) |
---|---|---|
LVh | Haplic Luvisols | 67.84 |
PHh | Haplic Phaeozems | 9.07 |
LPe | Eutric Leptosols | 0.11 |
GLm | Mollic Gleysols | 21.23 |
HSs | Terric Histosols | 0.84 |
ATc | Cumulic Anthrosols | 0.06 |
CMe | Eutric Cambisols | 0.81 |
WR | Water bodies | 0.03 |
Statistical Value | Start Date | End Date |
---|---|---|
Maximum Values | 27 April | 19 May |
Upper Quartile | 19 April | 14 May |
Upper Quartile | 8 April | 11 May |
Lower Quartile | 4 April | 2 May |
Minimum Value | 31 March | 21 April |
Outlier | 11 April | 8 May |
Land Use Type | 2020 | 2030 (SSP1,2-6) | 2050 (SSP1,2-6) | 2030 (SSP2,4-5) | 2030 (SSP2,4-5) | 2030 (SSP5,8-5) | 2050 (SSP5,8-5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Percent | Area | Percent | Area | Percent | Area | Percent | Area | Percent | Area | Percent | Area | Percent | |
(km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | |
AGRL | 601.55 | 0.03 | 519.64 | 0.03 | 229.99 | 0.01 | 667.14 | 0.03 | 611.05 | 0.03 | 659.41 | 0.03 | 543.45 | 0.03 |
FRST | 19,490.4 | 0.96 | 19,610.3 | 0.96 | 19,757.17 | 0.97 | 19,450.55 | 0.95 | 19,470.93 | 0.96 | 19,249.07 | 0.94 | 19,237.76 | 0.94 |
PAST | 151.75 | 0.01 | 44.93 | 0 | 45.82 | 0 | 68.53 | 0 | 66.23 | 0 | 65.8 | 0 | 60.79 | 0 |
URHD | 98.14 | 0 | 165.2 | 0.01 | 298.04 | 0.01 | 153.85 | 0.01 | 182.81 | 0.01 | 365.78 | 0.02 | 489.02 | 0.02 |
BARR | 6.82 | 0 | 4.08 | 0 | 4.08 | 0 | 4.08 | 0 | 4.08 | 0 | 4.08 | 0 | 4.08 | 0 |
WATR | 27.26 | 0 | 27.23 | 0 | 27.22 | 0 | 27.23 | 0 | 27.22 | 0 | 27.23 | 0 | 27.22 | 0 |
Land Use Type | 2020–2030 (SSP1,2-6) | 2020–2030 (SSP2,4-5) | 2020–2030 (SSP5,8-5) | 2030–2050 (SSP1,2-6) | 2030–2050 (SSP2,4-5) | 2030–2050 (SSP5,8-5) | 2020–2050 (SSP1,2-6) | 2020–2050 (SSP2,4-5) | 2020–2050 (SSP5,8-5) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | Area Change | Single LUD Index (%) | |
(km2) | (km2) | (km2) | (km2) | (km2) | (km2) | (km2) | (km2) | (km2) | ||||||||||
AGRL | −81.91 | −1.36 | 65.59 | 1.09 | 57.86 | 0.96 | −289.65 | −5.57 | −56.09 | −0.84 | −115.96 | −1.76 | −371.56 | 0.4 | 9.5 | 0.32 | −58.1 | −1.93 |
FRST | 119.9 | 0.06 | −39.85 | −0.02 | −241.33 | −0.12 | 146.87 | 0.07 | 20.38 | 0.01 | −11.31 | −0.01 | 266.77 | −0.93 | −19.47 | −0.02 | −252.64 | −0.26 |
PAST | −106.82 | −7.04 | −83.22 | −5.48 | −85.95 | −5.66 | 0.89 | 0.2 | −2.3 | −0.34 | −5.02 | −0.76 | −105.93 | 0.41 | −85.52 | −11.27 | −90.96 | −11.99 |
URHD | 67.06 | 6.83 | 55.71 | 5.68 | 267.65 | 27.27 | 132.84 | 8.04 | 28.96 | 1.88 | 123.23 | 3.37 | 199.9 | 0.35 | 84.68 | 17.26 | 390.88 | 79.66 |
BARR | −2.73 | −4.01 | −2.73 | −4.01 | −2.73 | −4.01 | 0 | 0 | 0 | 0 | 0 | 0 | −2.73 | 1.13 | −2.73 | −8.02 | −2.73 | −8.02 |
WATR | −0.03 | −0.01 | −0.03 | −0.01 | −0.03 | −0.01 | −0.01 | 0.01 | −0.01 | 0.01 | −0.01 | 0.01 | −0.04 | −0.03 | −0.04 | −0.03 | −0.04 | −0.03 |
CLUD Index (%) | 0.09 | 0.06 | 0.16 | 0.14 | 0.03 | 0.06 | 0.46 | 0.1 | 0.39 |
Parameter Name | Start Date | Optimum Value |
---|---|---|
r__CN2.mgt | SCS-CN for moisture condition II | −0.16 |
v__GW_DELAY.gw | Groundwater delay time | 2.8 |
v__GWQMN.gw | Minimum aquifer depth for groundwater return flow | 4.04 |
v__GW_REVAP.gw | Groundwater re-evaporation coefficient | 0.18 |
v__ESCO.hru | Soil evaporation compensation factor | 0.88 |
v__CH_N2.rte | Manning’s “n” value for main flow channel | 0.15 |
v__CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | 125.02 |
r__SOL_AWC.sol | Soil available water capacity | 0.99 |
r__SOL_K.sol | Soil hydraulic conductivity | −0.17 |
v__SFTMP.bsn | Snowfall temperature | 2.90 |
v__SMFMX.bsn | Maximum snowmelt factor for June 21 | 10.32 |
v__SMFMN.bsn | Maximum snowmelt factor for December 21 | 20.29 |
v__TIMP.bsn | Snow pack temperature lag factor | 0.78 |
v__SURLAG.bsn | Surface runoff lag coefficient | 18.80 |
r__SOL_Z.sol | Soil layer depth from surface to bottom | 0.09 |
r__CANMX.hru | Maximum canopy storage | 77.71 |
v__ALPHA_BF.gw | Baseflow alpha factor | 0.12 |
v__SMTMP.bsn | Snow melt base temperature | 5.83 |
v__SLSUBBSN.hru | Average slope length multiplicative factor | 47.50 |
r__BIOMIX.mgt | Biological mixing efficiency | 0.03 |
v__TLAPS.sub | Temperature lapse rate | 6.89 |
v__REVAPMN.gw | Threshold depth of water in shallow aquifer required to allow re-evaporation to occur | 432.57 |
r__SOL_ALB.sol | Moist soil albedo multiplicative factor | 0.77 |
v__EPCO.hru | Plant uptake compensation factor | 0.14 |
v__ALPHA_BNK.rte | Alpha factor for bank storage baseflow | 0.91 |
v__SNOCOVMX.bsn | Threshold depth of snow at 100% coverage | 71.67 |
1980–2014 Historical Base Period | 2025–2045 Future Climate Scenarios | |||
---|---|---|---|---|
SSP1,2-6 | SSP2,4-5 | SSP5,8-5 | ||
Multi-year Average Runoff (m3/s) | 402.84 | 408.26 | 405.35 | 377.27 |
Value Of Change | 5.42 | 2.51 | −25.57 | |
Rate Of Change | 1.35% | 0.62% | −6.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-X.; Liu, G.-W.; Dai, C.-L.; Zou, Z.-W.; Li, Q. Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model. Water 2024, 16, 2082. https://doi.org/10.3390/w16152082
Zhang Y-X, Liu G-W, Dai C-L, Zou Z-W, Li Q. Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model. Water. 2024; 16(15):2082. https://doi.org/10.3390/w16152082
Chicago/Turabian StyleZhang, Yi-Xin, Geng-Wei Liu, Chang-Lei Dai, Zhen-Wei Zou, and Qiang Li. 2024. "Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model" Water 16, no. 15: 2082. https://doi.org/10.3390/w16152082
APA StyleZhang, Y. -X., Liu, G. -W., Dai, C. -L., Zou, Z. -W., & Li, Q. (2024). Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model. Water, 16(15), 2082. https://doi.org/10.3390/w16152082