Ecological and Health Risk Assessment of Nitrates and Heavy Metals in the Groundwater of the Alluvial Area of the Danube River near Kostolac Basin, Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location
2.2. Sampling and Analytical Procedure
2.3. Pollution Evaluation Indices
2.4. Human Health Risk Assessment
CDIDermal = (CW × SA × Kp × ET × EF × ED × CF)/(BW × AT)
2.5. Multivariate Statistical Analysis
3. Results
4. Discussion
4.1. Characteristics of Water Chemistry
4.2. Statistical Treatment
4.3. Pollution Level
4.4. Human Health Risk
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Tripathi, V.R.; Garg, S.K. Physicochemical and microbiological assessment of recreational and drinking waters. Environ. Monitt Assess. 2012, 184, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Herms, I.; Jódar, J.; Soler, A.; Lambán, L.J.; Custodio, E.; Núñez, J.A.; Arnó, G.; Parcerisa, D.; Jorge-Sánchez, J. Identification of Natural and Anthropogenic Geochemical Processes Determining the Groundwater Quality in Port del Comte High Mountain Karst Aquifer (SE, Pyrenees). Water 2021, 13, 2891. [Google Scholar] [CrossRef]
- Sunkari, E.D.; Seidu, J.; Ewusi, A. Hydrogeochemical evolution and assessment of groundwater quality in the Togo and Dahomeyan aquifers, Greater Accra Region, Ghana. Environ. Res. 2022, 208, 112679. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.K.; Ornelas-Soto, N.; Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, B.T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Saha, J.K.; Dotaniya, C.K.; Mahmoud, A.D.; Meena, B.L.; Meena, M.D.; Sanwal, R.C.; Meena, S.R.; Doutaniya, R.K.; et al. Reuse of poor-quality water for sustainable crop production in the changing scenario of climate. Environ. Dev. Sustain. 2023, 25, 7345–7376. [Google Scholar] [CrossRef] [PubMed]
- Carrard, N.; Foster, T.; Willetts, J. Groundwater as a Source of Drinking Water in Southeast Asia and the Pacific: A Multi-Country Review of Current Reliance and Resource Concerns. Water 2019, 11, 1605. [Google Scholar] [CrossRef]
- Borpatra Gohain, M.; Karki, S.; Yadav, D.; Yadav, A.; Thakare, N.R.; Hazarika, S.; Lee, H.K.; Ingole, P.G. Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye. Membranes 2022, 12, 768. [Google Scholar] [CrossRef]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and Solutions for Global Water Scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef]
- Doza, B.; Islam, S.D.-U.; Hasan, T.; Alam, F.; Haque, M.; Rakib, M.; Asad, A.; Rahman, A. Groundwater pollution by trace metals and human health risk assessment in central west part of Bangladesh. Groundw. Sustain. Dev. 2019, 9, 100219. [Google Scholar] [CrossRef]
- Krishna, A.K.; Mohan, K.R.; Dasaram, B. Assessment of groundwater quality, toxicity and health risk in an industrial area using multivariate statistical methods. Environ. Syst. Res. 2019, 8, 26. [Google Scholar] [CrossRef]
- Chakraborty, M.; Tejankar, A.; Coppola, G.; Chakroborthy, S. Assessment of groundwater quality using statistical methods: A case study. Arab. J. Geosci. 2022, 15, 1136. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L. A multivariate Statistical Analysis of Groundwater Chemistry Data. Int. J. Environ. Res. 2011, 5, 537–544. [Google Scholar]
- Ielp, P.; Leardi, R.; Pappagallo, G.; Uricchio, V.F. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites. Environ Sci Pollut Res. 2017, 24, 13967–13978. [Google Scholar] [CrossRef] [PubMed]
- Gojkovic, Z.; Kilibarda, M.; Brajovic, L.; Marjanovic, M.; Milutinovic, A.; Ganic, A. Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine. Remote Sens. 2023, 15, 2519. [Google Scholar] [CrossRef]
- APHA. WEF Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Washington, DC, USA; WPCR, Water Environment Federation: Washington DC, USA, 2005. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Washington, DC, USA; Water Pollution Control Federation (WPCF): Washington DC, USA, 1992. [Google Scholar]
- Rajkumar, H.; Naik, P.K.; Rishi, M.S. A new indexing approach for evaluating heavy metal contamination in groundwater. Chemosphere 2020, 245, 125598. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, M.R.; Hossain, M.S.; Hossain, M.I.S.; Hasan, M.; Hamli, H.; Mustafa, M.G. Groundwater Contamination and Health Risk Evaluation of Naturally Occurring Potential Toxic Metals of Hatiya Island, Bangladesh. J. Ecol. Eng. 2022, 23, 223–236. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y.; Li, G. Water quality assessment based on Nemerow pollution index method: A case study of Heilongtan reservoir in central Sichuan province, China. PLoS ONE 2022, 17, e0273305. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.; Bux, R.K.; Medina, D.I.; Barrios-Piña, H.; Mahlknecht, J. Spatial and Multivariate Statistical Analyses of Human Health Risk Associated with the Consumption of Heavy Metals in Groundwater of Monterrey Metropolitan Area, Mexico. Water 2023, 15, 1243. [Google Scholar] [CrossRef]
- U.S. EPA (U.S. Environmental Protection Agency). Guidelines for Human Exposure Assessment; (EPA/100/B-19/001); Risk Assessment Forum; U.S. EPA: Washington, DC, USA, 2019. Available online: https://www.epa.gov/sites/default/files/2020-01/documents/ (accessed on 6 May 2023).
- Saha, N.; Rahman, M.S. Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicol. Environ. Saf. 2020, 206, 111349. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Wu, J.; Wei, M.; Reu, X.; Wang, D. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environ. Geochem. Health 2021, 43, 791–812. [Google Scholar] [CrossRef] [PubMed]
- USEPA. National Recommended Water Quality Criteria; United States Environmental Protection Agency, Office of Water, Office of Science and Technology: Washington, DC, USA, 2006. [Google Scholar]
- Yang, X.; Duan, J.; Wang, L.; Li, W.; Guan, J.; Beecheam, S.; Mulcahy, D. Heavy metal pollution and health risk assessment in the Wei River in China. Environ. Monit. Assess. 2015, 187, 111. [Google Scholar] [CrossRef] [PubMed]
- Proshad, R.; Islam, S.; Tusher, T.R.; Zhang, D.; Khadka, S.; Gao, J.; Kundu, S. Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: A study on an urban river in vicinity to industrial areas of Bangladesh. Toxin Rev. 2021, 40, 803–819. [Google Scholar] [CrossRef]
- Boum-Nkot, S.M.; Nlend, B.; Komba, D.; Nkoue Ndondo, G.R.; Bello, M.; Fongoh, E.J.; Ntamak Nida, M.J.; Etame, J. Hydrochemistry and assessment of heavy metals groundwater contamination in an industrialized city of sub-Saharan Africa (Douala, Cameroon). Implic. Hum. Health HydroResearch 2023, 6, 52–64. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ng, J.C.; Naidu, R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ. Geochem. Health 2009, 31, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.W. What is Rotating in Exploratory Factor Analysis? Pract. Assess. Res. Eval. 2015, 20, 2. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R Soc. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lo, S. Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network. Expert Syst. Appl. 2010, 37, 4974–4983. [Google Scholar] [CrossRef]
- Unmesh, P.; Sundaray, S.K.; Rath, P.; Nauk, B.; Bhatta, D.P. Application of factor and cluster analysis for characterization of river and estuarine water systems A case study: Mahanadi River (India). J. Hydrol. 2006, 331, 434–445. [Google Scholar] [CrossRef]
- Ahmed, N.; Bodrud-Doza, M.; Islam, D.U.; Choudhry, M.A.; Muhib, I.M.; Zahid, A.; Hossain, S.; Moniruzzaman, M.; Deb, N.; Bhuiyan, A.Q.M. Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochim. 2018, 38, 440–455. [Google Scholar] [CrossRef]
- Marandi, A.; Polikarpus, M.; Jõeleht, A. A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Appl. Geochem. 2013, 38, 103–109. [Google Scholar] [CrossRef]
- Water Act (Official Gazette of the Republic of Serbia nos. 46/91, 53/93, 67/93, and 48/94) and the Regulations on the Monitoring of Water Quality introduced by the Government of the Republic of Serbia.
- European Commission (EC). Directive 2006/118/EC of the European Parliament and the Council of 12th of December 2006 on the protection of ground water against pollution and deterioration. Off. J. Eur. Union 2006, [L 372/19. 27/12]. XLIII. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Wang, H.; Zhang, Q. Research Advances in Identifying Sulfate Contamination Sources of Water Environment by Using Stable Isotopes. Int. J. Environ. Res. Public Health 2019, 16, 1914. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, J.A.; Mora, A.; Mahlknecht, J.; Kaown, D.; Barcelo, D. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion—A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model. J. Hazard. Mater. 2021, 417, 126103. [Google Scholar] [CrossRef] [PubMed]
- Ehya, F.; Marbouti, Z. Hydrochemistry and contamination of groundwater resources in the Behbahan plain, SW Iran. Environ. Earth Sci. 2016, 75, 455. [Google Scholar] [CrossRef]
- Hosseinifard, S.J.; Aminiyan, M.M. Hydrochemical characterization of groundwater quality for drinking and agricultural purposes: A case study in Rafsanjan plain, Iran. Water Qual. Expo. Health 2015, 7, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, K.; Kupnicka, P.; Witczak, G.; Tousty, P.; Bosiacki, M.; Kurzawski, M.; Chlubek, D.; Cymbaluk-Płoska, A. Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer. Biology 2023, 12, 717. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Varol, S.; Davraz, A.; Şener, Ş.; Şener, E.; Aksever, F.; Kırkan, B.; Tokgözlü, A. Assessment of groundwater quality and usability of Salda Lake Basin (Burdur/Turkey) and health risk related to arsenic pollution. J. Environ. Health Sci. Eng. 2021, 11, 681–706. [Google Scholar] [CrossRef]
- Boateng, T.K.; Opoku, F.; Acquaah, S.O.; Akoto, O. Pollution evaluation, sources and risk assessment of heavy metals in hand-dug wells from Ejisu-Juaben Municipality, Ghana. Environ. Syst. Res. 2015, 4, 18. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 7, 6060. [Google Scholar] [CrossRef] [PubMed]
- USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E). 2004. Available online: http://www.epa.gov/oswer/riskassessment/ragse/pdf/introduction.pdf (accessed on 12 May 2023).
- USEPA (US Environmental Protection Agency). Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site, Denver CO. 2001. Available online: http://www.epa.gov/region8/superfund/sites/VB-170-Risk.pdf (accessed on 24 May 2023).
- USEPA. National Primary and Secondary Drinking Water Standards. 2009. Available online: http://www.epa.gov/safewater/consumer/pdf/mcl.pdf (accessed on 25 May 2023).
- Kaur, L.; Rishi, M.S.; Siddiqui, A.U. Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ. Pollut. 2019, 259, 113711. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Bian, J.; Wan, H.; Ma, Y.; Sun, X. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicol. Environ. Saf. 2021, 207, 111245. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Ma, Y.; Qi, Y.; Zhong, Y.; Sha, X. Health risk assessment of groundwater nitrogen pollution in Yinchuan plain. J. Contam. Hydrol. 2022, 249, 104031. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 6. [Google Scholar] [CrossRef]
- Triassi, M.; Cerino, P.; Montuori, P.; Pizzolante, A.; Trama, U.; Nicodemo, F.; D’Auria, J.L.; De Vita, S.; De Rosa, E.; Limone, A. Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health. Int. J. Environ. Res. Public Health 2023, 20, 1693. [Google Scholar] [CrossRef]
Parameters | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
pH | 7.15 | 7.74 | 7.4233 | 0.0597 |
EC, μS/cm | 417 | 2030 | 912.33 | 169.852 |
Ca, mg/L | 53 | 79 | 70.25 | 1.92 |
Mg, mg/L | 15 | 21 | 17.67 | 0.51 |
Na, mg/L | 11.2 | 15.1 | 13.04 | 0.335 |
K, mg/L | 1.2 | 12 | 3.396 | 0.99 |
Cl−, mg/L | 19.34 | 174.5 | 49.94 | 16.86 |
SO42−, mg/L | 10.86 | 478.5 | 120.30 | 49.56 |
NO3−, mg/L | 0.14 | 90.40 | 16.48 | 9.98 |
PO4 3−, mg/L | 0.08 | 0.1 | 0.088 | 0.005 |
Total N, mg/L | 0.45 | 90.40 | 17.06 | 9.94 |
Cd, μg/L | 2 | 3.5 | 2.65 | 0.147 |
Pb, μg/L | 39 | 87 | 59.25 | 3.75 |
Zn, μg/L | 65 | 1940 | 501.09 | 201.65 |
As, μg/L | 2.9 | 5.7 | 4.09 | 0.33 |
Hg, μg/L | 0.30 | 0.42 | 0.351 | 0.011 |
Parameters | Range | MWQ Serbia | EU Limit | WHO |
---|---|---|---|---|
pH | 7.15–7.74 | 6.5–8.5 | 6.5–<9.5 | - |
Eh | 417–2030 μS/cm | 1500 μS/cm | 2500 μS/cm | 1500 μS/cm |
Na+ | 11.20–15.10 mg/L | 150 mg/L | 150 mg/L | 50 mg/L |
K+ | 1.20–12 mg/L | 12 mg/L | 12 mg/L | |
Ca2+ | 53.0–79.0 mg/L | 200 mg/L | 75 mg/L | |
Mg2+ | 15.0–21.0 mg/L | 50 mg/L | 30 mg/L | |
Cl− | 19.34–174.50 mg/L | 150 mg/L | 187 mg/L | 250 mg/L |
SO42− | 10.86–478.50 mg/L | 200 mg/L | 187 mg/L | 250 mg/L |
NO3− | 0.14–90.40 μg/L | 50 μg/L | 37.5 μg/L | 10 μg/L |
Cd | 2.0–3.5 μg/L | 3 μg/L | 3 μg/L | 3 μg/L |
As | 2.90–5.70 μg/L | 10 μg/L | 7.5 μg/L | 10 μg/L |
Hg | 0.30–0.42 μg/L | - | 1.0 μg/L | 1.0 μg/L |
Zn | 65–1940 μg/L | 3000 μg/L | - | 5000 μg/L |
Pb | 39.0–87.0 μg/L | 10 μg/L | 10 μg/L | 10 μg/L |
Eh | NO3− | Cl− | SO42− | PO43− | Na | K | Ca | Mg | Cd | As | Hg | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eh | ||||||||||||||
NO3− | 0.976 ** | |||||||||||||
Cl− | 0.983 ** | 0.999 ** | ||||||||||||
SO42− | 0.999 ** | 0.983 ** | 0.988 ** | |||||||||||
PO43− | 0.167 | 0.159 | 0.154 | 0.171 | ||||||||||
Na | 0.78 | 0.068 | 0.076 | 0.083 | 0.601 | |||||||||
K | 0.75 | 0.395 | 0.389 | 0.356 | 0.361 | 0.524 | ||||||||
Ca | 0.691 | −0.185 | −0.177 | −0.150 | −0.600 | 0.019 | −0.028 | |||||||
Mg | 0.693 | −0.059 | −0.086 | −0.118 | −0.281 | −0.460 | −0.600 | 0.076 | ||||||
Cd | 0.510 | 0.357 | 0.391 | 0.491 | 0.127 | 0.222 | 0.029 | 0.066 | −0.464 | |||||
As | 0.218 | 0.247 | 0.242 | 0.227 | −0.651 | −0.305 | 0.145 | 0.422 | 0.200 | −0.072 | ||||
Hg | 0.697 | 0.622 | 0.638 | 0.684 | −0.119 | −0.345 | −0.116 | 0.132 | 0.126 | 0.483 | 0.186 | |||
Pb | −0.046 | −0.169 | −0.126 | −0.068 | −0.375 | −0.045 | −0.269 | 0.385 | −0.397 | 0.783 * | 0.013 | 0.251 | ||
Zn | −0.434 | −0.318 | −0.350 | −0.414 | 0.349 | 0.169 | 0.139 | −0.390 | 0.297 | −0704 ** | −0.157 | −0.608 | −0.715 ** |
Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
EC | 0.980 | 0.140 | 0.101 | −0.027 |
pH | 0.970 | 0.120 | 0.105 | −0.011 |
Nitrates | 0.985 | −0.014 | 0.100 | −0.004 |
Sulfates | 0.984 | 0.114 | 0.104 | −0.024 |
Chlorides | 0.984 | 0.027 | 0.108 | −0.005 |
Phosphates | 0.137 | -0.170 | 0.431 | −0.826 |
Ca | −0.184 | 0.297 | 0.057 | 0.767 |
Mg | 0.004 | −0.439 | 0.769 | 0.115 |
Na | −0.31 | 0.011 | 0.816 | −0.262 |
K | 0.325 | −0.0237 | 0.852 | 0.115 |
Cd | 0.371 | 0.839 | 0.182 | −0.140 |
As | 0.280 | −0.145 | −0.069 | 0.671 |
Hg | 0.697 | 0.409 | −0.374 | 0.076 |
Pb | −0.170 | 0.940 | −0.011 | 0.192 |
Zn | −0.337 | −0.887 | 0.097 | −0.244 |
Eigenvalues | ||||
% Total variance | 39.728 | 18.815 | 15.181 | 13.908 |
% Cumulative variance | 39.728% | 58.542% | 73.723% | 87.630% |
Sample | HEI | Degree of Heavy Metals | Cd | Pollution Category for Cd | NI | Pollution Degree for NI |
---|---|---|---|---|---|---|
Gw 1 | 9.16 | Low | 4.16 | High | 1.75 | Polluted to medium pollution |
Gw 2 | 7.57 | Low | 2.60 | Medium | 1.53 | Polluted to medium pollution |
Gw 3 | 11.82 | Medium | 6.82 | High | 10.62 | Severe pollution |
Gw 4 | 8.44 | Low | 3.44 | High | 1.48 | Polluted to medium pollution |
Gw 5 | 11.05 | Medium | 5.84 | High | 1.43 | Polluted to medium pollution |
Gw 6 | 7.41 | Low | 2.28 | Medium | 1.51 | Polluted to medium pollution |
Gw 7 | 11.45 | Medium | 6.45 | High | 5.18 | Severe pollution |
Gw 8 | 8.44 | Low | 3.44 | High | 5.74 | Severe pollution |
Gw 9 | 8.90 | Low | 3.90 | High | 5.90 | Severe pollution |
Gw 10 | 9.57 | Low | 4.56 | High | 4.81 | Severe pollution |
Gw 11 | 12.62 | Medium | 7.53 | High | 14.85 | Severe pollution |
Gw 12 | 10.49 | Medium | 5.39 | High | 6.50 | Severe pollution |
Parameters | Unit | Oral Values | Dermal Values |
---|---|---|---|
CDI, chronic daily intake | μg/kg | - | - |
CW, conc. of trace metal | μg/L | - | - |
IR, ingestion rate | L/day | 2.2 (adult) 1 (child) | - - |
EF, exposure frequency | Days/year | 365 | 350 |
ED, exposure duration | Year | 70 (adult) 10 (child) | 30 (adult) 6 (child) |
ET, exposure time | h/event | - | 0.58 (adult) 1.0 (child) |
BW, body weight | kg | 70 (adult) 25 (child) | 70 (adult) 25 (child) |
AT, average time | Days | 25,550 (adult) 3650 (child) | Non-carcinogenic effects = 10,950 (adult) 2190 (child) Carcinogenic effects 25,550 |
SA, skin surface area | cm2 | - | 18,000 (adult) 6600 (child) |
Kp, permeability coefficient | cm/hr | - | Cd 0.001, Pb 0.0004, As 0.001, Hg 0.001, and Zn 0.0006 |
CF, conversion factor | L/cm3 | - | 1/1000 |
Elements | Oral RfD (μg/kg/day) | Oral SF (mg/kg/day) | Dermal RfD (μg/kg/day) |
---|---|---|---|
Cd | 0.5 | 0.38 | 0.005 |
As | 0.3 | 1.5 | 0.00125 |
Hg | 0.01 | n.d. | 0.0021 |
Pb | 3.5 | 0.0085 | 0.0042 |
Zn | 300 | n.d. | 60 |
NO3− | 1.6 | n.d. | n.d. |
Sample | Cd | As | Hg | Pb | Zn | Nitrate | HI | Chronic Risk according to USEPA |
---|---|---|---|---|---|---|---|---|
Gw 1 adults | 0.13 | 0.58 | 0.037 | 1.20 | 0.072 | 0.019 | 2.032 | Medium |
Gw 1 children | 0.16 | 0.74 | 0.047 | 1.514 | 0.092 | 0.0093 | 2.562 | Medium |
Gw 2 adults | 0.19 | 0.60 | 0.04 | 1.21 | 0.0068 | 1.77 | 3.820 | Medium |
Gw 2 children | 0.24 | 0.76 | 0.051 | 1.543 | 0.009 | 2.26 | 4.863 | High |
Gw 3 adults | 0.16 | 0.335 | 0.0314 | 0.876 | 0.2026 | 0.0028 | 1.605 | Medium |
Gw 3 children | 0.20 | 0.43 | 0.04 | 1.115 | 0.259 | 0.0035 | 2.0475 | Medium |
Gw 4 adults | 0.189 | 0.304 | 0.042 | 1.460 | 0.0078 | 0.072 | 2.074 | Medium |
Gw 4 children | 0.24 | 0.39 | 0.373 | 1.860 | 0.010 | 0.0913 | 2.964 | Medium |
Gw 5 adults | 0.140 | 0.597 | 0.0377 | 1.189 | 0.0825 | 0.0073 | 2.054 | Medium |
Gw 5 children | 0.18 | 0.76 | 0.048 | 1.515 | 0.105 | 0.0093 | 2.618 | Medium |
Gw 6 adults | 0.189 | 0.388 | 0.440 | 1.210 | 0.0068 | 1.775 | 4.009 | High |
Gw 6 children | 0.26 | 0.49 | 0.056 | 1.543 | 0.009 | 2.260 | 4.618 | High |
Gw 7 adults | 0.132 | 0.340 | 0.0305 | 0.890 | 0.198 | 0.00275 | 1.593 | Medium |
Gw 7 children | 0.17 | 0.43 | 0.04 | 1.120 | 0.252 | 0.0035 | 2.016 | Medium |
Gw 8 adults | 0.201 | 0.305 | 0.035 | 1.460 | 0.0078 | 0.0720 | 2.081 | Medium |
Gw 8 children | 0.256 | 0.39 | 0.044 | 1.870 | 0.011 | 0.0915 | 2.663 | Medium |
Gw 9 adults | 0.207 | 0.330 | 0.034 | 1.550 | 0.0082 | 0.00175 | 2.150 | Medium |
Gw 9 children | 0.264 | 0.42 | 0.043 | 1.971 | 0.011 | 0.0230 | 2.732 | Medium |
Gw 10 adults | 0.157 | 0.370 | 0.0335 | 1.730 | 0.0103 | 0.0147 | 2.316 | Medium |
Gw 10 children | 0.22 | 0.47 | 0.047 | 2.20 | 0.0132 | 0.01875 | 2.970 | Medium |
Gw 11 adults | 0.198 | 0.470 | 0.040 | 1.980 | 0.0613 | 0.0743 | 2.824 | Medium |
Gw 11 children | 0.252 | 0.590 | 0.051 | 2.515 | 0.078 | 0.0945 | 3.580 | Medium |
Gw 12 adults | 0.201 | 0.597 | 0.0346 | 1.750 | 0.0205 | 0.0630 | 2.670 | Medium |
Gw 12 children | 0.256 | 0.76 | 0.044 | 2.230 | 0.026 | 0.0803 | 3.396 | Medium |
Sample | Cd | As | Hg | Pb | Zn | HI | Chronic Risk according to USEPA |
---|---|---|---|---|---|---|---|
Gw 1 adults | 0.018 | 0.0029 | 0.0024 | 0.0018 | 0.00098 | 0.026 | Low |
Gw 1 children | 0.023 | 0.005 | 0.0042 | 0.0032 | 0.00174 | 0.037 | Low |
Gw 2 adults | 0019 | 0.0029 | 0.0026 | 0.0018 | 0.00093 | 0.027 | Low |
Gw 2 children | 0.033 | 0.00028 | 0.00362 | 0.00235 | 0.0049 | 0.042 | Low |
Gw 3 adults | 0.0157 | 0.0016 | 0.0020 | 0.00133 | 0.0028 | 0.0235 | Low |
Gw 3 children | 0.028 | 0.00028 | 0.0036 | 0.00235 | 0.0049 | 0.042 | Low |
Gw 4 adults | 0.019 | 0.0048 | 0.0027 | 0.0022 | 0.0001 | 0.029 | Low |
Gw 4 children | 0.034 | 0.0026 | 0.0048 | 0.0039 | 0.00019 | 0.045 | Low |
Gw 5 adults | 0.014 | 0.0029 | 0.0024 | 0.0018 | 0.0013 | 0.023 | Low |
Gw 5 children | 0.0245 | 0.0051 | 0.0042 | 0.0032 | 0.002 | 0.039 | Low |
Gw 6 adults | 0.033 | 0.0033 | 0.0051 | 0.0032 | 0.00016 | 0.045 | Low |
Gw 6 children | 0.019 | 0.0018 | 0.0029 | 0.0018 | 0.0001 | 0.0255 | Low |
Gw 7 adults | 0.0132 | 0.0016 | 0.0020 | 0.0013 | 0.0027 | 0.021 | Low |
Gw 7 children | 0.024 | 0.0028 | 0.0036 | 0.00235 | 0.0048 | 0.038 | Low |
Gw 8 adults | 0.020 | 0.00146 | 0.00225 | 0.0022 | 0.00011 | 0.0261 | Low |
Gw 8 children | 0.0356 | 0.0026 | 0.004 | 0.00392 | 0.00018 | 0.0463 | Low |
Gw 9 adults | 0.0210 | 0.00158 | 0.0022 | 0.0024 | 0.00012 | 0.073 | Low |
Gw 9 children | 0.037 | 0.0028 | 0.0039 | 0.0042 | 0.0002 | 0.048 | Low |
Gw 10 adults | 0.0157 | 0.00176 | 0.0024 | 0.0026 | 0.00014 | 0.0226 | Low |
Gw 10 children | 0.0278 | 0.0031 | 0.00422 | 0.0046 | 0.00025 | 0.040 | Low |
Gw 11 adults | 0.020 | 0.00223 | 0.0026 | 0.0030 | 0.00089 | 0.029 | Low |
Gw 11 children | 0.035 | 0.0039 | 0.0046 | 0.0053 | 0.0015 | 0.050 | Low |
Gw 12 adults | 0.0173 | 0.0029 | 0.0023 | 0.0027 | 0.00028 | 0.0254 | Low |
Gw 12 children | 0.036 | 0.005 | 0.00398 | 0.0047 | 0.0005 | 0.050 | Low |
Cancer Risk Value for Pb Carcinogenic Risk according to USEPA | ||||
---|---|---|---|---|
No. of Sample | Adults | Children | Adults | Children |
Gw 1 | 3.57× 10−5 | 4. × 10−5 | Acceptable level | Acceptable level |
Gw 2 | 3.60× 10−5 | 4.6× 10−5 | Acceptable level | Acceptable level |
Gw 3 | 2.61× 10−5 | 3.32× 10−5 | Acceptable level | Acceptable level |
Gw 4 | 4.34× 10−5 | 5.54× 10−5 | Acceptable level | Acceptable level |
Gw 5 | 3.54× 10−5 | 4.51× 10−5 | Acceptable level | Acceptable level |
Gw 6 | 3.60× 10−5 | 4.59× 10−5 | Acceptable level | Acceptable level |
Gw 7 | 2.65× 10−5 | 3.40× 10−5 | Acceptable level | Acceptable level |
Gw 8 | 4.31× 10−5 | 5.56× 10−5 | Acceptable level | Acceptable level |
Gw 9 | 4.61× 10−5 | 5.86× 10−5 | Acceptable level | Acceptable level |
Gw 10 | 5.15× 10−5 | 6.55× 10−5 | Acceptable level | Acceptable level |
Gw 11 | 5.90× 10−5 | 7.50× 10−5 | Acceptable level | Acceptable level |
Gw 12 | 5.21× 10−5 | 6.63× 10−5 | Acceptable level | Acceptable level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devic, G.; Pergal, M.; Pergal, M. Ecological and Health Risk Assessment of Nitrates and Heavy Metals in the Groundwater of the Alluvial Area of the Danube River near Kostolac Basin, Serbia. Water 2024, 16, 1839. https://doi.org/10.3390/w16131839
Devic G, Pergal M, Pergal M. Ecological and Health Risk Assessment of Nitrates and Heavy Metals in the Groundwater of the Alluvial Area of the Danube River near Kostolac Basin, Serbia. Water. 2024; 16(13):1839. https://doi.org/10.3390/w16131839
Chicago/Turabian StyleDevic, Gordana, Marija Pergal, and Miodrag Pergal. 2024. "Ecological and Health Risk Assessment of Nitrates and Heavy Metals in the Groundwater of the Alluvial Area of the Danube River near Kostolac Basin, Serbia" Water 16, no. 13: 1839. https://doi.org/10.3390/w16131839
APA StyleDevic, G., Pergal, M., & Pergal, M. (2024). Ecological and Health Risk Assessment of Nitrates and Heavy Metals in the Groundwater of the Alluvial Area of the Danube River near Kostolac Basin, Serbia. Water, 16(13), 1839. https://doi.org/10.3390/w16131839