Review of the Water–Land–Food–Carbon Nexus Focused on Regional Low-Carbon and High-Quality Agricultural Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Identification and Screening
2.2. Data Collection and Analysis
3. Overview of the WLFC Nexus
3.1. Water–Food, Land–Food, and Water-Land–Food Relationships
3.2. Food–Carbon Relationship
3.3. Water-Land–Food–Carbon Nexus
3.4. Framework of the Agricultural WLFC Nexus
4. Driving Forces and Mechanism of the Agricultural WLFC Nexus
4.1. Water and Land Affecting Agricultural Yields
4.2. Effects of Water and Land Use on Agricultural Carbon Emissions
4.3. External Factors Influencing Food Yields and Agricultural Carbon Emissions
5. Technologies and Tools for Exploring the Agricultural WLFC Nexus
5.1. Common WLFC Nexus Assessment Methods
5.2. Common WLFC Nexus Simulation and Optimization Models
6. WLFC Collaborative Management in Large Global River Basins
Basins | Main Conflicts | Optimizing Elements | Strategies | References |
---|---|---|---|---|
Mississippi River | Agricultural pollution | Land | Increasing wetlands | [145] |
Planting pattern Planting method | Corn–soybean–wheat rotation Cover crops and fertilizer reduction | [154] | ||
Amazon River | Deforestation Agricultural expansion Flood- and drought-caused food loss Hydropower | Water Land | Manage blue and green water use Reduce deforestation Improve food productivity | [155,156] |
Ganges River | Water scarcity Irrigation Energy Carbon emissions | Water-land | Basin-level water cooperation Adjust the use ratios of surface water and groundwater Adopt pressurized irrigation Fallow crop rotation | [75,153] |
Amu Darya River | Water scarcity Cropland expansion Soil salinity | Water-land–food–ecology | Improve the irrigation efficiency Optimize water and land allocation Soil salinity control | [112,157] |
Syr River | Irrigation water conflicts Land-water mismatch | Water-land | Improve water and land allocation Strengthen cooperative water networks among countries Optimize the crop-planting structure Control cultivated land expansion | [144,158] |
Yellow River | Water-land stress Soil salinization Ecology stress | Water-land | Promote water-saving policies Optimize the allocation of water and land resources for diverse crops Adjust the planting structure | [70,148,159,160] |
Yangtze River | Agricultural pollution Floods | Water-land–food | Optimize the allocation of limited resources and maximize irrigation water productivity | [149,150] |
Lancang–Mekong River | Hydropower– irrigation conflicts | Water–energy–food | Double water–electricity cooperation Basin-level cooperation | [151,152,161,162] |
Nile River | Water–food production Climate change | Water | Soil water conservation techniques, i.e., plastic film and straw mulching Basin-level cooperation | [163] |
Congo River | Deforested croplands Carbon output Hydropower | Land–food–carbon | Promoting afforestation, reforestation, and conservation of natural forests Basin-level cooperation | [146,147] |
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltran-Peña, A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Kang, S. Store grain in water and technology—Development of highly-efficient agricultural water use for ensuring national food security. China Water Resour. 2022, 13, 1–5. (In Chinese) [Google Scholar]
- Yoon, P.R.; Lee, S.H.; Choi, J.Y.; Yoo, S.H.; Hur, S.O. Analysis of climate change impact on resource intensity and carbon emissions in protected farming systems using Water-Energy-Food-Carbon Nexus. Resour. Conserv. Recycl. 2022, 184, 106394. [Google Scholar] [CrossRef]
- Wang, H.; Hong, J.; Liu, G. Simulation research on different policies of regional green development under the nexus of water-energy-food. China Popul. Resour. Environ. 2019, 29, 74–84. (In Chinese) [Google Scholar]
- Messerli, P.; Murniningtyas, E.; Eloundou-Enyegue, P.; Foli, E.; Furman, E.; Glassman, A.; Licona, G.H.; Kim, E.M.; Lutz, W.; Moatti, J. Global Sustainable Development Report 2019; United Nations: San Francisco, CA, USA, 2019. [Google Scholar]
- PWC. The World in 2050: Will the Shift in Global Economic Power Continue? PWC: London, UK, 2015. [Google Scholar]
- Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. The 2029 Revision of World Population Prospects; Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat: New York, NY, USA, 2019.
- Wallerstein, D. Food-energy-water (FEW) nexus: Rearchitecting the planet to accommodate 10 billion humans by 2050. Resour. Conserv. Recycl 2020, 155, 104658. [Google Scholar] [CrossRef]
- Huang, J. Recognition of Recent and Mid-long Term Food Security in China. Issues Agric. Econ. 2021, 1, 19–26. (In Chinese) [Google Scholar] [CrossRef]
- Xia, J.; Shi, W. Perspective on water security issue of changing environment in China. J. Hydraul. Eng. 2016, 47, 292–301. (In Chinese) [Google Scholar]
- Sun, Z.; Jia, S.; Yan, J.; Zhu, W.; Liang, Y. Study on the Matching Pattern of Water and Potential Arable Land Resources in China. J. Nat. Resour. 2018, 33, 2057–2066. (In Chinese) [Google Scholar]
- Jia, S. Contribute to national food security by optimizing water and soil allocation in the Yellow River upstream. China Water Resour. 2020, 21, 29–31. (In Chinese) [Google Scholar]
- Jiang, W. Strategic path of intensive and safe utilization of water resources in China. China Water Resour. 2021, 6, 58–59. (In Chinese) [Google Scholar]
- Zhao, Y.; Huang, K.; Gao, X.; An, T.; He, G.; Jiang, S. Evaluation of grain production water footprint and influence of grain virtual water flow in the Yellow River Basin. Water Resour. Prot. 2022, 38, 39–47. (In Chinese) [Google Scholar]
- Cao, X.; Liu, Z.; Wu, M.; Guo, X.; Wang, W. Temporal-spatial distribution and driving mechanism of arable land water scarcity index in China from water footprint perspective. Trans. Chin. Soc. Agric. Eng. 2019, 35, 94–100. (In Chinese) [Google Scholar]
- Zhu, E.; Qi, Q.; Chen, L.; Wu, X. The spatial-temporal patterns and multiple driving mechanisms of carbon emissions in the process of urbanization: A case study in Zhejiang, China. J. Clean. Prod. 2022, 358, 131954. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Wang, J. Causes of spatial mismatch between grain production and water resources:Base comparative advantage. J. China Agric. Univ. 2022, 27, 12–29. (In Chinese) [Google Scholar]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S. The global food-energy-water nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Song, S.; Fu, B. Research Progress of the Water-Food-Energy-Ecosystem Nexus. Adv. Earth Sci. 2021, 36, 684–693. (In Chinese) [Google Scholar]
- He, L.; Yin, F.; Zhao, W.; Xia, J. Multivariate spatiotemporal matching pattern of water-land-population resources in China and its impact on food production and security. Water Resour. Hydropower Eng. 2022, 53, 11–27. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, H.; Sang, X.; He, G.; Wang, Q.; Jiang, S. Research on the coordinated regulation of water resources-food-energy-ecology in Beijing-Tianjin-Hebei region Ⅱ: Applica. J. Hydraul. Eng. 2022, 53, 1251–1261. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W.; Deng, C.; Yan, J. Analysis on issues of water-energy-food nexus. J. Nat. Resour. 2022, 37, 307–319. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.; Han, Y.; Milind, K.; Zhang, Z.; Ding, M. The coupling interaction mechanism of regional water-land-energy-carbon system. Acta Geogr. Sin. 2016, 71, 1613–1628. (In Chinese) [Google Scholar]
- Cai, X.M.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus—Opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Zheng, Y.; Hong, J.; Xiao, C.; Li, Z. Unfolding the synergy and interaction of water-land-food nexus for sustainable resource management: A supernetwork analysis. Sci. Total Environ. 2021, 784, 147085. [Google Scholar]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, M.; Nazzaro, C.; Marotta, G.; Caracciolo, F. Land degradation and climate change: Global impact on wheat yields. Land Degrad. Dev. 2021, 32, 387–398. [Google Scholar] [CrossRef]
- Yu, S.; Bai, X.; Zhao, J.; Zeng, Y.; Wang, Y.; Wang, Z.; Wang, L.; Shi, Z. Mismatch between provincial grain production and consumption increased cropland soil erosion in China. Agric. Ecosyst. Environ. 2024, 367, 108999. [Google Scholar] [CrossRef]
- Li, N.; Yao, N.; Li, Y.; Chen, J.; Liu, D.; Biswas, A.; Li, L.; Wang, T.; Chen, X. A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches. Agric. Syst. 2021, 193, 103221. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.-L.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- IPCC; Stocker, T.F.; Qin, D.; Plattner, G.K.; Midgley, P.M. The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1585p. [Google Scholar]
- Zhang, Y.; Liu, G.; Huang, W.; Xu, J.; Cheng, Y.; Wang, C.; Zhu, T.; Yang, J. Effects of irrigation regimes on yield and quality of upland rice and paddy rice and their interaction with nitrogen rates. Agric. Water Manag. 2020, 241, 106344. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Yue, Z.; Tian, C.; Leng, P.; Cheng, H.; Chen, G.; et al. Responses of soil greenhouse gas emissions to no-tillage: A global meta-analysis. Sustain. Prod. Consum. 2023, 36, 479–492. [Google Scholar] [CrossRef]
- Wang, J.; Rothausen, S.G.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water–energy nexus: Greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett. 2012, 7, 014035. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Liu, Y.; Tian, M.M.; Ding, M.L.; Cao, L.H.; Zhang, Z.P.; Chuai, X.W.; Xiao, L.G.; Yao, L.G. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Zhang, D. Carbon Footprint and Low Carbon Strategy for Grain Production in China. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Wu, H.; Huang, H.; Chen, W. Decoupling Effects between Carbon Emissions from Cropland Use and Grain Prodution in the Major Grain-Producing Areas in China. Geogr. Geo-Inf. Sci. 2021, 37, 85–91. (In Chinese) [Google Scholar]
- Xiang, Y. Study on Water-Land-Food (WLF) Nexus in Northeast China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Siegfried, T.; Fishman, R.; Modi, V.; Lall, U. An entitlement approach to address the water-energy-food nexus in rural India. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2008; p. H11G-0846. [Google Scholar]
- Shah, T.; Scott, C.; Berkoff, J.; Kishore, A.; Sharma, A. Energy-irrigation nexus in South Asia: Pricing versus rationing as practical tool for efficient resource allocation. In Irrigation Water Pricing: The Gap between Theory and Practice; CAB International: Wallingford, UK, 2007. [Google Scholar]
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn 2011 Conference: The Water Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Xia, J.; Zhai, J.; Zhan, C. Some Reflections on the Research and of Development Water Resources in China. Adv. Earth Sci. 2011, 26, 905–915. (In Chinese) [Google Scholar]
- Yang, X.; Mu, Y. Spatial-Temporal Matching Patterns of Grain Production and Water Resources. J. S. China Agric. Univ. Soc. Sci. Ed. 2019, 18, 91–100. (In Chinese) [Google Scholar]
- Cui, B.; Gao, F.; Hu, C.; Li, Z.; Fan, X.; Cui, E. The Use of Brackish and Reclaimed Waste Water in Agriculture:A Review. J. Irrig. Drain. 2019, 38, 60–68. (In Chinese) [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Zhang, Y.; Qin, A.; Gao, Y.; Duan, A.; Zhang, J.; Liu, Z.; Zhao, B.; Liu, Z. Interactive effects of irrigation system and level on grain yield, crop water use, and greenhouse gas emissions of summer maize in North China Plain. Sci. Total Environ. 2023, 864, 161165. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, Z.; Han, L.; He, L. Progress of study on theory and method of virtual water. J. China Inst. Water Resour. Hydropower Res. 2008, 1, 66–73. (In Chinese) [Google Scholar] [CrossRef]
- Li, B.; Huang, F. Defining the Baselines for China Agricultural Water Use in Green and Blue Water Approach. Sci. Agric. Sin. 2015, 48, 3493–3503. (In Chinese) [Google Scholar]
- Wu, P. Integrative Management of Physical Water and Virtual Water to Ensure National Food Security. J. Irrig. Drain. 2020, 39, 1–6. (In Chinese) [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, J. Structural path analysis of water resources consumption in China based on input-output table. Prog. Geogr. 2021, 40, 370–381. (In Chinese) [Google Scholar] [CrossRef]
- Nie, Y.; Li, X.; Jiang, W.; Liu, N. Planting structure optimization of three main grain crops in10 northern China provinces based on water footprint method. Resour. Sci. 2022, 44, 2315–2329. [Google Scholar]
- Wu, Y.; Zhang, P.; Yu, Y.; Xie, R. Progress Review on and Prospects for Non-grain Cultivated Land in China from the Perspective of Food Security. China Land Sci. 2021, 35, 116–124. (In Chinese) [Google Scholar]
- Li, Y.; Ma, W.; Jiang, G.; Li, G.; Zhou, D. The degree of cultivated land abandonment and its influence on grain yield in main grain producing areas of China. J. Nat. Resour. 2021, 36, 1439–1454. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, Q.; Ha, T.; Prishchepov, A.V.; Zeng, Y.; Yin, H.; Koh, L.P. The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nat. Commun. 2023, 14, 6083. [Google Scholar] [CrossRef]
- Cai, Y.; Fu, Z.; Dai, E. The Minimum Area Per Capita of Cultivated Land and Its Implication for the Optimization of Land Resource Allocation. Acta Geogr. Sin. 2002, 57, 127–134. (In Chinese) [Google Scholar]
- Sun, M. The Spatio-Temporal Variation, Matching Relationship, and Regulation of Food-Land Use-Water Nexus on Perspective of Supply and Demand Balance. Master’s Thesis, Northwest A&F University, Xianyang, China, 2022. (In Chinese). [Google Scholar]
- He, G.; Cui, Z.; Ying, H.; Zheng, H.; Wang, Z.; Zhang, F. Managing the trade-offs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems. J. Clean. Prod. 2017, 164, 567–574. [Google Scholar] [CrossRef]
- Li, S.; Wu, F.; Zhou, Q.; Zhang, Y. Adopting agronomic strategies to enhance the adaptation of global rice production to future climate change: A meta-analysis. Agron. Sustain. Dev. 2024, 44, 23. [Google Scholar] [CrossRef]
- Zheng, H.; Ying, H.; Yin, Y.; Wang, Y.; He, G.; Bian, Q.; Cui, Z.; Yang, Q. Irrigation leads to greater maize yield at higher water productivity and lower environmental costs: A global meta-analysis. Agric. Ecosyst. Environ. 2019, 273, 62–69. [Google Scholar] [CrossRef]
- Huang, X.; Fang, H.; Wu, M.; Cao, X. Assessment of the regional agricultural water-land Nexus in China: A green-blue water perspective. Sci. Total Environ. 2022, 804, 150192. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xu, Z.; Wang, S.; Bao, J.; Fan, Y.; Daccache, A. Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective. Appl. Energy 2022, 308, 118364. [Google Scholar] [CrossRef]
- Doelman, J.C.; Beier, F.D.; Stehfest, E.; Bodirsky, B.L.; Beusen, A.H.; Humpenöder, F.; Mishra, A.; Popp, A.; Van Vuuren, D.P.; De Vos, L. Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environ. Res. Lett. 2022, 17, 045004. [Google Scholar] [CrossRef]
- Yuan, M.; Zheng, N.; Yang, Y.; Liu, C. Robust optimization for sustainable agricultural management of the water-land-food nexus under uncertainty. J. Clean. Prod. 2023, 403, 136846. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.; Ying, S.C. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, G.; Abdalla, M.; Kuhnert, M.; Bao, H.; Xu, H.; Ma, J.; Begum, K.; Smith, P. Modelling methane emissions and grain yields for a double-rice system in Southern China with DAYCENT and DNDC models. Geoderma 2023, 431, 116364. [Google Scholar] [CrossRef] [PubMed]
- Fagodiya, R.K.; Singh, A.; Singh, R.; Rani, S.; Kumar, S.; Rai, A.K.; Sheoran, P.; Chandra, P.; Yadav, R.; Sharma, P. The food-energy-water-carbon nexus of the rice-wheat production system in the western Indo-Gangetic Plain of India: An impact of irrigation system, conservational tillage and residue management. Sci. Total Environ. 2023, 860, 160428. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Vora, N.; Shah, A.; Bilec, M.M.; Khanna, V. Food-Energy-Water Nexus: Quantifying Embodied Energy and GHG Emissions from Irrigation through Virtual Water Transfers in Food Trade. ACS Sustain. Chem. Eng. 2017, 5, 2119–2128. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Zhao, R.; Yang, W.; Wu, H.; Peng, C.; Guo, M.; Liu, K. The flow analysis of inter-provincial agricultural water, land and carbon footprints in China based on input-output model. Acta Ecol. Sin. 2022, 42, 9615–9626. (In Chinese) [Google Scholar]
- He, H.; Fu, B. Measurement of Agricultural Carbon Emission and Pressure of Emission Reduction in Main Grain-producing Areas of China. Ecol. Econ. 2019, 35, 99–104. (In Chinese) [Google Scholar]
- Long, J. Integration of Environmental Footprints and Its Impact Analysis of Bejing Crops Based on Life Cycle Assessment. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Shi, M.; Wang, Y.; Zhang, Z.; Zhou, X. Regional Carbon Footprint and Interregional Transfer of Carbon Emissions in China. Acta Geogr. Sin. 2012, 67, 1327–1338. (In Chinese) [Google Scholar]
- Wang, Y.; Pu, C.; Zhao, X.; Wang, X.; Liu, S.; Zhang, H. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resour. Sci. 2018, 40, 1800–1811. (In Chinese) [Google Scholar]
- Du, J.; Luo, J.; Wang, R.; Wang, X. The Estimation and Analysis of Spatio-Temporal Change Patterns of Carbon Functions in Major Grain Producing Area. J. Ecol. Rural Environ. 2019, 35, 1242–1251. (In Chinese) [Google Scholar] [CrossRef]
- Ren, H.; Liu, B.; Zhang, Z.; Li, F.; Pan, K.; Zhou, Z.; Xu, X. A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty. Appl. Energy 2022, 326, 120008. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, Y.; Liu, Y. Vulnerability evaluation and prediction of the water-energy-food-ecology nexus in the Yangtze River Economic Belt based on TOPSIS, neighborhood rough set and support vector machine. Front. Environ. Sci. 2022, 10, 944075. [Google Scholar] [CrossRef]
- Shi, H.; Luo, G.; Zheng, H.; Chen, C.; Bai, J.; Liu, T. Water use analysis of Syr Darya river basin:Based on “Water-Energy-Food-Ecology” nexus and Bayesian network. Acta Geogr. Sin. 2020, 75, 1036–1052. (In Chinese) [Google Scholar]
- Zhao, L.; Liu, S.; Sun, C. Study on coupling and coordinated development of water-energy-food security system in the Yellow River Basin. Water Resour. Prot. 2021, 37, 69–78. [Google Scholar]
- Niu, S.; Lyu, X.; Gu, G. A New Framework of Green Transition of Cultivated Land-Use for the Coordination among the Water-Land-Food-Carbon Nexus in China. Land 2022, 11, 933. [Google Scholar] [CrossRef]
- Gao, H.; Tian, H.; Zhang, Z.; Xia, X. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. Sci. Total Environ. 2022, 820, 153288. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mu, C.; Xing, Y.; Wang, Q.; Lupwayi, N. Responses and mechanisms of soil greenhouse gas fluxes to changes in precipitation intensity and duration: A meta-analysis for a global perspective. Can. J. Soil Sci. 2018, 98, 591–603. [Google Scholar] [CrossRef]
- Yu, H.; Wang, T.; Huang, Q.; Song, K.; Zhang, G.; Ma, J.; Xu, H. Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis. Sci. China Earth Sci. 2022, 65, 96–106. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Bao, Z.; Wang, G.; Wu, H.; Yang, Y. Response of grain yield to climate change driving water resources change. Adv. Water Sci. 2021, 32, 855–866. (In Chinese) [Google Scholar] [CrossRef]
- Yu, C. The coupled effects of water and nitrogen on China’s food and environmental securities. Sci. Sin. Terrae 2019, 49, 2018–2036. (In Chinese) [Google Scholar]
- Li, Q.; Chen, Y.; Sun, S.; Zhu, M.; Xue, J.; Gao, Z.; Zhao, J.; Tang, Y. Research on crop irrigation schedules under deficit irrigation—A meta-analysis. Water Resour. Manag. 2022, 36, 4799–4817. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, X.; Gao, X.; Siddique, K.H. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agric. Water Manag. 2020, 228, 105906. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.; Smith, P.; Zeng, Z.; Olesen, J.E.; Zang, H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 2022, 13, 4926. [Google Scholar] [CrossRef] [PubMed]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Patle, G.; Singh, D.; Sarangi, A.; Khanna, M. Managing CO2 emission from groundwater pumping for irrigating major crops in trans indo-gangetic plains of India. Clim. Chang. 2016, 136, 265–279. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Zhang, X.; Yu, X.; Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 2018, 203, 138–150. [Google Scholar] [CrossRef]
- Salem, G.S.A.; Kazama, S.; Shahid, S.; Dey, N.C. Groundwater-dependent irrigation costs and benefits for adaptation to global change. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 953–979. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrijo, D.; Huang, S.; Chen, J.; Balaine, N.; Zhang, W.; van Groenigen, K.J.; Linquist, B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Res. 2019, 234, 47–54. [Google Scholar] [CrossRef]
- Beyer, R.M.; Hua, F.; Martin, P.A.; Manica, A.; Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 2022, 3, 49. [Google Scholar] [CrossRef]
- Amami, R.; Ibrahimi, K.; La Scala Junior, N.; Hmila, A.; Abrougui, K.; Chehaibi, S. Soil physical properties, carbon dioxide emissions and their relationships under different Management Systems in Semi-arid Region of eastern Tunisia. Commun. Soil Sci. Plant Anal. 2021, 52, 1689–1705. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agr. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Liu, B.; Gu, W.; Yang, Y.; Lu, B.; Wang, F.; Zhang, B.; Bi, J. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2021, 2, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ghazali, S.; Azadi, H.; Moghaddam, S.M.; Viira, A.-H.; Janečková, K.; Sklenička, P.; Lopez-Carr, D.; Köhl, M.; Kurban, A. Contribution of agricultural land conversion to global GHG emissions: A meta-analysis. Sci. Total Environ. 2023, 876, 162269. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Yu, L.; Wang, D.; Yang, Z. Carbon footprint of crop production in Heilongjiang land reclamation area, China. Int. J. Agric. Biol. Eng. 2022, 15, 182–191. [Google Scholar] [CrossRef]
- Deng, C.; Li, R.; Xie, B.; Wan, Y.; Li, Z.; Liu, C. Impacts of the integrated pattern of water and land resources use on agricultural greenhouse gas emissions in China during 2006–2017: A water-land-energy-emissions nexus analysis. J. Clean. Prod. 2021, 308, 127221. [Google Scholar] [CrossRef]
- Shevchenko, V.; Lukashevich, A.; Taniushkina, D.; Bulkin, A.; Grinis, R.; Kovalev, K.; Narozhnaia, V.; Sotiriadi, N.; Krenke, A.; Maximov, Y. Climate Change Impact on Agricultural Land Suitability: An Interpretable Machine Learning-Based Eurasia Case Study. IEEE Access 2024, 12, 15748–15763. [Google Scholar] [CrossRef]
- Imoro, Z.A.; Imoro, A.Z.; Duwiejuah, A.B.; Abukari, A. Harnessing indigenous technologies for sustainable management of land, water, and food resources amidst climate change. Front. Sustain. Food Syst. 2021, 5, 691603. [Google Scholar] [CrossRef]
- Chamas, Z.; Abou Najm, M.; Al-Hindi, M.; Yassine, A.; Khattar, R. Sustainable resource optimization under water-energy-food-carbon nexus. J. Clean. Prod. 2021, 278, 123894. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Gao, L.; Ma, D.; Song, R.; Zhao, J.; Yang, X.; Li, S.; Zhuang, B.; Li, M. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060. Environ. Pollut. 2023, 317, 120715. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; van Dam, J.; Yang, X.; Ritsema, C.; Du, T.; Kang, S. Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agric. Water Manag. 2023, 280, 108229. [Google Scholar] [CrossRef]
- Yang, G.; Li, S.; Wang, H.; Wang, L. Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain. Agric. Water Manag. 2022, 259, 107272. [Google Scholar] [CrossRef]
- Zhu, L.; Bai, Y.; Zhang, L.; Si, W.; Wang, A.; Weng, C.; Shu, J. Water–Land–Food Nexus for Sustainable Agricultural Development in Main Grain-Producing Areas of North China Plain. Foods 2023, 12, 712. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, P.; Mahjabin, T.; Fernandez, J.; Grady, C. From national indices to regional action—An Analysis of food, energy, water security in Ecuador, Bolivia, and Peru. Environ. Sci. Policy 2019, 101, 291–301. [Google Scholar] [CrossRef]
- Sun, D.; Wu, J.; Zhang, F.; Su, W.; Hui, H. Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation, and Matter–Element Analysis. Sustainability 2018, 10, 3934. [Google Scholar] [CrossRef]
- Gu, D.; Guo, J.; Fan, Y.; Zuo, Q.; Yu, L. Evaluating water-energy-food system of Yellow River basin based on type-2 fuzzy sets and Pressure-State-Response model. Agric. Water Manag. 2022, 267, 107607. [Google Scholar] [CrossRef]
- Liu, D.; Lihui, Z.; Heng, L.; Qiang, F.; Mo, L.; Faiz, M.A.; Ali, S.; Tianxiao, L.; Khan, M.I. Optimization of irrigation water use efficiency evaluation indicators based on DPSIR-ISD model. Water Supply 2020, 20, 83–94. [Google Scholar]
- Sun, C.; Yan, X. Security evaluation and spatial correlation pattern analysis of water resources energy-food nexus coupling system in China. Water Resour. Prot. 2018, 34, 1–8. (In Chinese) [Google Scholar]
- Han, D.N.; Yu, D.Y.; Cao, Q. Assessment on the features of coupling interaction of the food-energy-water nexus in China. J. Clean. Prod. 2020, 249, 119379. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Sharafi, S.; Kazemi, A.; Amiri, Z. Estimating energy consumption and GHG emissions in crop production: A machine learning approach. J. Clean. Prod. 2023, 408, 137242. [Google Scholar] [CrossRef]
- Corona-López, E.; Román-Gutiérrez, A.D.; Otazo-Sánchez, E.M.; Guzmán-Ortiz, F.A.; Acevedo-Sandoval, O.A. Water–Food Nexus assessment in agriculture: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 4983. [Google Scholar] [CrossRef] [PubMed]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Xuan, X.; Weng, C.; Huang, X.; Deng, X. Tele-connections, driving forces and scenario simulation of agricultural land, water use and carbon emissions in China’s trade. Resour. Conserv. Recycl. 2024, 203, 107433. [Google Scholar] [CrossRef]
- Li, X. Security Evaluation of Water-Energy-Food Nexus System in China Based on Synergetic-Symbiosis Theory. Ph.D. Thesis, Shandong Agricultural University, Tai′an, China, 2020. (In Chinese). [Google Scholar]
- An, R.H.; Liu, P.; Cheng, L.; Yao, M.L.; Li, H.; Wang, Y.B. Network analysis of the food-energy-water nexus in China’s Yangtze River Economic Belt from a synergetic perspective. Environ. Res. Lett. 2021, 16, 054001. [Google Scholar] [CrossRef]
- Francisco, É.C.; de Arruda Ignácio, P.S.; Piolli, A.L.; Dal Poz, M.E.S. Food-energy-water (FEW) nexus: Sustainable food production governance through system dynamics modeling. J. Clean. Prod. 2023, 386, 135825. [Google Scholar] [CrossRef]
- Ramaswami, A.; Boyer, D.; Nagpure, A.S.; Fang, A.; Bogra, S.; Bakshi, B.; Cohen, E.; Rao-Ghorpade, A. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environ. Res. Lett. 2017, 12, 025008. [Google Scholar] [CrossRef]
- Dehghanipour, A.H.; Schoups, G.; Zahabiyoun, B.; Babazadeh, H. Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran. Agric. Water Manag. 2020, 241, 106353. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, L. Simulating and assessing the effects of seasonal fallow schemes on the water-food-energy nexus in a shallow groundwater-fed plain of the Haihe River basin of China. J. Hydrol. 2021, 595, 125992. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Salmani, B.; Zare Naghadehi, S.; Valipoori Goodarzi, H.; Khasraei, A. An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security. Sci. Rep. 2023, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
- Akın, A.; Erdoğan, N.; Berberoğlu, S.; Çilek, A.; Erdoğan, A.; Donmez, C.; Şatir, O. Evaluating the efficiency of future crop pattern modelling using the CLUE-S approach in an agricultural plain. Ecol. Inform. 2022, 71, 101806. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Lyu, J.; Zhi, Y.; Chen, F.; Wang, L.; Liu, C.; Zhou, S. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: A review. Artif. Intell. Agric. 2020, 4, 140–149. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Ariyachandra, S.; Jayawardhana, A.; Dharmasekara, T.; Jahanshiri, E.; Muttil, N.; Rathnayake, U. Process-based crop models in soil research: A bibliometric analysis. Soil Syst. 2023, 7, 43. [Google Scholar] [CrossRef]
- El-Gafy, I.; Apul, D. Expanding the dynamic modeling of water-food-energy nexus to include environmental, economic, and social aspects based on life cycle assessment thinking. Water Resour. Manag. 2021, 35, 4349–4362. [Google Scholar] [CrossRef]
- Feng, T.; Liu, B.; Ren, H.; Yang, J.; Zhou, Z. Optimized model for coordinated development of regional sustainable agriculture based on water–energy–land–carbon nexus system: A case study of Sichuan Province. Energy Convers. Manag. 2023, 291, 117261. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Yang, C. Thinking of Agriculture Development in China Based on Regional Water Resources and Land Cultivation. Bull. Chin. Acad. Sci. 2013, 28, 329–336. (In Chinese) [Google Scholar]
- Kang, S. National water conservation initiative for promoting water-adapted and green agriculture and highly-efficient water use. China Water Resour. 2019, 13, 1–6. (In Chinese) [Google Scholar]
- Liu, C.; Du, W. Calculation and analysis of water allocation effects upon agriculture production. J. Nat. Resour. 1987, 2, 11. [Google Scholar]
- Su, X. Advance of Optimal Allocation of Water Resources in Agriculture: A Review. J. Irrig. Drain. 2022, 41, 1–7+34. (In Chinese) [Google Scholar] [CrossRef]
- Ruan, H.; Yu, J.; Wang, P.; Wang, T. Increased crop water requirements have exacerbated water stress in the arid transboundary rivers of Central Asia. Sci. Total Environ. 2020, 713, 136585. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.T.; Dolph, C.L.; Foufoula-Georgiou, E.; Finlay, J.C. Contribution of wetlands to nitrate removal at the watershed scale. Nat. Geosci. 2018, 11, 127–132. [Google Scholar] [CrossRef]
- Drake, T.W.; Baumgartner, S.; Barthel, M.; Bauters, M.; Alebadwa, S.; Akoko, N.B.; Haghipour, N.; Eglinton, T.; Van Oost, K.; Boeckx, P. Agricultural land-use increases carbon yields in lowland streams of the Congo Basin. J. Geophys. Res. Biogeosciences 2024, 129, e2023JG007751. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Matondo, R.; Mabiala-Ngoma, A.; Tchichelle, V.S.; Toto, M.; Madzoumbou, J.-C.; Akana, J.A.; Gomat, H.Y.; Mankessi, F.; Mbou, A.T. Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development. Sustainability 2022, 14, 14624. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.; Wang, Y.; Yao, J. Regulation of planting structure considering irrigation water, carbon emission, and grain security in the Yellow River Basin, China, by using multisource data. J. Irrig. Drain. Eng. 2023, 149, 04023018. [Google Scholar] [CrossRef]
- Guo, C.; Bai, Z.; Shi, X.; Chen, X.; Chadwick, D.; Strokal, M.; Zhang, F.; Ma, L.; Chen, X. Challenges and strategies for agricultural green development in the Yangtze River Basin. J. Integr. Environ. Sci. 2021, 18, 37–54. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Chen, X. A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin. Agric. Water Manag. 2021, 256, 107103. [Google Scholar] [CrossRef]
- Do, P.R.; Tian, F.Q.; Zhu, T.J.; Zohidov, B.; Ni, G.H.; Lu, H.; Liu, H. Exploring synergies in the water -food -energy nexus by using an integrated hydro -economic optimization model for the Lancang-Mekong River basin. Sci. Total Environ. 2020, 728, 728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Zhang, C.; Hu, C.; Fu, G.; Cai, X. Dual water-electricity cooperation improves economic benefits and water equality in the Lancang-Mekong River Basin. Nat. Commun. 2023, 14, 6228. [Google Scholar] [CrossRef] [PubMed]
- Siderius, C.; van Walsum, P.; Biemans, H. Strong trade-offs characterise water-energy-food related sustainable development goals in the Ganges–Brahmaputra–Meghna River Basin. Environ. Res. Lett. 2022, 17, 105005. [Google Scholar] [CrossRef]
- Basu, N.B.; Van Meter, K.J.; Byrnes, D.K.; Van Cappellen, P.; Brouwer, R.; Jacobsen, B.H.; Jarsjö, J.; Rudolph, D.L.; Cunha, M.C.; Nelson, N. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 2022, 15, 97–105. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Coe, M.T.; Johnson, M.S. A review of green-and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: What could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 2016, 20, 2179–2194. [Google Scholar] [CrossRef]
- Stabile, M.C.; Guimarães, A.L.; Silva, D.S.; Ribeiro, V.; Macedo, M.N.; Coe, M.T.; Pinto, E.; Moutinho, P.; Alencar, A. Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Policy 2020, 91, 104362. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Suo, C.; Liu, Y. Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia. Agric. Water Manag. 2019, 216, 76–88. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, F.; Hao, H. Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia. Hydrol. Earth Syst. Sci. 2021, 25, 3281–3299. [Google Scholar] [CrossRef]
- Yang, R.; Xu, H. Does agricultural water-saving policy improve food security? Evidence from the Yellow River Basin in China. Water Policy 2023, 25, 253–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P.; Liu, J.; Zhang, X.; Zhao, Y.; Zhang, Q.; Li, L. Sustainable agricultural water management in the Yellow River Basin, China. Agric. Water Manag. 2023, 288, 108473. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, J.; Wang, H. Dam-impacted water–energy–food nexus in Lancang-Mekong river basin. J. Water Resour. Plan. Manag. 2021, 147, 04021010. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, F.; Guo, L.; Borzì, I.; Patil, R.; Wei, J.; Liu, D.; Wei, Y.; Yu, D.J.; Sivapalan, M. Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River. Hydrol. Earth Syst. Sci. 2021, 25, 1883–1903. [Google Scholar] [CrossRef]
- Yang, M.; Wang, G.; Lazin, R.; Shen, X.; Anagnostou, E. Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management. Agric. Water Manag. 2021, 243, 106430. [Google Scholar] [CrossRef]
Nexus | Tools | Objects | Advantages | Limits | References |
---|---|---|---|---|---|
Water–food nexus | WEAP | Water resource assessment | Dynamic simulation of scenarios | Cannot separate groundwater and surface water demands | [125,132] |
SWAT | Water resources and hydrology | Simulation of the transport of nutrients | Restricted for simulating future scenarios | [125,133] | |
SWAP | Use of water in crop growth | Simulation of water transport in crops | Does not provide a graphical user interface | [114,125] | |
Land–food nexus | CA–Markov | Agricultural land assessment | Prediction of spatial–temporal changes in land | Relies on historical data | [134] |
CLUE-S | Agricultural crop pattern prediction | A dynamic, multidimensional, and spatially explicit approach | Simulation on a small scale | [135] | |
MAgPIE | Simulation of crop production and environmental impacts | Provides recursive dynamic solutions with a cost minimization objective function | Global land simulation model with a low spatial resolution | [69] | |
Food–carbon nexus | DNDC | Calculation of carbon and nitrogen cycles and trace gas emissions | Process-based model with an input interface, biogeochemical field, and core process | Depends on the accuracy of the input parameters | [74,136] |
DAYCENT | Simulation of plant production, soil organic carbon decomposition, soil hydrology and thermal regimes | Process-based model for simulating key growth processes | Depends on the accuracy of the input parameters | [74] | |
APSIM | Simulation of soil–plant–atmospheric processes | Process-based model with soil, plant, and governance parameters | Depends on the accuracy of the input parameters | [137] | |
WLFC nexus | SD model | Simulation of complex systems to better understand interrelations between components | Can address the complex time-varying and nonlinear system problems | Many data are needed. | [130,138] |
Multiobjective optimization model | Optimization of irrigation water, land, carbon emissions, and agriculture yields | Can be used to design agricultural water and soil resource allocation schemes under different objectives and scenarios | The optimal solution considers multiple goals, but it cannot be obtained each time. | [84,139] | |
Bayesian network | Prediction of the future WLFC nexus | Characterizing causality, simulating uncertainty, and reducing data requirements | The prediction results depend on prior knowledge. | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Xu, T.; Zhang, L.; Yang, S.; Yin, H.; Guo, J.; Si, L.; Kang, R.; Kaufmann, H.J. Review of the Water–Land–Food–Carbon Nexus Focused on Regional Low-Carbon and High-Quality Agricultural Development. Water 2024, 16, 1770. https://doi.org/10.3390/w16131770
Deng C, Xu T, Zhang L, Yang S, Yin H, Guo J, Si L, Kang R, Kaufmann HJ. Review of the Water–Land–Food–Carbon Nexus Focused on Regional Low-Carbon and High-Quality Agricultural Development. Water. 2024; 16(13):1770. https://doi.org/10.3390/w16131770
Chicago/Turabian StyleDeng, Caiyun, Tianhe Xu, Li Zhang, Siqi Yang, Huiying Yin, Jian Guo, Lulu Si, Ran Kang, and Hermann Josef Kaufmann. 2024. "Review of the Water–Land–Food–Carbon Nexus Focused on Regional Low-Carbon and High-Quality Agricultural Development" Water 16, no. 13: 1770. https://doi.org/10.3390/w16131770
APA StyleDeng, C., Xu, T., Zhang, L., Yang, S., Yin, H., Guo, J., Si, L., Kang, R., & Kaufmann, H. J. (2024). Review of the Water–Land–Food–Carbon Nexus Focused on Regional Low-Carbon and High-Quality Agricultural Development. Water, 16(13), 1770. https://doi.org/10.3390/w16131770