Spatio-Temporal Variability of Water Quality in the Middle Danube—The Influence of Air Temperature and Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate
2.3. Data Sets
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); UN General Assembly: New York, NY, USA, 2015; Available online: https://Sdgs.Un.Org/2030agenda (accessed on 5 April 2024).
- Chittoor Viswanathan, V.; Schirmer, M. Water Quality Deterioration as a Driver for River Restoration: A Review of Case Studies from Asia, Europe and North America. Environ. Earth Sci. 2015, 74, 3145–3158. [Google Scholar] [CrossRef]
- Takić, L.; Mladenović-Ranisavljević, I.; Vuković, M.; Mladenović, I. Evaluation of the Ecochemical Status of the Danube in Serbia in Terms of Water Quality Parameters. Sci. World J. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Takić, L.; Mladenović-Ranisavljević, I.; Vasović, D.; Đorđević, L. The Assessment of the Danube River Water Pollution in Serbia. Water Air Soil Pollut. 2017, 228, 1–9. [Google Scholar] [CrossRef]
- EC. Directive 2000/60/EC of 22 December 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- Zacharias, I.; Liakou, P.; Biliani, I. A Review of the Status of Surface European Waters Twenty Years after WFD Introduction. Environ. Process. 2020, 7, 1023–1039. [Google Scholar] [CrossRef]
- Salvai, A.; Grabic, J.; Josimov-Dundjerski, J.; Zemunac, R.; Antonic, N.; Savic, R.; Blagojevic, B. Trend Analysis of Water Quality Parameters in the Middle Part of the Danube Flow in Serbia. Ecol. Chem. Eng. S 2022, 29, 51–63. [Google Scholar] [CrossRef]
- Grzywna, A.; Grabić, J.; Różańska-Boczula, M. Occurrences of Water Quality Assessment Using Improvised Water Quality Index at the Danube River, Serbia. Desalination Water Treat. 2023, 285, 67–77. [Google Scholar] [CrossRef]
- Grzywna, A.; Bronowicka-Mielniczuk, U.; Połeć, K. Spatio-Temporal Changes of Water Pollution, and Its Sources and Consequences in the Bug River, Poland. Desalination Water Treat. 2021, 243, 18–36. [Google Scholar] [CrossRef]
- Ugbebor, J.N.; Ntesat, U.B. Effects of Septic Tank Proximity to Boreholes on Groundwater Contamination at Igwuruta, Rivers State, Nigeria. Int. J. Eng. Sci. 2022, 11, 10–17. [Google Scholar]
- Herren, L.W.; Brewton, R.A.; Wilking, L.E.; Tarnowski, M.E.; Vogel, M.A.; Lapointe, B.E. Septic Systems Drive Nutrient Enrichment of Groundwaters and Eutrophication in the Urbanized Indian River Lagoon, Florida. Mar. Pollut. Bull. 2021, 172, 112928. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Galgani, F.; Neal, W.J. Addressing the Global Challenge of Coastal Sewage Pollution. Mar. Pollut. Bull. 2024, 201, 116232. [Google Scholar] [CrossRef]
- Lei, C.; Wagner, P.D.; Fohrer, N. Effects of Land Cover, Topography, and Soil on Stream Water Quality at Multiple Spatial and Seasonal Scales in a German Lowland Catchment. Ecol. Indic. 2021, 120, 106940. [Google Scholar] [CrossRef]
- Selvam, S.; Jesuraja, K.; Roy, P.D.; Venkatramanan, S.; Chung, S.Y.; Elzain, H.E.; Muthukumar, P.; Nath, A.V.; Karthik, R. Assessment of Groundwater from an Industrial Coastal Area of South India for Human Health Risk from Consumption and Irrigation Suitability. Environ. Res. 2021, 200, 111461. [Google Scholar] [CrossRef]
- Vranešević, M.; Zemunac, R.; Grabić, J.; Salvai, A. Hydrochemical Characteristics and Suitability Assessment of Groundwater Quality for Irrigation. Appl. Sci. 2024, 14, 615. [Google Scholar] [CrossRef]
- Grzywna, A.; Bronowicka-Mielniczuk, U. Spatial and Temporal Variability of Water Quality in the Bystrzyca River Basin, Poland. Water 2020, 12, 190. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Gielczewski, M.; Okruszko, T. Modelling of Discharge, Nitrate and Phosphate Loads from the Reda Catchment to the Puck Lagoon Using SWAT. Ann. Wars. Univ. Life Sci. SGGW. Land Reclam. 2013, 45, 2. [Google Scholar] [CrossRef]
- The International Commission for the Protection of the Danube River (ICPDR 2006). River Basin. 2006. Available online: http://www.Icpdr.Org/Main/Danube-Basin/River-Basin (accessed on 5 April 2024).
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of River Basin Management: Current Status of, and Prospects for, the River Danube from a River Engineering Perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Hachemi, K.; Grecu, F.; Nougrara, Z.; El Ouarradi, A.; Amrouni, Y. Monitoring the Dynamics of the Danube Islands System, Using SAR Imagery (Orșova–Vedea Sector, 1992–2022). Environ. Earth Sci. 2023, 82, 590. [Google Scholar] [CrossRef]
- Ioana Toroimac, G.; Salit, F. La restauration hydromorphologique d’un hydrosystème sociale. Étude de cas du Danube en Roumanie. Cinq Cont. 2016, 6, 219–234. [Google Scholar]
- El Aoula, R.; Mhammdi, N.; Dezileau, L.; Mahe, G.; Kolker, A.S. Fluvial Sediment Transport Degradation after Dam Construction in North Africa. J. Afr. Earth Sci. 2021, 182, 104255. [Google Scholar] [CrossRef]
- Tockner, K.; Uehlinger, U.; Robinson, C.T. Rivers of Europe, Chapter 3; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Basarin, B.; Lukić, T.; Pavić, D.; Wilby, R.L. Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrol. Process. 2016, 30, 3315–3329. [Google Scholar] [CrossRef]
- Chapman, D.V.; Bradley, C.; Gettel, G.M.; Hatvani, I.G.; Hein, T.; Kovács, J.; Liska, I.; Oliver, D.M.; Tanos, P.; Trásy, B. Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy 2016, 64, 141–154. [Google Scholar] [CrossRef]
- Mănoiu, V.-M.; Crăciun, A.-I. Danube river water quality trends: A qualitative review based on the open access web of science database. Ecohydrol. Hydrobiol. 2021, 21, 613–628. [Google Scholar] [CrossRef]
- Hock, B.; Kovács, G. A Large International River: The Danube. Summary of Hydrological Conditions and Water Management Problems in the Danube Basin; IIASA: Laxenburg, Austria, 1987. [Google Scholar]
- van Gils, J. The Danube water quality model and its application in the Danube River Basin. In The Danube River Basin; Springer: Berlin/Heidelberg, Germany, 2015; pp. 61–83. [Google Scholar]
- Ionita, M.; Badaluta, C.A.; Scholz, P.; Chelcea, S. Vanishing river ice cover in the lower part of the Danube basin–signs of a changing climate. Sci. Rep. 2018, 8, 7948. [Google Scholar] [CrossRef] [PubMed]
- Stančíková, A. Thermal and ice regimes of the Danube River and its tributaries. In Hydrological Processes of the Danube River Basin: Perspectives from the Danubian Countries; Springer: Berlin/Heidelberg, Germany, 2010; pp. 259–291. [Google Scholar]
- Syeed, M.M.M.; Hossain, S.; Karim, R.; Uddin, M.F.; Hasan, M.; Khan, R.H. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environ. Sustain. Indic. 2023, 18, 100247. [Google Scholar] [CrossRef]
- Islam, M.M.; Lenz, O.K.; Azad, A.K.; Ara, M.H.; Rahman, M.; Hassan, N. Assessment of spatio-temporal variations in water quality of Shailmari River, Khulna (Bangladesh) using multivariate statistical techniques. J. Geosci. Environ. Prot. 2017, 5, 1–26. [Google Scholar] [CrossRef]
- Mohammadi, P.; Ebrahimi, K.; Vanaei, A.; Bazrafshan, J. Spatial and Temporal Assessment of Water Quality Changes in North, Northwest and Southwest Rivers of Iran, Involving Multivariate Statistical Techniques and GIS. Water Harvest. Res. 2022, 5, 102–120. [Google Scholar]
- Ismail, A.H.; Robescu, D. Application of multivariate statistical techniques in water quality assessment of Danube River, Romania. Environ. Eng. Manag. J 2019, 18, 719–726. [Google Scholar] [CrossRef]
- Hayek, A.; Andaloussi, S.A.; Tabaja, N.; Toufaily, J.; Garnie-Zarli, E.; Hamieh, T. Multivariate Spatial and Temporal Analysis to Study the Variation of Physico-Chemical Parameters in Litani River, Lebanon. Am. J. Anal. Chem. 2021, 12, 373–391. [Google Scholar] [CrossRef]
- Schiller, H.; Miklós, D.; Sass, J. The Danube River and Its Basin Physical Characteristics, Water Regime and Water Balance. In Hydrological Processes of the Danube River Basin; Brilly, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 25–77. ISBN 978-90-481-3422-9. [Google Scholar]
- Stratimirovic, D.; Batas-Bjelic, I.; Djurdjevic, V.; Blesic, S. Changes in Long-Term Properties and Natural Cycles of the Danube River Level and Flow Induced by Damming. Phys. A Stat. Mech. Its Appl. 2021, 566, 125607. [Google Scholar] [CrossRef]
- UNESCO. Backo Podunavlje Biosphere Reserve, Serbia. 2017. Available online: https://En.Unesco.Org/Biosphere/Eu-Na/Backo-Podunavlje (accessed on 5 April 2024).
- FAO. Regulation on the Establishment of the Public Institution “Nature Park Kopački Rit”. 1999. Available online: https://www.Fao.Org/Faolex/Results/Details/En/c/LEX-FAOC121853/ (accessed on 25 April 2024).
- RHSS. Republic Hydrometeorological Service of Serbia—Climate. 2024. Available online: www.Hidmet.Gov.Rs/Ciril/Meteorologija/Klimatologija_srbije.Php (accessed on 18 April 2024).
- Milovanović, B.; Stanojević, G.; Radovanović, M. Climate of Serbia. In The Geography of Serbia; Manić, E., Nikitović, V., Djurović, P., Eds.; World Regional Geography Book Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 57–68. ISBN 978-3-030-74700-8. [Google Scholar]
- Serbian Environmental Protection Agency—SEPA. Annual Reports—Results of Surface and Groundwater Quality Testing 2018–2022; Ministry of Environmental Protection: Belgrade, Serbia, 2023. Available online: www.Sepa.Gov.Rs (accessed on 25 April 2024). (In Serbian)
- SRPS ISO 5813:1994; Water Quality, Determination of Dissolved Oxygen, Iodometric Method. Available online: https://iss.rs/sr_Latn/project/show/iss:proj:12941 (accessed on 18 July 2024).
- SRPS ISO 7150-1:1992; Water Quality, Determination of Ammonium, Part 1: Manual Spectrometric Method. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:13025 (accessed on 18 July 2024).
- SRPS H.Z1.111:1987; Testing of Industrial Waters, Measurement of pH, Potentiometric Method. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:5942 (accessed on 18 July 2024).
- SRPS EN ISO 5815-1:2020; Water Quality—Determination of Biochemical Oxygen Demand after n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea Addition. Available online: https://iss.rs/en/project/show/iss:proj:64917 (accessed on 18 July 2024).
- Hach Method 8171. Nitrate, MR, Cadmium Reduction Method. Available online: https://images.hach.com/asset-get.download.jsa?code=55828 (accessed on 18 July 2024).
- US EPA Method 365.1; Revision 2.0: Determination of Phosphorus by Semi-Automated Colorimetry. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/method_365-1_1993.pdf (accessed on 18 July 2024).
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; Total Solids Suspended, Method 2540 D, 2-55 a 2-59; American Public Health Association: New York, NY, USA, 2005. [Google Scholar]
- US EPA 120.1:1982; Method 120.1: Conductance (Specific Conductance, μmhos 25 °C) by Conductivity Meter. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/method_120-1_1982.pdf (accessed on 18 July 2024).
- SRPS H.Z1.106:1970; Testing of Water, Measurement of Temperature. Available online: https://iss.rs/sr_Cyrl/project/show/iss:proj:5941 (accessed on 18 July 2024).
- Sprent, P.; Smeeton, N.C. Applied Nonparametric Statistical Methods; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; Costa, L.D.F.; Rodrigues, F.A. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.P. The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. Br. J. Math. Stat. Psychol. 1970, 23, 1–21. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; Zhang, Y.; Zhang, Q.; Wan, X.; Liang, T.; Song, H.; Bolan, N.; Shaheen, S.M.; White, J.R. Impacts of Land Uses on Spatio-Temporal Variations of Seasonal Water Quality in a Regulated River Basin, Huai River, China. Sci. Total Environ. 2023, 857, 159584. [Google Scholar] [CrossRef] [PubMed]
- Zivadinovic, I.; Ilijević, K.; Gržetić, I.; Popović, A.R. Long-Term Changes in the Eco-Chemical Status of the Danube River in the Region of Serbia. J. Serbian Chem. Soc. 2010, 75, 1125–1148. [Google Scholar] [CrossRef]
- EEA. Directive 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast); OJ L 435; European Environment Agency: København, Denmark, 2020. [Google Scholar]
- EEA. Water Resources Across Europe—Confronting Water Stress: An Updated Assessment; European Environment Agency: København, Denmark, 2021; ISBN 978-92-9480-391-7. [Google Scholar]
- Radu, C.; Manoiu, V.M.; Kubiak-Wójcicka, K.; Avram, E.; Beteringhe, A.; Craciun, A.I. Romanian Danube River Hydrocarbon Pollution in 2011–2021. Water 2022, 14, 3156. [Google Scholar] [CrossRef]
- Vranešević, M.; Bezdan, A.; Blagojević, B.; Savić, R. Change of Irrigation Water Quality on the Section of the Danube through Serbia in the Period from 2010 to 2014; Serbian Society For Water Protection: Belgrade, Serbia, 2016; pp. 177–182. [Google Scholar]
- Radu, V.-M.; Ionescu, P.; Deak, G.; Diacu, E.; Ivanov, A.A.; Zamfir, S.; Marcus, M.-I. Overall Assessment of Surface Water Quality in the Lower Danube River. Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef] [PubMed]
- EC. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; OJ L 375; European Union: Brussels, Belgium, 1991. [Google Scholar]
- Baxa, M.; Musil, M.; Kummel, M.; Hanzlík, P.; Tesařová, B.; Pechar, L. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond)–Sediment oxygen demand and water column respiration alternately drive the oxygen regime. Sci. Total Environ. 2021, 766, 142647. [Google Scholar] [CrossRef]
- Grzywna, A.; Sender, J. The Assessment of the Amount of Water Pollution and Its Suitability for Drinking of the Tyśmienica River Basin, Poland. Environ. Monit Assess 2021, 193, 315. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Shi, X.; Yu, Y. The synergistic effect of rising temperature and declining light boosts the dominance of bloom-forming cyanobacteria in spring. Harmful Algae 2022, 116, 102252. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Bash, J.; Berman, C.H.; Bolton, S. Effects of Turbidity and Suspended Solids on Salmonids; University of Washington Water Center: Seattle, WA, USA, 2001. [Google Scholar]
- Kuo, S.H.; Shen, C.J.; Shen, C.F.; Cheng, C.M. Role of pH value in clinically relevant diagnosis. Diagnostics 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.W.; Kim, S.-H.; Kim, J.-H.; Hwang, S.D.; Kang, J.-C. Toxic Effects of Ammonia Exposure on Growth Performance, Hematological Parameters, and Plasma Components in Rockfish, Sebastes Schlegelii, during Thermal Stress. Fish Aquat. Sci 2016, 19, 44. [Google Scholar] [CrossRef]
- Grabić, J.; Benka, P.; Bezdan, A.; Josimov-Dundjerski, J.; Salvai, A. Water Quality Management for Preserving Fish Populations within Hydro-System Danube-Tisa-Danube, Serbia. Carpathian J. Earth Environ. Sci. 2016, 11, 235–243. [Google Scholar]
- EC. Directive 2006/44/EC of the European Parliament and of the Council on the Quality Fresh Waters Needing Protection or Improvement in Order to Support Fish Life. Off. J. Eur. Union L 2006, 264, 20–31. [Google Scholar]
- Verma, A.; Sharma, A.; Kumar, R.; Sharma, P. Nitrate contamination in groundwater and associated health risk assessment for Indo-Gangetic Plain, India. Groundw. Sustain. Dev. 2023, 23, 100978. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G. Stream Temperature/Air Temperature Relationship: A Physical Interpretation. J. Hydrol. 1999, 218, 128–141. [Google Scholar] [CrossRef]
- Jakhrani, S.H.; Soni, H.L.; Shar, N.Z. Analysis of Total Dissolved Solids and Electrical Conductivity in Different Water Supply Schemes of Taluka Chachro, District Tharparkar. QUEST Res. J. 2019, 17, 1–5. [Google Scholar]
- Zhang, S.; Xia, X.; Xin, Y.; Li, X.; Wang, J.; Yu, L.; Li, C.; McDowell, W.H.; Tan, Q.; Yang, Z. Electrical Conductivity as a Reliable Indicator for Assessing Land Use Effects on Stream N2O Concentration. J. Hydrol. 2023, 626, 130253. [Google Scholar] [CrossRef]
- Kirchmann, H.; Johnston, A.J.; Bergström, L.F. Possibilities for Reducing Nitrate Leaching from Agricultural Land. AMBIO A J. Hum. Environ. 2002, 31, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Ulén, B.; Johansson, G.; Kyllmar, K.; Stjernman Forsberg, L.; Torstensson, G. Lagged Response of Nutrient Leaching to Reduced Surpluses at the Field and Catchment Scales. Hydrol. Process. 2015, 29, 3020–3037. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Li, S.-X. Nitrate N Loss by Leaching and Surface Runoff in Agricultural Land: A Global Issue (a Review). Adv. Agron. 2019, 156, 159–217. [Google Scholar]
- Mladenović-Ranisavljević, I.; Vuković, M.; Stefanović, V.; Takić, L. Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water 2022, 14, 3810. [Google Scholar] [CrossRef]
- Paudel, S.R.; Choi, O.; Khanal, S.K.; Chandran, K.; Kim, S.; Lee, J.W. Effects of Temperature on Nitrous Oxide (N2O) Emission from Intensive Aquaculture System. Sci. Total Environ. 2015, 518, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Pantelić, M.M.; Dolinaj, D.M.; Leščešen, I.I.; Savić, S.M.; Milošević, D.D. Water Quality of the Pannonian Basin Rivers the Danube, the Sava and the Tisa (Serbia) and Its Correlation with Air Temperature. Therm. Sci. 2015, 19, 477–485. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
- Santos, I.M.; Herrnegger, M.; Holzmann, H. Seasonal Discharge Forecasting for the Upper Danube. J. Hydrol. Reg. Stud. 2021, 37, 100905. [Google Scholar] [CrossRef]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL Na Przykładach z Medycyny. T. 3. Analizy Wielowymiarowe [Accessible Statistics Course with the Use of STATISTICA PL on Medical Examples]; StatSoft: Kraków, Poland, 2007; Volume 3. [Google Scholar]
- Yeomans, K.A.; Golder, P.A. The Guttman-Kaiser Criterion as a Predictor of the Number of Common Factors. Statistician 1982, 31, 221. [Google Scholar] [CrossRef]
Parameters | Units | Methods | Measurement | LOQ * | Measurement Precision |
---|---|---|---|---|---|
Oxygen saturation (Os) | % | SRPS ISO 5813:1994 and upon it UP 3.14/PC 12, SEV:1977; [43] | Iodometric method, calculation | 2 | 1 |
Ammonium (N-NH4) | mg/L | SRPS ISO 7150-1: 1992; [44] | Spectrophotometric method (range: 0.01–1.0 mg/L) | 0.02 | 0.01 |
pH | - | SRPS H.Z1.111: 1987; [45] | Potentiometric method | - | 0.01 |
BOD5 (BOD) | mg/L | SRPS EN ISO 5815-1:2020; [46] | Dilution method (5-day incubation) | 0.50 | 0.01 |
Nitrate nitrogen (N-NO3) | mg/L | Method 8171 Hach UP 1.98/PC 12; [47] | Spectrophotometric method (range: 0.02–4.5 mg/L) | 0.02 | 0.01 |
Orthophosphates (P-PO4) | mg/L | US EPA 365.1; [48] | Semi-automated colorimetry (range: 0.02–2.50 mg/L) | 0.010 | 0.001 |
Suspended solids (SS) | mg/L | APHA AWWA & WEF, part 2540 D: 2005; [49] | Gravimetric method | 4 | 1 |
Electrical conductivity (EC) | μS/cm | US EPA 120.1: 1982; [50] | Conductivity meter | 5 | 1 |
Water temperature (WT) | °C | SRPS H.Z1.106: 1970; [51] | Temperature measurement in-situ | - | 0.1 |
Parameter | Unit | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|---|
Os | % | 104 ± 15 a | 101 ± 12 a | 98 ± 10 a | 90 ± 10.6 b | 87 ± 9 b |
BOD | mg/L | 1.99 ± 0.90 a | 1.88 ± 0.82 a | 2.21 ± 0.59 ac | 2.40 ± 0.77 bc | 2.44 ± 0.50 bc |
N-NH4 | mg/L | 0.04 ± 0.02 a | 0.04 ± 0.03 a | 0.07 ± 0.04 c | 0.17 ± 0.07 b | 0.15 ± 0.06 b |
pH | - | 8.19 ± 0.22 a | 8.15 ± 0.22 a | 8.16 ± 0.19 a | 8.02 ± 0.21 b | 7.98 ± 0.19 b |
N-NO3 | mg/L | 1.44 ± 0.59 a | 1.36 ± 0.58 a | 1.38 ± 0.56 a | 0.99 ± 0.37 b | 0.82 ± 0.24 b |
P-PO4 | mg/L | 0.030 ± 0.011 a | 0.031 ± 0.011 a | 0.042 ± 0.021 a | 0.049 ± 0.021 b | 0.052 ± 0.023 b |
SS | mg/L | 16 ± 10 a | 14 ± 9 a | 11 ± 13 a | 9 ± 11 b | 10 ± 8 b |
EC | μS/cm | 417 ± 63 a | 408 ± 60 a | 407 ± 59 a | 393. ± 52 a | 391 ± 44 a |
WT | °C | 13.3 ± 7.8 a | 13.7 ± 7.9 a | 13.6 ± 7.9 a | 14.0 ± 7.5 a | 14.6 ± 7.6 a |
D | m3/s | 2066 ± 745 a | 2414 ± 776 ad | 2623 ± 778 bd | 3157 ± 948.54 c | 4500 ± 1797 e |
AT | °C | 14.7 ± 8.5 a | 14.9 ± 8.5 a | 14.9 ± 8.4 a | 15.3 ± 8.3 a | 14.8 ± 8.6 a |
Parameter | Min | Max | Good Status [5] | Percentile | A1 [36] | Percentile |
---|---|---|---|---|---|---|
Os | 74 | 128 | 70–130 | 100 | 70–130 | 100 |
BOD | 1.00 | 3.80 | 4.50 | 100 | 3.00 | 92 |
N-NH4 | 0.02 | 0.30 | 0.45 | 100 | 0.50 | 100 |
pH | 7.40 | 8.40 | 6.50–8.40 | 100 | 6.50–8.50 | 100 |
N-NO3 | 0.50 | 1.90 | 2.20 | 100 | 10.00 | 100 |
P-PO4 | 0.020 | 0.090 | 0.101 | 100 | 0.400 | 100 |
SS | 3 | 29 | 30 | 100 | 25 | 90 |
EC | 320 | 640 | 850 | 100 | 1000 | 100 |
WT | 5.0 | 25.2 | 24.0 | 97 | 25.0 | 99 |
Parameter | Os | BOD | N-NH4 | pH | N-NO3 | P-PO4 | SS | EC | WT | D |
---|---|---|---|---|---|---|---|---|---|---|
BOD | −0.90 * | |||||||||
N-NH4 | −0.76 * | 0.32 | ||||||||
pH | 0.88 * | 0.35 | −0.63 * | |||||||
N-NO3 | 0.26 | −0.29 | −0.40 | 0.25 | ||||||
P-PO4 | −0.90 * | −0.11 | 0.75 * | −0.93 * | −0.24 | |||||
SS | 0.83 * | 0.00 | −0.74 * | 0.64 * | 0.13 | −0.75 * | ||||
EC | −0.08 | −0.28 | −0.06 | −0.03 | 0.87 * | 0.10 | −0.29 | |||
WT | 0.13 | 0.18 | −0.16 | 0.07 | −0.75 * | −0.14 | 0.34 | −0.93 * | ||
D | −0.40 | 0.30 | 0.67 * | −0.25 | −0.48 | 0.23 | −0.45 | −0.27 | 0.00 | |
AT | 0.12 | 0.14 | −0.17 | 0.05 | −0.74 * | −0.12 | 0.32 | −0.91 * | 0.99 * | −0.02 |
Parameter | Model | |
---|---|---|
WT | WT = 0.185 + 0.863 · AT | 0.89 |
EC | log(EC) = 6.281 − 0.013 · AT − 0.029 · D1 | 0.89 |
N-NO3 | log(N − NO3) = 0.745 − 0.002 · t − 0.035 · AT | 0.69 |
Parameters | PC1 | PC2 | PC3 |
---|---|---|---|
Os | −0.906 | −0.224 | −0.220 |
BOD | 0.114 | −0.438 | −0.793 |
N-NH4 | 0.919 | 0.018 | −0.265 |
pH | −0.790 | −0.221 | −0.503 |
N-NO3 | −0.493 | 0.825 | −0.122 |
SS | −0.836 | −0.368 | 0.073 |
EC | −0.120 | 0.969 | −0.171 |
WT | −0.037 | −0.912 | 0.335 |
D | 0.677 | −0.240 | −0.398 |
Eigenvalues | 3.72 | 2.94 | 1.32 |
Variance [%] | 41.35 | 32.61 | 14.69 |
Cumulative variance [%] | 41.35 | 73.96 | 88.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzywna, A.; Grabić, J.; Różańska-Boczula, M.; Vranešević, M. Spatio-Temporal Variability of Water Quality in the Middle Danube—The Influence of Air Temperature and Discharge. Water 2024, 16, 2081. https://doi.org/10.3390/w16152081
Grzywna A, Grabić J, Różańska-Boczula M, Vranešević M. Spatio-Temporal Variability of Water Quality in the Middle Danube—The Influence of Air Temperature and Discharge. Water. 2024; 16(15):2081. https://doi.org/10.3390/w16152081
Chicago/Turabian StyleGrzywna, Antoni, Jasna Grabić, Monika Różańska-Boczula, and Milica Vranešević. 2024. "Spatio-Temporal Variability of Water Quality in the Middle Danube—The Influence of Air Temperature and Discharge" Water 16, no. 15: 2081. https://doi.org/10.3390/w16152081
APA StyleGrzywna, A., Grabić, J., Różańska-Boczula, M., & Vranešević, M. (2024). Spatio-Temporal Variability of Water Quality in the Middle Danube—The Influence of Air Temperature and Discharge. Water, 16(15), 2081. https://doi.org/10.3390/w16152081