A Sponge Village Flood Response Method Based on GIS and RS Analysis Formation—A Case Study of Jiangou Village
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition and Processing
2.2.1. Topographic Dataset
2.2.2. Meteorological Dataset
2.2.3. Sentinel-2 Dataset
2.3. Analysis of the Causes of Disasters
2.4. Disaster Situation Analysis
2.4.1. Analysis of Precipitation
2.4.2. Extraction of Flooded Areas
2.5. Analysis of Impact Factors
2.5.1. Flow Analysis and River Network Classification
2.5.2. Building Distribution Analysis
2.5.3. Flood Inundation Area Analysis
2.6. Research Methodology and Innovation
2.6.1. Principles of Automatic Building Extraction
2.6.2. Rationale of the Sponge City Construction Methodology for Village Adaptation
3. Result and Discussion
3.1. Flood Disaster Risk Intelligent Management Program
3.1.1. Establishment of Small Artificial Lake
3.1.2. Principles of Artificial Lake Construction
3.1.3. Buffer Area Creation
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokhov, I.I. Climate Change: Causes, Risks, Consequences, and Problems of Adaptation and Regulation. Her. Russ. Acad. Sci. 2022, 92, 1–11. [Google Scholar] [CrossRef]
- Peduzzi, P. The Disaster Risk, Global Change, and Sustainability Nexus. Sustainability 2019, 11, 957. [Google Scholar] [CrossRef]
- Emberson, R.; Kirschbaum, D.; Stanley, T. Global connections between El Nino and landslide impacts. Nat. Commun. 2021, 12, 2262. [Google Scholar] [CrossRef] [PubMed]
- Koks, E.E.; Thissen, M.; Alfieri, L.; De Moel, H.; Feyen, L.; Jongman, B.; Aerts, J.C.J.H. The macroeconomic impacts of future river flooding in Europe. Environ. Res. Lett. 2019, 14, 084042. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I. Brakenridge G R. Large floods in Europe, 1985–2009. Hydrol. Sci. J. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xiao, M. Flood frequency analysis with consideration of hydrological alterations: Changing properties, causes and implications. J. Hydrol. 2014, 519, 803–813. [Google Scholar] [CrossRef]
- Jiahong, L.; Chao, M.; Jim, W.; Dong, W.; Hao, W. Flood survey of “23 • 7” heavy rain in Mentougou Watershed of Beijing. China Flood Drought Manag. 2023, 33, 50–55. [Google Scholar]
- Kuang, D.; Liao, K.H. Learning from Floods: Linking flood experience and flood resilience. J. Environ. Manag. 2020, 271, 111025. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.; Liao, K.H. How does flood resistance affect learning from flood experiences? Clim. Change 2022, 173, 6. [Google Scholar] [CrossRef]
- Liu, L.; Sun, W.; Liu, J. Spatio-Temporal Analysis of Simulated Summer Extreme Precipitation Events under RCP4.5 Scenario in the Middle and Lower Reaches of the Yangtze River Basin. Sustainability 2023, 15, 9218. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Z.; Yang, Y. Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Climatol. 2017, 37, 4586–4593. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, J.; Shao, W.; Mei, C.; Zhou, J. Sponge city construction in China: Policy and implementation experiences. Water Policy 2019, 21, 19–37. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Zhang, L. Sponge City Policy and Sustainable City Development: The Case of Shenzhen. Front. Environ. Sci. 2022, 9, 722490. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Liu, L.; Gao, J.; Wu, S. Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China. Nat. Hazards Earth Syst. Sci. 2022, 22, 1577–1590. [Google Scholar] [CrossRef]
- Wang, C.; Hou, J.; Miller, D.; Brown, I.; Jiang, Y. Flood risk management in sponge cities: The role of integrated simulation and 3D visualization. Int. J. Disaster Risk Reduct. 2019, 39, 101139. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Ma, M.; Song, T.; Song, R. Storm Water Management and Flood Control in Sponge City Construction of Beijing. Water 2018, 10, 1040. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Cheng, T.; Huang, B.; Yang, Z.; Qiu, J.; Zhao, B.; Xu, Z. On the effects of flood reduction for green and grey sponge city measures and their synergistic relationship—Case study in Jinan sponge city pilot area. Urban Clim. 2022, 42, 101058. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge city practice in China: A review of construction, assessment, operational and maintenance. J. Clean. Prod. 2021, 280, 124963. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, S.; Zhao, S. Analysis and Comparison of SRTM1 DEM and ASTER GDEM V2 Data. J. Geo-Inf. Sci. 2017, 19, 1108–1115. [Google Scholar]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 10 April 2024).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 2019. Available online: https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 10 April 2024).
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N. Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satell. Precip. Meas. 2020, 1, 355–373. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 285–296. [Google Scholar] [CrossRef]
- Cheng, P.; Guo, M.; Wang, H.; Fu, Z.; Li, D.; Ren, X. Fusion Segmentation Network Guided by Adaptive Sampling Radius and Channel Attention Mechanism Module for MLS Point Clouds. Appl. Sci. 2022, 13, 281. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Q.; Wu, G.; Xu, Y.; Shibasaki, R.; Shao, X. Village Building Identification Based on Ensemble Convolutional Neural Networks. Sensors 2017, 17, 2487. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, X.; Zhao, P.; Qi, F.; Wang, N. CNN-based statistics and location estimation of missing components in routine inspection of historic buildings. J. Cult. Herit. 2019, 38, 221–230. [Google Scholar] [CrossRef]
- Yin, D.; Xu, C.; Jia, H.; Yang, Y.; Sun, C.; Wang, Q.; Liu, S. Sponge City Practices in China: From Pilot Exploration to Systemic Demonstration. Water 2022, 14, 1531. [Google Scholar] [CrossRef]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Phil. Trans. R. Soc. A 2020, 378, 20190222. [Google Scholar] [CrossRef]
- Yu, Q.; Li, N.; Wang, J.; Wang, S. Comprehensive Performance Assessment for Sponge City Construction: A Case Study. Water 2023, 15, 4039. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, Y.; Wang, Y.; Zhang, S.; Yu, W.; Zhu, X.; Huo, A.; Wang, Z.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Wu, H.L.; Cheng, W.C.; Shen, S.L.; Lin, M.Y.; Arulrajah, A. Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview. Undergr. Space 2020, 5, 184–198. [Google Scholar] [CrossRef]
- Chow, V.T. Open Channel Hydraulics; MacGraw-Hill Book Co., Inc.: New York, NY, USA, 1959; Volume 206. [Google Scholar]
- Mays, L.W. Water Resources Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Flatley, A.; Rutherfurd, I. Comparison of Regionalisation Techniques for Peak Streamflow Estimation in Small Catchments in the Pilbara, Australia. Hydrology 2022, 9, 165. [Google Scholar] [CrossRef]
- Cunnane, C. Review of Statistical Models for Flood Frequency Estimation. In Hydrologic Frequency Modeling, Proceedings of the International Symposium on Flood Frequency and Risk Analyses, Louisiana State University, Baton Rouge, LA, USA, 14–17 May 1986; Springer: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Ilinca, C.; Anghel, C.G. Frequency Analysis of Extreme Events Using the Univariate Beta Family Probability Distributions. Appl. Sci. 2023, 13, 4640. [Google Scholar] [CrossRef]
- Hammer, D.A. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Viessman, W.; Lewis, G.L.; Knapp, J.W.; Harbaugh, T.E. Introduction to Hydrology; Harper & Row: New York, NY, USA, 1989. [Google Scholar]
- Dhiwar, B.K.; Verma, S.; Prasad, A.D. Identification of flood vulnerable area for Kharun River Basin by GIS techniques. In Advanced Modelling and Innovations in Water Resources Engineering: Select Proceedings of AMIWRE 2021; Springer: Singapore, 2022. [Google Scholar]
- Delpas, M.; Fallah-Mehdipour, E.; Azizipour, M.; Jalali, M.; Safavi, H.R.; Saghafian, B.; Loáiciga, H.A.; Babel, M.S.; Savic, D.; Bozorg-Haddad, O. Forensic engineering analysis applied to flood control. J. Hydrol. 2021, 594, 125961. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.X.; Huang, J.; Liu, C. An approximation method for evaluating flash flooding mitigation of sponge city strategies—A case study of Central Geelong. J. Clean. Prod. 2020, 257, 120525. [Google Scholar] [CrossRef]
Datasets | Resolution | Band | Units |
---|---|---|---|
Global Satellite Mapping of Precipitation | 11,132 m | hourlyPrecipRate | mm/h |
Climate Hazards Group InfraRed Precipitation with Station Data | 5566 m | precipitation | mm/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Guo, M.; Wang, G. A Sponge Village Flood Response Method Based on GIS and RS Analysis Formation—A Case Study of Jiangou Village. Water 2024, 16, 1721. https://doi.org/10.3390/w16121721
Liang X, Guo M, Wang G. A Sponge Village Flood Response Method Based on GIS and RS Analysis Formation—A Case Study of Jiangou Village. Water. 2024; 16(12):1721. https://doi.org/10.3390/w16121721
Chicago/Turabian StyleLiang, Xuanshuo, Ming Guo, and Guoli Wang. 2024. "A Sponge Village Flood Response Method Based on GIS and RS Analysis Formation—A Case Study of Jiangou Village" Water 16, no. 12: 1721. https://doi.org/10.3390/w16121721
APA StyleLiang, X., Guo, M., & Wang, G. (2024). A Sponge Village Flood Response Method Based on GIS and RS Analysis Formation—A Case Study of Jiangou Village. Water, 16(12), 1721. https://doi.org/10.3390/w16121721