Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations
Abstract
:1. Introduction
2. Review of CFD Modeling of Fluid Transport in Porous Media
Simulation Characteristics | Assessed Processes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CFD Platforms | Basic model features a | Dimension b | Fluid | Salinity intrusion | Boundary conditions c | Extraction of groundwater | Geometry d | Geometric proportions | Geology e | Hydraulics f | Reference |
OPENFOAM, MIN3P | HYP | 3D | Water | - | HC, FC | - | - | 3:5 | H, UNCO | R | [54] |
COMSOL | HYP | 2D | Water | - | HC, FC, C | - | SS, FB | 11:19 | He | VS | [55] |
ANSYS-Fluent, MARUN | HYP, EXP | 2D | Water | ✓ | HC, FC | - | BS, FS | 1:4 | H, UNCO | W | [30] |
COMSOL | HYP | 2D | Water | - | HC | ✓ | - | 3:20 | He, L, CO | - | [56] |
COMSOL | REAL | 2D | Water | - | HC | ✓ | - | 1:225 | H, CO | [52] | |
COMSOL | HYP, REAL | 2D | Water | - | HC | ✓ | - | 3:20 | He, L, CO | - | [57] |
COMSOL | HYP | 2D | Water | ✓ | HC | - | - | 1:3 | H, He | - | [27] |
MATLAB, COMSOL | REAL | 2D | Water | ✓ | HC | ✓ | - | - | H, UNCO | - | [12] |
COMSOL | REAL | 3D | Water | - | HC | ✓ | SS, BS | - | H, UNCO | W | [24] |
ANSYS-Fluent | REAL | 2D | Gas | - | HC | - | - | 6:25 | H, F | Temp | [25] |
ANSYS-Fluent | REAL | 2D | Water | - | HC | - | SS, FB | 80:367 | H, F | Temp | [53] |
STAR-CCM + v15.04 | HYP, REAL | 2D | Oil, Water | - | HC | ✓ | SS, FB | 914:13925 | H, He, L | W | [58] |
RST2D | EXP | 2D | Water | ✓ | HC | - | FB | 1:2 | H | - | [59] |
COMSOL, ANSYS-Fluent | HYP, EXP | 2D | Water | ✓ | FC, HC | - | FB | 1:2.5 | H, UNCO | - | This Study |
3. Materials and Methods
3.1. Details of Experimental Setup
3.2. Experimental Simulation
4. Computational Methods
4.1. COMSOL Multiphysics
4.1.1. Fluid Properties
4.1.2. Solute Transport
4.2. ANSYS Fluent
4.2.1. Fluid Properties
4.2.2. Solute Transport
4.3. Conditions for the Numerical Simulation Applying CFD
5. Results and Discussion
5.1. Experimental Response
5.2. Convergence Criteria and Mesh Sensitivity in COMSOL and ANSYS Fluent
5.3. Spatial and Temporal Discretizations
5.4. Head-Controlled Boundary Conditions
5.5. Flux-Controlled Boundary Condition
6. COMSOL and ANSYS Fluent Performances
7. Conclusions
- ANSYS Fluent and COMSOL software demonstrated good agreement with the experimental results, indicating the potential for CFD to replicate solute transport dynamics.
- Pilot-scale experiments allow for visualizing the saline wedge dynamics and toe displacement over time. Both the experimental and numerical results show that the boundary condition greatly affected the toe location over time.
- The flux-controlled boundary condition evidenced a better representation of the saline wedge compared to the experiment than the head-controlled boundary condition. This study also corroborates that the head-controlled boundary condition overestimated the location of the saline wedge compared to the experiment, agreeing with previous findings in the literature.
- Darcy’s law equation and the presented numerical modeling were limited to the stability of the seaside boundary, and they do not represent circulating salinity cells when concentration gradients are formed in the boundary condition. To improve the agreement of the simulated scenarios, the concentration boundary condition can be studied as being time- and space-dependent. Future research could lead to improvements in monitoring concentration gradients of seaside boundary conditions in real and controlled groundwater studies.
- In this study, ANSYS Fluent was more sensitive to spatial and temporal discretizations than COMSOL. However, the simulation times with COMSOL can be faster using the automatic time-step size rather than the default time-step scheme in ANSYS Fluent.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bear, J. Modeling Phenomena of Flow and Transport in Porous Media. In Theory and Applications of Transport in Porous Media; Hassanizadeh, S.M., Ed.; Springer Nature: Haifa, Israel, 2018; p. 761. ISBN 9783319728254. [Google Scholar]
- Shao, Q.; Fahs, M.; Hoteit, H.; Carrera, J.; Ackerer, P.; Younes, A. A 3-D Semianalytical Solution for Density-Driven Flow in Porous Media. Water Resour. Res. 2018, 54, 10094–10116. [Google Scholar] [CrossRef]
- Koussis, A.D.; Mazi, K.; Riou, F.; Destouni, G. A Correction for Dupuit-Forchheimer Interface Flow Models of Seawater Intrusion in Unconfined Coastal Aquifers. J. Hydrol. 2015, 525, 277–285. [Google Scholar] [CrossRef]
- Lu, C.; Xin, P.; Kong, J.; Luo, J. Analytical Solutions of Seawater Intrusion in Sloping Confined and Unconfined Coastal Aquifers. J. Am. Water Resour. Assoc. 2016, 5, 2. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Werner, A.D. Analytical and Experimental Investigation of the Impact of Land Reclamation on Steady-State Seawater Extent in Coastal Aquifers. Water Resour. Res. 2021, 57, e2020WR029028. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zeleňáková, M.; Krajníková, K.; Abd-Elhamid, H.F. Analytical Solution of Saltwater Intrusion in Costal Aquifers Considering Climate Changes and Different Boundary Conditions. Water 2021, 13, 995. [Google Scholar] [CrossRef]
- Knight, A.C.; Werner, A.D.; Irvine, D.J. Combined Geophysical and Analytical Methods to Estimate Offshore Freshwater Extent. J. Hydrol. 2019, 576, 529–540. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P. Laboratory and Numerical Investigation of Transport Processes Occurring above and within a Saltwater Wedge. J. Contam. Hydrol. 2013, 147, 14–24. [Google Scholar] [CrossRef]
- Oz, I.; Shalev, E.; Yechieli, Y.; Gavrieli, I.; Gvirtzman, H. Flow Dynamics and Salt Transport in a Coastal Aquifer Driven by a Stratified Saltwater Body: Lab Experiment and Numerical Modeling. J. Hydrol. 2014, 511, 665–674. [Google Scholar] [CrossRef]
- Mahmoodzadeh, D.; Karamouz, M. Seawater Intrusion in Heterogeneous Coastal Aquifers under Flooding Events. J. Hydrol. 2019, 568, 1118–1130. [Google Scholar] [CrossRef]
- Ketabchi, H.; Jahangir, M.S. Influence of Aquifer Heterogeneity on Sea Level Rise-Induced Seawater Intrusion: A Probabilistic Approach. J. Contam. Hydrol. 2021, 236, 103753. [Google Scholar] [CrossRef]
- Kumar, S.S.; Deb Barma, S.; Amai, M. Simulation of Coastal Aquifer Using MSim Toolbox and COMSOL Multiphysics. J. Earth Syst. Sci. 2020, 129, 66. [Google Scholar] [CrossRef]
- Abdoulhalik, A.; Ahmed, A.A. Transient Investigation of Saltwater Upconing in Laboratory-Scale Coastal Aquifer. Estuar. Coast. Shelf Sci. 2018, 214, 149–160. [Google Scholar] [CrossRef]
- Zamrsky, D.; Karssenberg, M.E.; Cohen, K.M.; Bierkens, M.F.P.; Oude Essink, G.H.P. Geological Heterogeneity of Coastal Unconsolidated Groundwater Systems Worldwide and Its Influence on Offshore Fresh Groundwater Occurrence. Front. Earth Sci. 2020, 7, 339. [Google Scholar] [CrossRef]
- Zeynolabedin, A.; Ghiassi, R.; Pirooz, M.D. Investigating Island Groundwater Salinity, Using Vulnerability Index and Numerical Methods. Water Sci. Technol. Water Supply 2020, 20, 2804–2814. [Google Scholar] [CrossRef]
- Malott, S.; O’Carroll, D.M.; Robinson, C.E. Dynamic Groundwater Flows and Geochemistry in a Sandy Nearshore Aquifer over a Wave Event. Water Resour. Res. 2016, 52, 5248–5264. [Google Scholar] [CrossRef]
- Etsias, G.; Hamill, G.A.; Águila, J.F.; Benner, E.M.; McDonnell, M.C.; Ahmed, A.A.; Flynn, R. The Impact of Aquifer Stratification on Saltwater Intrusion Characteristics. Comprehensive Laboratory and Numerical Study. Hydrol. Process. 2021, 35, e14120. [Google Scholar] [CrossRef]
- Ahmed, A.; Robinson, G.; Hamill, G.; Etsias, G. Seawater Intrusion in Extremely Heterogeneous Laboratory-Scale Aquifer: Steady-State Results. Water 2022, 14, 1069. [Google Scholar] [CrossRef]
- Crestani, E.; Camporese, M.; Belluco, E.; Bouchedda, A.; Gloaguen, E.; Salandin, P. Large-Scale Physical Modeling of Salt-Water Intrusion. Water 2022, 14, 1183. [Google Scholar] [CrossRef]
- Coulon, C.; Pryet, A.; Lemieux, J.-M.; Yrro, B.J.F.; Bouchedda, A.; Gloaguen, E.; Comte, J.-C.; Dupuis, J.C.; Banton, O. A Framework for Parameter Estimation Using Sharp-Interface Seawater Intrusion Models. J. Hydrol. 2021, 600, 126509. [Google Scholar] [CrossRef]
- Etsias, G.; Hamill, G.A.; Benner, E.M.; Águila, J.F.; McDonnell, M.C.; Flynn, R.; Ahmed, A.A. Optimizing Laboratory Investigations of Saline Intrusion by Incorporating Machine Learning Techniques. Water 2020, 12, 2996. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Application of the Group Method of Data Handling and Variable Importance Analysis for Prediction and Modelling of Saltwater Intrusion Processes in Coastal Aquifers. Neural Comput. Appl. 2021, 33, 4179–4190. [Google Scholar] [CrossRef]
- Roy, D.K.; Datta, B. Saltwater Intrusion Prediction in Coastal Aquifers Utilizing a Weighted-Average Heterogeneous Ensemble of Prediction Models Based on Dempster-Shafer Theory of Evidence. Hydrol. Sci. J. 2020, 65, 1555–1567. [Google Scholar] [CrossRef]
- Whetsler, B. A Groundwater Model of the San Luis Obispo Valley Basin Using COMSOL Multiphysics; California Polytechnic State University: San Luis Obispo, CA, USA, 2020; Volume 7. [Google Scholar]
- Şen, E.; Düşünür-Doğan, D. Finite Volume Modeling of Bathymetry and Fault-Controlled Fluid Circulation in the Sea of Marmara. Turk. J. Earth Sci. 2021, 30, 628–638. [Google Scholar] [CrossRef]
- Zamora, P.B.; Cardenas, M.B.; Lloren, R.; Siringan, F.P. Seawater-Groundwater Mixing in and Fluxes from Coastal Sediment Overlying Discrete Fresh Seepage Zones: A Modeling Study. J. Geophys. Res. Ocean. 2017, 122, 6565–6582. [Google Scholar] [CrossRef]
- Mozafari, B.; Fahs, M.; Ataie-Ashtiani, B.; Simmons, C.T.; Younes, R. On the Use of COMSOL Multiphysics for Seawater Intrusion in Fractured Coastal Aquifers. E3S Web Conf. 2018, 54, 20. [Google Scholar] [CrossRef]
- Broecker, T.; Teuber, K.; Gollo, V.S.; Nützmann, G.; Lewandowski, J.; Hinkelmann, R. Integral Flow Modelling Approach for Surface Water-Groundwater Interactions along a Rippled Streambed. Water 2019, 11, 1517. [Google Scholar] [CrossRef]
- Hojo, L.Y.C.P.; de Paula Rezende, R.V.; Lautenschlager, S.R.; Sabogal-Paz, L.P. Household Slow Sand Filters Operating in Continuous and Intermittent Flows: Computational Fluid Dynamics Simulation and Validation by Tracer Experiments. Chem. Eng. Sci. 2022, 247, 117058. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C.; Xia, Y.; Li, H.; Zhao, L.; Jackson, N.L.; Miller, R.S. Numerical Study of Wave Effects on Groundwater Flow and Solute Transport in a Laboratory Beach. J. Contam. Hydrol. 2014, 165, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Tabrizinejadas, S.; Fahs, M.; Ataie-Ashtiani, B.; Simmons, C.T.; Di Chiara Roupert, R.; Younes, A. A Fourier Series Solution for Transient Three-Dimensional Thermohaline Convection in Porous Enclosures. Water Resour. Res. 2020, 56, e2020WR028111. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, Q.; Zhao, Y.; Zhu, G.; Nie, X.; Yang, K.; Li, J. Investigations into Mining-Induced Stress-Fracture-Seepage Field Coupling Effect Considering the Response of Key Stratum and Composite Aquifer State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines. Rock Mech. Rock Eng. 2019, 52, 4017–4031. [Google Scholar] [CrossRef]
- Koohbor, B.; Fahs, M.; Ataie-Ashtiani, B.; Belfort, B.; Simmons, C.T.; Younes, A. Uncertainty Analysis for Seawater Intrusion in Fractured Coastal Aquifers: Effects of Fracture Location, Aperture, Density and Hydrodynamic Parameters. J. Hydrol. 2019, 571, 159–177. [Google Scholar] [CrossRef]
- Hu, H. Applied Computational Fluid Dynamics. In Fluid Mechanics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 421–472. ISBN 9789535102717. [Google Scholar]
- Date, A.W. Introduction to Computational Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2005; ISBN 9788578110796. [Google Scholar]
- The COMSOL Product Suite COMSOL Multiphysics. Available online: https://www.comsol.com/products (accessed on 18 October 2022).
- Ansys Inc. ANSYS Fluent User’s Guide; Ansys Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Ren, J.; Wang, X.; Zhou, Y.; Chen, B.; Men, L. An Analysis of the Factors Affecting Hyporheic Exchange Based on Numerical Modeling. Water 2019, 11, 665. [Google Scholar] [CrossRef]
- Crha, J.; Basařová, P.; Ruzicka, M.C.; Kašpar, O.; Zednikova, M. Comparison of Two Solvers for Simulation of Single Bubble Rising Dynamics: Comsol vs. Fluent. Minerals 2021, 11, 452. [Google Scholar] [CrossRef]
- Salvi, D.; Boldor, D.; Ortego, J.; Aita, G.M.; Sabliov, C.M. Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS. J. Microw. Power Electromagn. Energy 2010, 44, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Steiner, T.R. High Temperature Steady-State Experiment for Computational Radiative Heat Transfer Validation Using COMSOL and ANSYS. Results Eng. 2022, 13, 100354. [Google Scholar] [CrossRef]
- Brunner, D.; Khawaja, H.; Moatamedi, M.; Boiger, G. CFD Modelling of Pressure and Shear Rate in Torsionally Vibrating Structures Using ANSYS CFX and COMSOL Multiphysics. Int. J. Multiphys. 2018, 12, 349–358. [Google Scholar] [CrossRef]
- Hegde, C.; Rühaak, W.; Sass, I. Evaluation of Modelling of Flow in Fractures. In Proceedings of the International Conference on Advances in Civil Engineering, AETACE, Delhi, India, 13–14 December 2013; p. 10. [Google Scholar]
- Ketabchi, H.; Jahangir, M.S. Probabilistic Numerical Assessment of Seawater Intrusion Overshoot in Heterogeneous Coastal Aquifers. Stoch. Environ. Res. Risk Assess. 2019, 33, 1951–1968. [Google Scholar] [CrossRef]
- Michael, H.A.; Russoniello, C.J.; Byron, L.A. Global Assessment of Vulnerability to Sea-Level Rise in Topography-Limited and Recharge-Limited Coastal Groundwater Systems. Water Resour. Res. 2013, 49, 2228–2240. [Google Scholar] [CrossRef]
- Chala, D.C.; Quiñones-Bolaños, E.; Mehrvar, M. An Integrated Framework to Model Salinity Intrusion in Coastal Unconfined Aquifers Considering Intrinsic Vulnerability Factors, Driving Forces, and Land Subsidence. J. Environ. Chem. Eng. 2022, 10, 106873. [Google Scholar] [CrossRef]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C. Sea-Level Rise Impacts on Seawater Intrusion in Coastal Aquifers: Review and Integration. J. Hydrol. 2016, 535, 235–255. [Google Scholar] [CrossRef]
- Ranjbar, A.; Cherubini, C.; Saber, A. Investigation of Transient Sea Level Rise Impacts on Water Quality of Unconfined Shallow Coastal Aquifers. Int. J. Environ. Sci. Technol. 2020, 17, 2607–2622. [Google Scholar] [CrossRef]
- Suk, H.; Chen, J.S.; Park, E.; Han, W.S. Two-Dimensional Semi-Analytical Solution of Land-Derived Solute Transport under Tidal Fluctuations Considering Variable Boundary Conditions on the Seaward Boundary. J. Hydrol. 2022, 606, 127441. [Google Scholar] [CrossRef]
- Abarca, E. Seawater Intrusion in Complex Geological Environments; Technical University of Catalinia, UPC: Barcelona, Spain, 2006. [Google Scholar]
- Laabidi, E.; Bouhlila, R. A New Technique of Seawater Intrusion Control: Development of Geochemical Cutoff Wall. Environ. Sci. Pollut. Res. 2021, 28, 41794–41806. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X. Future Groundwater Extraction Scenarios Based on COMSOL Multiphysics for the Confined Aquifer at Linfen Basin, Shanxi Province, China. Cogent Eng. 2017, 4, 1404178. [Google Scholar] [CrossRef]
- Üner, S.; Dogan, D.D. An Integrated Geophysical, Hydrological, Thermal Approach to Finite Volume Modelling of Fault-Controlled Geothermal Fluid Circulation in Gediz Graben. Geothermics 2021, 90, 102004. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Maier, U.; Vieweg, M.; Fleckenstein, J.H. Coupled 3-D Stream Flow and Hyporheic Flow Model under Varying Stream and Ambient Groundwater Flow Conditions in a Pool-Riffle System. Water Resour. Res. 2013, 49, 5834–5850. [Google Scholar] [CrossRef]
- Shao, W.; Bogaard, T.; Bakker, M. How to Use COMSOL Multiphysics for Coupled Dual-Permeability Hydrological and Slope Stability Modeling. Procedia Earth Planet. Sci. 2014, 9, 83–90. [Google Scholar] [CrossRef]
- Zhou, X.L.; Huang, K.Y.; Wang, J.H. Numerical Simulation of Groundwater Flow and Land Deformation Due to Groundwater Pumping in Cross-Anisotropic Layered Aquifer System. J. Hydro-Environ. Res. 2017, 14, 19–33. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Wang, J.-H. Improvement of Students’ Understanding about the Phenomena of Groundwater Pumping by Using Computer Software. Comput. Appl. Eng. Educ. 2018, 26, 1792–1803. [Google Scholar] [CrossRef]
- Pinilla, A.; Asuaje, M.; Pantoja, C.; Ramirez, L.; Gomez, J.; Ratkovich, N. CFD Study of the Water Production in Mature Heavy Oil Fields with Horizontal Wells. PLoS ONE 2021, 16, e0258870. [Google Scholar] [CrossRef] [PubMed]
- Oz, I.; Shalev, E.; Yechieli, Y.; Gvirtzman, H. Saltwater Circulation Patterns within the Freshwater-Saltwater Interface in Coastal Aquifers: Laboratory Experiments and Numerical Modeling. J. Hydrol. 2015, 530, 734–741. [Google Scholar] [CrossRef]
- Tian, J.; Qi, C.; Sun, Y.; Yaseen, Z.M.; Pham, B.T. Permeability Prediction of Porous Media Using a Combination of Computational Fluid Dynamics and Hybrid Machine Learning Methods. Eng. Comput. 2021, 37, 3455–3471. [Google Scholar] [CrossRef]
- Afzali, S.; Rezaei, N.; Zendehboudi, S.; Chatzis, I. Computational Fluid Dynamic Simulation of Multi-Phase Flow in Fractured Porous Media during Water-Alternating-Gas Injection Process. J. Hydrol. 2022, 610, 127852. [Google Scholar] [CrossRef]
- Feng, Q.; Cha, L.; Dai, C.; Zhao, G.; Wang, S. Effect of Particle Size and Concentration on the Migration Behavior in Porous Media by Coupling Computational Fluid Dynamics and Discrete Element Method. Powder Technol. 2020, 360, 704–714. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, L.; Li, J. Numerical Experiment on Salt Transport Mechanism of Salt Intrusion in Estuarine Area. Water 2022, 14, 770. [Google Scholar] [CrossRef]
- Chalá, D.; Mieles, M.; Mehrvar, M.; Quiñones, E. Diseño y Construcción de Un Acuífero Costero a Escala de Laboratorio Para Simular Procesos de Intrusión Salina y Recarga Natural. In Proceedings of the XXIV Seminario Nacional de Hidráulica e Hidrología, Online, 28–30 June 2021; De Ingeniería De Recursos Hídricos, C.T.P., Ed.; Sociedad Colombiana de Ingenieros: Barranquilla, Colombia, 2021; pp. 718–731. [Google Scholar]
- Etsias, G.; Hamill, G.A.; Thomson, C.; Kennerley, S.; Aguila, J.; Benner, E.M.; Mcdonnell, M.C.; Ahmed, A.A.; Flynn, R. Laboratory and Numerical Study of Saltwater Upconing in Fractured Coastal Aquifers Georgios. Water 2021, 13, 3331. [Google Scholar] [CrossRef]
- Lu, C.; Chen, Y.; Zhang, C.; Luo, J. Steady-State Freshwater-Seawater Mixing Zone in Stratified Coastal Aquifers. J. Hydrol. 2013, 505, 24–34. [Google Scholar] [CrossRef]
- Abdelgawad, A.M.; Abdoulhalik, A.; Ahmed, A.A.; Moutari, S.; Hamill, G. Transient Investigation of the Critical Abstraction Rates in Coastal Aquifers: Numerical and Experimental Study. Water Resour. Manag. 2018, 32, 3563–3577. [Google Scholar] [CrossRef]
- Torres, C.; Borman, D.; Matos, J.; Neeve, D. CFD Modeling of Scale Effects on Free-Surface Flow over a Labyrinth Weir and Spillway. J. Hydraul. Eng. 2022, 148, 04022011. [Google Scholar] [CrossRef]
- Weber, S. Impact of Saltwater Inundation Event on Freshwater Supply in a Coastal Aquifer: Sand Flume Experiments; University of Western Ontario: London, ON, Canada, 2012. [Google Scholar]
- Voss, C. A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Groundwater Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport; Water-Resources Investigations Report 84-4369; University of Michigan Library: Ann Arbor, MI, USA, 1984; Volume 84, pp. 1–409. [Google Scholar]
- Werner, A.D.; Simmons, C.T. Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers. Ground Water 2009, 47, 197–204. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D.; Seybold, H.; Fan, Y.; Kirchner, J.W. Groundwater Level Observations in 250,000 Coastal US Wells Reveal Scope of Potential Seawater Intrusion. Nat. Commun. 2020, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Post, V.; Kooi, H.; Simmons, C. Using Hydraulic Head Measurements in Variable-Density Ground Water Flow Analyses. Ground Water 2007, 45, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Moutari, S.; Ahmed, A.A.; Hamill, G.A. An Advanced Calibration Method for Image Analysis in Laboratory-Scale Seawater Intrusion Problems. Water Resour. Manag. 2018, 32, 3087–3102. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Costall, A.R.; Harris, B.D.; Teo, B.; Schaa, R.; Wagner, F.M.; Pigois, J.P. Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Sci. Rep. 2020, 10, 9866. [Google Scholar] [CrossRef] [PubMed]
- Laabidi, E.; Bouhlila, R. Simulating the Effects of Model Parameters on Stagnation Points Position during Seawater Intrusion. Environ. Sci. Pollut. Res. 2022, 29, 71511–71517. [Google Scholar] [CrossRef]
- Report on Flooding and Salt Water Intrusion; Office of Resilience: Norfolk, VA, USA, 2016.
- Etsias, G.; Hamill, G.A.; Campbell, D.; Straney, R.; Benner, E.M.; Águila, J.F.; McDonnell, M.C.; Ahmed, A.A.; Flynn, R. Laboratory and Numerical Investigation of Saline Intrusion in Fractured Coastal Aquifers. Adv. Water Resour. 2021, 149, 103866. [Google Scholar] [CrossRef]
- Abarca, E.; Prabhakar Clement, T. A Novel Approach for Characterizing the Mixing Zone of a Saltwater Wedge. Geophys. Res. Lett. 2009, 36, L06402. [Google Scholar] [CrossRef]
- Robinson, G.; Hamill, G.A.; Ahmed, A.A. Automated Image Analysis for Experimental Investigations of Salt Water Intrusion in Coastal Aquifers. J. Hydrol. 2015, 530, 350–360. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P. Experimental and Numerical Investigation of Saltwater Intrusion Dynamics in Flux-Controlled Groundwater Systems. Water Resour. Res. 2012, 48, 9527. [Google Scholar] [CrossRef]
- Mehdizadeh, S.S.; Vafaie, F.; Abolghasemi, H. Assessment of Sharp-Interface Approach for Saltwater Intrusion Prediction in an Unconfined Coastal Aquifer Exposed to Pumping. Environ. Earth Sci. 2015, 73, 8345–8355. [Google Scholar] [CrossRef]
- Ranjan, P.; Kazama, S.; Sawamoto, M. Numerical Modelling of Saltwater-Freshwater Interaction in the Walawe River Basin, Sri Lanka. In Proceedings of the IAHS-AISH Publication, Perugia, Italy, 2–13 July 2007; IAHS Publishing: Wallingford, UK, 2007; Volume 312, pp. 306–314. [Google Scholar]
- Werner, A.D. Correction Factor to Account for Dispersion in Sharp-Interface Models of Terrestrial Freshwater Lenses and Active Seawater Intrusion. Adv. Water Resour. 2017, 102, 45–52. [Google Scholar] [CrossRef]
- Castro-Alcalá, E.; Fernaàndez-Garcia, D.; Carrera, J.; Bolster, D. Visualization of Mixing Processes in a Heterogeneous Sand Box Aquifer. Environ. Sci. Technol. 2012, 46, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Bakhtyar, R.; Brovelli, A.; Barry, D.A.; Robinson, C.; Li, L. Transport of Variable-Density Solute Plumes in Beach Aquifers in Response to Oceanic Forcing. Adv. Water Resour. 2013, 53, 208–224. [Google Scholar] [CrossRef]
- Anwar, N.; Robinson, C.; Barry, D.A. Influence of Tides and Waves on the Fate of Nutrients in a Nearshore Aquifer: Numerical Simulations. Adv. Water Resour. 2014, 73, 203–213. [Google Scholar] [CrossRef]
- Kuan, W.K.; Jin, G.; Xin, P.; Robinson, C.; Gibbes, B.; Li, L. Tidal Influence on Seawater Intrusion in Unconfined Coastal Aquifers. Water Resour. Res. 2012, 48, 17–31. [Google Scholar] [CrossRef]
- Rakhimbekova, S.; O’Carroll, D.M.; Andersen, M.S.; Wu, M.Z.; Robinson, C.E. Effect of Transient Wave Forcing on the Behavior of Arsenic in a Nearshore Aquifer. Environ. Sci. Technol. 2018, 52, 12338–12348. [Google Scholar] [CrossRef] [PubMed]
- Dalai, C.; Munusamy, S.B.; Dhar, A. Experimental and Numerical Investigation of Saltwater Intrusion Dynamics on Sloping Sandy Beach under Static Seaside Boundary Condition. Flow Meas. Instrum. 2020, 75, 101794. [Google Scholar] [CrossRef]
- Bouzaglou, V.; Crestani, E.; Salandin, P.; Gloaguen, E.; Camporese, M. Ensemble Kalman Filter Assimilation of ERT Data for Numerical Modeling of Seawater Intrusion in a Laboratory Experiment. Water 2018, 10, 397. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, J.; Zhou, Z.; Wang, J. Experiment and Numerical Simulation of Seawater Intrusion under the Influences of Tidal Fluctuation and Groundwater Exploitation in Coastal Multilayered Aquifers. Geofluids 2019, 2019, 2316271. [Google Scholar] [CrossRef]
- Goswami, R.R.; Clement, T.P. Laboratory-Scale Investigation of Saltwater Intrusion Dynamics. Water Resour. Res. 2007, 43, W04418. [Google Scholar] [CrossRef]
- Noorabadi, S.; Sadraddini, A.A.; Nazemi, A.H.; Delirhasannia, R. Laboratory and Numerical Investigation of Saltwater Intrusion into Aquifers. J. Mater. Environ. Sci. 2017, 8, 4273–4283. [Google Scholar] [CrossRef]
- Trott, D.W.; Gobbert, M.K. Conducting Finite Element Convergence Studies Using COMSOL 4.0. In Proceedings of the COMSOL Conference, Boston, MA, USA, 7–9 October 2010; Volume 2, pp. 1–6. [Google Scholar]
Experimental Stages | Detailed Procedure | Description |
---|---|---|
1. Conceptualization |
|
|
2. Start |
|
|
3. Procedure |
|
|
4. Data analysis of results |
|
|
Name | Value | Description |
---|---|---|
L | 1.1 m | Basin depth |
1.01 m | Freshwater head | |
1 m | Saltwater head | |
995 kg/m3 | Freshwater density | |
1026 kg/m3 | Saltwater density | |
0 mol/m3 | Zero salt concentration | |
1 mol/m3 | Salt concentration | |
26 kg/mol | Increase in density due to salt concentration | |
0 Pa | Reference pressure | |
9848.5 Pa | Freshwater relative pressure | |
10,054.8 Pa | Saltwater relative pressure | |
0.001 Pa·s | Dynamic viscosity | |
0.43 | Porosity | |
2.03 m2 | Permeability | |
D | 1 m2/s | Molecular diffusion |
Pe | 1.33 | Peclet number |
0.0002 m/s | Hydraulic conductivity | |
0.001 m | Longitudinal dispersivity | |
1 m | Transversal dispersivity | |
1 m/s | Initial flux velocity |
Description | Head-Controlled | Flux-Controlled |
---|---|---|
Number of elements | 154,000 | 131,000 |
Element size | 0.006 m | 0.0065 m |
Minimum element quality | 0.1876 | 0.2152 |
Average element quality | 0.7449 | 0.7445 |
Ratio of elements to area | 0.08273 | 0.105 |
Description | COMSOL | ANSYS |
---|---|---|
Time step | Initial 1 s | 1 s |
Temporal discretization | Automatic step size | First-order implicit time integration |
Step scheme | Backward differentiation formula | Second order upwind scheme |
Required memory | 0.19 GB | 18 GB |
Order of lineal and residual errors | ×10−14 | ×10−7 |
Boundary Condition | HC | FC | ||
---|---|---|---|---|
Error | COMSOL vs. Exp. | ANSYS vs. Exp. | COMSOL vs. Exp. | ANSYS vs. Exp. |
MAE | 0.23 | 0.16 | 0.06 | 0.05 |
RMSE | 0.25 | 0.17 | 0.07 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalá, D.C.; Castro-Faccetti, C.; Quiñones-Bolaños, E.; Mehrvar, M. Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations. Water 2024, 16, 1970. https://doi.org/10.3390/w16141970
Chalá DC, Castro-Faccetti C, Quiñones-Bolaños E, Mehrvar M. Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations. Water. 2024; 16(14):1970. https://doi.org/10.3390/w16141970
Chicago/Turabian StyleChalá, Dayana Carolina, Claudia Castro-Faccetti, Edgar Quiñones-Bolaños, and Mehrab Mehrvar. 2024. "Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations" Water 16, no. 14: 1970. https://doi.org/10.3390/w16141970
APA StyleChalá, D. C., Castro-Faccetti, C., Quiñones-Bolaños, E., & Mehrvar, M. (2024). Salinity Intrusion Modeling Using Boundary Conditions on a Laboratory Setup: Experimental Analysis and CFD Simulations. Water, 16(14), 1970. https://doi.org/10.3390/w16141970