Leveraging Participatory Science for Tackling Water Supply Challenges in Water-Scarce Developing Regions
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Setting the Project Goal and Objectives
2.2. Constructing the Participatory Platform
2.3. Data Collection
2.4. Data Analysis
2.5. Platform Services
3. Case Study
3.1. Presentation of the Water System and Challenges
3.2. Implementation of the Participatory Approach
3.2.1. Creation of the Digital Model of the Water System
3.2.2. Citizens’ Engagement and Training
- Blue (★ ★ ★): Good water supply
- Yellow (★ ★): Degraded water supply
- Red (★): Interrupted water supply
3.3. Data Collection
3.4. Analysis and Results
3.4.1. Participatory Data Quality Test—Bias Testing
3.4.2. Temporal Variations in Water Supply Quality
3.4.3. Spatial Variations in Water Supply Quality
3.4.4. Analysis of Influencing Factors on the Water Supply Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Chari, R.; Matthews, L.; Blumenthal, M.; Edelman, A.; Jones, T. The Promise of Community Citizen Science; RAND Corporation: Santa Monica, CA, USA, 2017. [Google Scholar]
- Fraisl, D.; Hager, G.; Bedessem, B.; Gold, M.; Hsing, P.-Y.; Danielsen, F.; Hitchcock, C.B.; Hulbert, J.M.; Piera, J.; Spiers, H.; et al. Citizen Science in Environmental and Ecological Sciences. Nat. Rev. Methods Primer 2022, 2, 64. [Google Scholar] [CrossRef]
- Itair, M.; Shahrour, I.; Hijazi, I. The Use of the Smart Technology for Creating an Inclusive Urban Public Space. Smart Cities 2023, 6, 2484–2498. [Google Scholar] [CrossRef]
- Sauermann, H.; Vohland, K.; Antoniou, V.; Balázs, B.; Göbel, C.; Karatzas, K.; Mooney, P.; Perelló, J.; Ponti, M.; Samson, R.; et al. Citizen Science and Sustainability Transitions. Res. Policy 2020, 49, 103978. [Google Scholar] [CrossRef]
- Aboelnga, H.T.; El-Naser, H.; Ribbe, L.; Frechen, F.-B. Assessing Water Security in Water-Scarce Cities: Applying the Integrated Urban Water Security Index (IUWSI) in Madaba, Jordan. Water 2020, 12, 1299. [Google Scholar] [CrossRef]
- Biswas, A.; Tortajada, C. Assessing Global Water Megatrends; Springer: Singapore, 2018; pp. 1–26. ISBN 978-981-10-6694-8. [Google Scholar]
- Enqvist, J.P.; Ziervogel, G. Water Governance and Justice in Cape Town: An Overview. WIREs Water 2019, 6, e1354. [Google Scholar] [CrossRef]
- Imad, H.U.; Akhund, M.A.; Ali, M.; Pathan, A.A.; Ahmed, A. Non-Volumetric Pricing Is a Threat to Water Reserves. Civ. Eng. J. 2019, 5, 422–428. [Google Scholar] [CrossRef]
- Pallavi, S.; Yashas, S.R.; Anilkumar, K.M.; Shahmoradi, B.; Shivaraju, H.P. Comprehensive Understanding of Urban Water Supply Management: Towards Sustainable Water-Socio-Economic-Health-Environment Nexus. Water Resour. Manag. 2021, 35, 315–336. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z. Advantages of Integrated and Sustainability Based Assessment for Metabolism Based Strategic Planning of Urban Water Systems. Sci. Total Environ. 2015, 527–528, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Yazdandoost, F.; Yazdani, S.A. A New Integrated Portfolio Based Water-Energy-Environment Nexus in Wetland Catchments. Water Resour. Manag. 2019, 33, 2991–3009. [Google Scholar] [CrossRef]
- Adu-Manu, K.; Tapparello, C.; Heinzelman, W.; Katsriku, F.; Abdulai, J.-D. Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions. ACM Trans. Sens. Netw. 2017, 13, 1–41. [Google Scholar] [CrossRef]
- Agarwal, R.; Dixit, A.; Karatangi, S.V. Application of IoT in Water Supply Management. In Predictive Analytics; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-00-308317-7. [Google Scholar]
- Wijayanti, Y.; Fittkow, M.; Budihardjo, K.; Purwadi; Setyandito, O. Sustainable Water Management: A Review Study on Integrated Water Supply (Case Study on Special District of Yogyakarta). IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012056. [Google Scholar] [CrossRef]
- Chan, K.; Schillereff, D.N.; Baas, A.C.; Chadwick, M.A.; Main, B.; Mulligan, M.; O’Shea, F.T.; Pearce, R.; Smith, T.E.; van Soesbergen, A.; et al. Low-Cost Electronic Sensors for Environmental Research: Pitfalls and Opportunities. Prog. Phys. Geogr. Earth Environ. 2021, 45, 305–338. [Google Scholar] [CrossRef]
- Jiménez, A.; LeDeunff, H.; Giné, R.; Sjödin, J.; Cronk, R.; Murad, S.; Takane, M.; Bartram, J. The Enabling Environment for Participation in Water and Sanitation: A Conceptual Framework. Water 2019, 11, 308. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions: Water Management Research Challenges. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Shahrour, I.; Xie, X. Role of Internet of Things (IoT) and Crowdsourcing in Smart City Projects. Smart Cities 2021, 4, 1276–1292. [Google Scholar] [CrossRef]
- Freihardt, J. Can Citizen Science Using Social Media Inform Sanitation Planning? J. Environ. Manag. 2020, 259, 110053. [Google Scholar] [CrossRef] [PubMed]
- Herschan, J.; King, R.; Mkandawire, T.; Okurut, K.; Lapworth, D.J.; Malcolm, R.; Pond, K. The Potential for Citizen Science to Improve the Reach of Sanitary Inspections. Resources 2020, 9, 142. [Google Scholar] [CrossRef]
- Corbari, C.; Paciolla, N.; Ben Charfi, I.; Woods, M. Remote Sensing and Citizen Science Supporting Irrigation Monitoring in the Capitanata Irrigation Consortium (Italy). In EGU General Assembly Conference Abstracts; EGU General Assembly: Göttingen, Germany, 2021; pp. 388–408. [Google Scholar] [CrossRef]
- Kelly-Quinn, M.; Biggs, J.N.; Brooks, S.; Fortuño, P.; Hegarty, S.; Jones, J.I.; Regan, F. Opportunities, Approaches and Challenges to the Engagement of Citizens in Filling Small Water Body Data Gaps. Hydrobiologia 2022, 850, 3419–3439. [Google Scholar] [CrossRef]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.C.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; et al. Citizen Science Can Improve Conservation Science, Natural Resource Management, and Environmental Protection. Biol. Conserv. 2017, 208, 15–28. [Google Scholar] [CrossRef]
- Nardi, F.; Cudennec, C.; Abrate, T.; Allouch, C.; Annis, A.; Assumpção, T.; Aubert, A.H.; Bérod, D.; Braccini, A.M.; Buytaert, W.; et al. Citizens AND HYdrology (CANDHY): Conceptualizing a Transdisciplinary Framework for Citizen Science Addressing Hydrological Challenges. Hydrol. Sci. J. 2021, 67, 2534–2551. [Google Scholar] [CrossRef]
- Babiso, W.Z.; Ayano, K.K.; Haile, A.T.; Keche, D.D.; Acharya, K.; Werner, D. Citizen Science for Water Quality Monitoring in the Meki River, Ethiopia: Quality Assurance and Comparison with Conventional Methods. Water 2023, 15, 238. [Google Scholar] [CrossRef]
- Buytaert, W.; Dewulf, A.; De Bièvre, B.; Clark, J.; Hannah, D.M. Citizen Science for Water Resources Management: Toward Polycentric Monitoring and Governance? J. Water Resour. Plan. Manag. 2016, 142, 01816002. [Google Scholar] [CrossRef]
- Van Leeuwen, K.; Hofman, J.; Driessen, P.P.J.; Frijns, J. The Challenges of Water Management and Governance in Cities. Water 2019, 11, 1180. [Google Scholar] [CrossRef]
- Pandeya, B.; Uprety, M.; Paul, J.D.; Sharma, R.R.; Dugar, S.; Buytaert, W. Mitigating Flood Risk Using Low-Cost Sensors and Citizen Science: A Proof-of-Concept Study from Western Nepal. J. Flood Risk Manag. 2021, 14, e12675. [Google Scholar] [CrossRef]
- Brouwer, S.; Van der Wielen, P.W.J.J.; Schriks, M.; Claassen, M.; Frijns, J. Public Participation in Science: The Future and Value of Citizen Science in the Drinking Water Research. Water 2018, 10, 284. [Google Scholar] [CrossRef]
- George, G.; Menon, N.N.; Abdulaziz, A.; Brewin, R.J.W.; Pranav, P.; Gopalakrishnan, A.; Mini, K.G.; Kuriakose, S.; Sathyendranath, S.; Platt, T. Citizen Scientists Contribute to Real-Time Monitoring of Lake Water Quality Using 3D Printed Mini Secchi Disks. Front. Water 2021, 3, 662142. [Google Scholar] [CrossRef]
- Cottam, D.; McGuire, C.; Mossop, D.; Davis, G.; Donlen, J.; Friend, K.; Lewis, B.; Boucher, E.; Kirubakaran, H.; Goulding, R.; et al. Drain Detectives: Lessons Learned from Citizen Science Monitoring of Beach Drains. Citiz. Sci. Theory Pract. 2021, 6, 20. [Google Scholar] [CrossRef]
- Itair, M.; Hijazi, I.; Mansour, S.; Shahrour, I. Empowering Sustainability Advancement in Urban Public Spaces Through Low-Cost Technology and Citizen Engagement. In Proceedings of the Innovations in Smart Cities Applications Volume 7; Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 292–299. [Google Scholar]
- Pejovic, V.; Skarlatidou, A. Understanding Interaction Design Challenges in Mobile Extreme Citizen Science. Int. J. Hum. Comput. Interact. 2020, 36, 251–270. [Google Scholar] [CrossRef]
- Aljer, A.; Itair, M.; Akil, M.; Sharour, I. Knowledge Infrastructure Data Wizard (KIDW): A Cooperative Approach for Data Management and Knowledge Dissemination. In Proceedings of the Innovations in Smart Cities Applications Volume 7; Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 34–43. [Google Scholar]
- Beck, S.F.; Abualdenien, J.; Hijazi, I.H.; Borrmann, A.; Kolbe, T.H. Analyzing Contextual Linking of Heterogeneous Information Models from the Domains BIM and UIM. ISPRS Int. J. Geo-Inf. 2021, 10, 807. [Google Scholar] [CrossRef]
- Mansour, S.; Sassine, R.; Guibert, S. Leveraging Diverse Data Sources for ESTP Campus Digital Twin Development: Methodology and Implementation. In Proceedings of the Innovations in Smart Cities Applications Volume 7; Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 243–257. [Google Scholar]
- Zhang, Z.; Zeng, Y.; Huang, Z.; Liu, J.; Yang, L. Multi-Source Data Fusion and Hydrodynamics for Urban Waterlogging Risk Identification. Int. J. Environ. Res. Public Health 2023, 20, 2528. [Google Scholar] [CrossRef] [PubMed]
- Jabari, S.; Shahrour, I.; El Khattabi, J. Assessment of the Urban Water Security in a Severe Water Stress Area–Application to Palestinian Cities. Water 2020, 12, 2060. [Google Scholar] [CrossRef]
- Requier, F.; Andersson, G.; Oddi, F.; Garibaldi, L. Citizen Science in Developing Countries: How to Improve Volunteer Participation. Front. Ecol. Environ. 2020, 18, 101–108. [Google Scholar] [CrossRef]
- Mashhadi, N.; Shahrour, I.; Attoue, N.; El Khattabi, J.; Aljer, A. Use of Machine Learning for Leak Detection and Localization in Water Distribution Systems. Smart Cities 2021, 4, 1293–1315. [Google Scholar] [CrossRef]
- Cornish, F.; Breton, N.; Moreno-Tabarez, U.; Delgado, J.; Rua, M.; de-Graft Aikins, A.; Hodgetts, D. Participatory Action Research. Nat. Rev. Methods Primer 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Chapman, D.S.; Sheppard, L.J.; Roy, H.E. Choosing and Using Citizen Science: A Guide to When and How to Use Citizen Science to Monitor Biodiversity and the Environment; NERC/Centre for Ecology & Hydrology: Oxford, UK, 2015; p. 24. [Google Scholar]
- Pocock, M.J.O.; Roy, H.E.; August, T.; Kuria, A.; Barasa, F.; Bett, J.; Githiru, M.; Kairo, J.; Kimani, J.; Kinuthia, W.; et al. Developing the Global Potential of Citizen Science: Assessing Opportunities That Benefit People, Society and the Environment in East Africa. J. Appl. Ecol. 2019, 56, 274–281. [Google Scholar] [CrossRef]
- Shirk, J.L.; Ballard, H.L.; Wilderman, C.C.; Phillips, T.; Wiggins, A.; Jordan, R.; McCallie, E.; Minarchek, M.; Lewenstein, B.V.; Krasny, M.E.; et al. Public Participation in Scientific Research: A Framework for Deliberate Design. Ecol. Soc. 2012, 17, 15–28. [Google Scholar] [CrossRef]
- Steinke, J.; van Etten, J.; Zelan, P.M. The Accuracy of Farmer-Generated Data in an Agricultural Citizen Science Methodology. Agron. Sustain. Dev. 2017, 37, 32. [Google Scholar] [CrossRef]
- Maund, P.R.; Bentley, J.W.; Austen, G.E.; Irvine, K.N.; Fish, R.; Dallimer, M.; Davies, Z.G. The Features and Processes Underpinning High-Quality Data Generation in Participatory Research and Engagement Activities. Methods Ecol. Evol. 2022, 13, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Strobl, B.; Etter, S.; van Meerveld, I.; Seibert, J. Accuracy of Crowdsourced Streamflow and Stream Level Class Estimates. Hydrol. Sci. J. 2020, 65, 823–841. [Google Scholar] [CrossRef]
Zone Code | Zone Name | Total (Participants) | Total (Population) | Percentage |
---|---|---|---|---|
A | Al-Batin Al-Asfar | 11 | 86 | 12.79% |
B | Al-Jabal | 19 | 94 | 20.21% |
C | Al-Safriya | 13 | 110 | 11.82% |
D | Al-Sarj | 5 | 17 | 29.41% |
E | Al-Sahel | 7 | 65 | 10.77% |
F | Al-Swana | 16 | 158 | 10.13% |
G | Al-Aqaba | 20 | 142 | 14.08% |
H | Al-Mshref | 7 | 67 | 10.45% |
I | Khalt Hassan | 16 | 76 | 21.05% |
J | Shouab Abu Ghaith | 14 | 71 | 19.72% |
K | Wadi Al-Zayton | 13 | 51 | 25.49% |
L | Wadi Al-Arab | 10 | 81 | 12.35% |
M | Wasat Al-Balad | 24 | 182 | 13.19% |
Grand Total | 175 | 1200 | 14.58% |
Assumptions |
---|
|
|
|
|
|
Definitions |
|
|
|
Duration (Week Numbers) | Total Frequency of Not Good SQ Reports | Relative Frequency |
---|---|---|
1–4 | 14 | 0.042 |
5–8 | 22 | 0.065 |
9–12 | 84 | 0.250 |
13–16 | 45 | 0.134 |
17–20 | 49 | 0.146 |
21–24 | 45 | 0.134 |
25–28 | 51 | 0.152 |
29–31 | 26 | 0.077 |
Sum | 336 | 1 |
Zone Code | Zone Name | Frequency of Supply Quality Reports | ||||
---|---|---|---|---|---|---|
Good | Degraded | Interrupted | Total Sum | Not Good | ||
A | Al-Batin Al-Asfar | 11 | 16 | 7 | 34 | 23 |
B | Al-Jabal | 27 | 33 | 7 | 67 | 40 |
C | Al-Safriya | 24 | 22 | 5 | 51 | 27 |
D | Al-Sarj | 6 | 10 | 0 | 16 | 10 |
E | Al-Sahel | 28 | 18 | 10 | 56 | 28 |
F | Al-Swana | 19 | 32 | 5 | 56 | 37 |
G | Al-Aqaba | 38 | 40 | 4 | 82 | 44 |
H | Al-Mshref | 15 | 14 | 4 | 33 | 18 |
I | Khalt Hassan | 9 | 11 | 4 | 24 | 15 |
J | Shouab Abu Ghith | 17 | 28 | 6 | 51 | 34 |
K | Wadi Al-Zayton | 19 | 17 | 3 | 39 | 20 |
L | Wadi Al-Arab | 22 | 16 | 0 | 38 | 16 |
M | Wasat Al-Balad | 25 | 19 | 5 | 49 | 24 |
Sum | 260 | 276 | 60 | 596 | 336 |
Diameter | Frequency of Not Good SQ Reports | Relative Frequency of Not Good SQ Reports |
---|---|---|
2 | 140 | 0.417 |
3 | 90 | 0.268 |
4 | 85 | 0.253 |
6 | 21 | 0.063 |
Pearson’s Correlation Coefficient | −0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itair, M.; Shahrour, I.; Dbeis, A.; Bian, H.; Samhan, S. Leveraging Participatory Science for Tackling Water Supply Challenges in Water-Scarce Developing Regions. Water 2024, 16, 2080. https://doi.org/10.3390/w16152080
Itair M, Shahrour I, Dbeis A, Bian H, Samhan S. Leveraging Participatory Science for Tackling Water Supply Challenges in Water-Scarce Developing Regions. Water. 2024; 16(15):2080. https://doi.org/10.3390/w16152080
Chicago/Turabian StyleItair, Mohammed, Isam Shahrour, Ayman Dbeis, Hanbing Bian, and Subhi Samhan. 2024. "Leveraging Participatory Science for Tackling Water Supply Challenges in Water-Scarce Developing Regions" Water 16, no. 15: 2080. https://doi.org/10.3390/w16152080
APA StyleItair, M., Shahrour, I., Dbeis, A., Bian, H., & Samhan, S. (2024). Leveraging Participatory Science for Tackling Water Supply Challenges in Water-Scarce Developing Regions. Water, 16(15), 2080. https://doi.org/10.3390/w16152080