Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. CAM Model for Land Use Change Forecast
3.2. Estimating Discharges Causing Water Pollution
3.3. Spatial Valuation of Ecosystem Services (ESs)
3.4. Considering the Effects of Water Pollution Control Interventions
4. Results
4.1. Land Use Change Forecast
4.2. Assessment of Water Pollutants
4.3. Changes in the Ecosystem Services
5. Discussion
5.1. Land Use Types and Water Quality
5.2. The Role of Wastewater Treatment
5.3. Improved WWT Efficiency and Spatial Distribution of Pollutants
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling global environmental pressure and economic growth: Scenarios for energy use, materials use and carbon emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K.; Tillotson, M.; Zhao, H.; Liu, W.; Liu, Z.; Liang, S. Lifting China’s water spell. Environ. Sci. Technol. 2014, 48, 11048–11056. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G.B. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, X.; Liu, H.; Jiang, Y.; Zhou, H.; Zhang, C.; Fu, G. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Res. 2021, 194, 116931. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 2020, 596, 125707. [Google Scholar] [CrossRef]
- Salerno, F.; Gaetano, V.; Gianni, T. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Res. 2018, 144, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.T.Y.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Alamanos, A. Exploring the impact of future land uses on flood risks and ecosystem services, with limited data: Coupling a cellular automata markov (CAM) model, with hydraulic and spatial valuation models. Qeios 2024, 1–25. [Google Scholar] [CrossRef]
- Bussi, G.; Janes, V.; Whitehead, P.G.; Dadson, S.J.; Holman, I.P. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 2017, 590–591, 818–831. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Dupas, R.; Casquin, A.; Durand, P.; Viaud, V. Landscape spatial configuration influences phosphorus but not nitrate concentrations in agricultural headwater catchments. Hydrol. Process. 2023, 37, e14816. [Google Scholar] [CrossRef]
- Salem, A.; Abduljaleel, Y.; Dezső, J.; Lóczy, D. Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary. Sci. Rep. 2023, 13, 5061. [Google Scholar] [CrossRef]
- Blyth, E.M.; Arora, V.K.; Clark, D.B.; Dadson, S.J.; De Kauwe, M.G.; Lawrence, D.M.; Melton, J.R.; Pongratz, J.; Turton, R.H.; Yoshimura, K.; et al. Advances in land surface modelling. Curr. Clim. Chang. Rep. 2021, 7, 45–71. [Google Scholar] [CrossRef]
- Subedi, P.; Subedi, K.; Thapa, B. Application of a Hybrid Cellular Automaton–Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. AEES 2013, 1, 126–132. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Lei, K.; Meng, W.; Khu, S.-T.; Zhao, J.; Wang, M.; Yang, J. Space–time approach to water environment carrying capacity calculation. J. Clean. Prod. 2017, 149, 302–312. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B. Catchment legacies and time lags: A parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE 2015, 10, e0125971. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, A.; Verma, V.K. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. J. Environ. Manag. 2020, 262, 110355. [Google Scholar] [CrossRef]
- Monaghan, R.M.; Wilcock, R.J.; Smith, L.C.; Tikkisetty, B.; Thorrold, B.S.; Costall, D. Linkages between land management activities and water quality in an intensively farmed catchment in southern New Zealand. Agric. Ecosyst. Environ. 2007, 118, 211–222. [Google Scholar] [CrossRef]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Luo, Y. Dynamic variations in ecosystem service value and sustainability of urban system: A case study for Tianjin city, China. Cities 2015, 46, 85–93. [Google Scholar] [CrossRef]
- Koundouri, P.; Boulton, A.J.; Datry, T.; Souliotis, I. Ecosystem services, values, and societal perceptions of intermittent rivers and ephemeral streams. In Intermittent Rivers and Ephemeral Streams; Elsevier: Amsterdam, The Netherlands, 2017; pp. 455–476. ISBN 9780128038352. [Google Scholar]
- Alamanos, A.; Brouwer, R. The cost-effectiveness of wetlands as a nature-based solution to reduce phosphorous runoff. In Proceedings of the International Association for Great Lakes Research (IAGLR) Conference, Virtual, 9–11 June 2020. [Google Scholar]
- Garcia, J.A.; Alamanos, A. Integrated Modelling Approaches for Sustainable Agri-Economic Growth and Environmental Improvement: Examples from Greece, Canada and Ireland. Land 2022, 11, 1548. [Google Scholar] [CrossRef]
- Wang, S.; Li, K.; Liang, S.; Zhang, P.; Lin, G.; Wang, X. An integrated method for the control factor identification of resources and environmental carrying capacity in coastal zones: A case study in Qingdao, China. Ocean. Coast. Manag. 2017, 142, 90–97. [Google Scholar] [CrossRef]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef]
- Du, Y.; Bao, A.; Zhang, T.; Ding, W. Quantifying the impacts of climate change and human activities on seasonal runoff in the Yongding River basin. Ecol. Indic. 2023, 154, 110839. [Google Scholar] [CrossRef]
- Falkenmark, M. The massive water scarcity now threatening Africa: Why isn’t it being addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Dai, D.; Lei, K.; Wang, R.; Lv, X.; Hu, J.; Sun, M. Evaluation of river restoration efforts and a sharp decrease in surface runoff for water quality improvement in North China. Environ. Res. Lett. 2022, 17, 044028. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Lu, F.; Ouyang, Z.; Wang, Y. Drivers of drying on the Yongding River in Beijing. J. Hydrol. 2014, 519, 69–79. [Google Scholar] [CrossRef]
- Dai, D.; Sun, M.; Lv, X.; Hu, J.; Zhang, H.; Xu, X.; Lei, K. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 2022, 344, 131137. [Google Scholar] [CrossRef]
- Dai, D.; Xu, X.; Sun, M.; Hao, C.; Lv, X.; Lei, K. Decrease of both river flow and quality aggravates water crisis in North China: A typical example of the upper Yongding River watershed. Environ. Monit. Assess. 2020, 192, 421. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ma, M.; Zheng, F.; Liu, L.; Zhao, N.; Li, X.; Yang, Y.; Guo, J. Spatio-Temporal Variation and Controlling Factors of Water Quality in Yongding River Replenished by Reclaimed Water in Beijing, North China. Water 2017, 9, 453. [Google Scholar] [CrossRef]
- Lei, W.; Wang, Z.J.; Koike, T.; Hang, Y.; Yang, D.W.; Shan, H. The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrol. Process. 2010, 24, 1123–1132. [Google Scholar]
- Hou, L.; Peng, W.; Qu, X.; Chen, Q.; Fu, Y.; Dong, F.; Zhang, H. Runoff changes based on dual factors in the upstream area of Yongding River basin. Pol. J. Environ. Stud. 2019, 28, 143. [Google Scholar] [CrossRef]
- Clark Labs IDRISISelva 17. Available online: https://clarklabs.org/download/idrisi-selva-service-update-to-17-2/ (accessed on 22 May 2024).
- Rahman, M.M.; Szabó, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pascual, U.; Balvanera, P.; Anderson, C.B.; Chaplin-Kramer, R.; Christie, M.; González-Jiménez, D.; Martin, A.; Raymond, C.M.; Termansen, M.; Vatn, A.; et al. Diverse values of nature for sustainability. Nature 2023, 620, 813–823. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Rahman, M.; Szabó, G. Impact of land use and land cover changes on urban ecosystem service value in dhaka, bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- National Development and Reform Commission, Overall Plan of Comprehensive Management and Ecological Restoration of Yongding River. Available online: https://www.ndrc.gov.cn/xxgk/jianyitianfuwen/qgrddbjyfwgk/202107/t20210708_1288136.html (accessed on 22 May 2024).
- Eastman, J.R. IDRISI Selva Manual; Clark Labs-Clark University: Worcester, MA, USA, 2012. [Google Scholar]
- Kityuttachai, K.; Tripathi, N.; Tipdecho, T.; Shrestha, R. CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand. Sustainability 2013, 5, 1480–1500. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River Watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Beijing Water Authority. Green Yongding River: The Construction Plan for an Ecological Corridor; Beijing Water Authority: Beijing, China, 2009. (In Chinese)
- Pernet-Coudrier, B.; Qi, W.; Liu, H.; Müller, B.; Berg, M. Sources and pathways of nutrients in the semi-arid region of Beijing-Tianjin, China. Environ. Sci. Technol. 2012, 46, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Dupas, R.; Musolff, A.; Jawitz, J.W.; Rao, P.S.C.; Jäger, C.G.; Fleckenstein, J.H.; Rode, M.; Borchardt, D. Carbon and nutrient export regimes from headwater catchments to downstream reaches. Biogeosciences 2017, 14, 4391–4407. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2002.
- Cheng, P.; Li, X.; Su, J.; Hao, S. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants. Environ. Res. Lett. 2018, 13, 014026. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Wu, N.; Dong, F.; Shi, W. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Jenny, J.-P.; Normandeau, A.; Francus, P.; Taranu, Z.E.; Gregory-Eaves, I.; Lapointe, F.; Jautzy, J.; Ojala, A.E.K.; Dorioz, J.-M.; Schimmelmann, A.; et al. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl. Acad. Sci. USA 2016, 113, 12655–12660. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, M.; Peñuelas, J.; Liu, X.; Paerl, H.W.; Elser, J.J.; Sardans, J.; Couture, R.-M.; Larssen, T.; Hu, H.; et al. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc. Natl. Acad. Sci. USA 2020, 117, 11566–11572. [Google Scholar] [CrossRef]
- Cheng, P. Study of Typical River Water Quality Target Management Technique in the North China; Research Center for Eco-Environmental Sciences Chinese Academy of Sciences: Beijing, China, 2018; p. 148. [Google Scholar]
- Zhu, M. Study on Agricultural NPS Loads of Haihe Basin and Assessment on its Environmental Impact; Chinese Academy of Agricultural Sciences: Beijing, China, 2011. [Google Scholar]
Land Use Types | Equivalent Biome | ES Value Coefficient * |
---|---|---|
Water | Water bodies (lakes, rivers, wetlands) | 29,191.90 |
Urban and rural | Built-up areas | 0.00 |
Unused land | Bare land (ice or rock) | 0.00 |
Forest | Vegetation (forest and trees) | 3962.67 |
Grass | rangeland | 948.69 |
Farmland | Agricultural land (cropland) | 181.65 |
Land Use Type | Simulated Area | Actual Area | Error | Agreement/Disagreement Information |
---|---|---|---|---|
Farm | 7255.92 | 7083.39 | 2.4% | Agreement Chance = 0.1111 |
Forest | 4140.83 | 4114.43 | 0.6% | Agreement Quantity = 0.3902 |
Grass | 4560.50 | 4713.52 | 3.4% | Agreement Grid cell = 0.4927 |
Water | 283.72 | 285.32 | 0.6% | Disagree Grid cell = 0.0023 |
Urban | 518.00 | 540.89 | 4.4% | Disagree Quantity = 0.0037 |
Rural | 493.91 | 519.69 | 5.2% | |
Unused | 23.73 | 22.10 | 6.9% |
Land Use | Area (km2) | EVS (106 USD) | EVS Changes (106 USD) | |||||
---|---|---|---|---|---|---|---|---|
2015 | 2025 | 2035 | 2015 | 2025 | 2035 | 2025–2015 | 2035–2025 | |
Farm | 7083.39 | 7036.36 | 6926.82 | 128.67 | 127.82 | 125.83 | −0.72 | −1.65 |
Forest | 4114.43 | 4132.90 | 4130.75 | 1630.41 | 1637.73 | 1636.88 | 6.22 | −0.73 |
Grass | 4713.52 | 4727.48 | 4726.41 | 447.17 | 448.49 | 448.39 | 1.11 | −0.11 |
Water | 285.32 | 298.60 | 298.60 | 832.91 | 871.67 | 871.67 | 32.09 | 0.00 |
Urban | 540.89 | 541.41 | 653.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rural | 519.69 | 519.38 | 520.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unused | 22.10 | 20.40 | 20.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 17,279.34 | 17,276.54 | 17,276.54 | 3039.16 | 3085.70 | 3082.76 | 38.71 | −2.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Alamanos, A. Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China. Water 2024, 16, 1701. https://doi.org/10.3390/w16121701
Dai D, Alamanos A. Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China. Water. 2024; 16(12):1701. https://doi.org/10.3390/w16121701
Chicago/Turabian StyleDai, Dan, and Angelos Alamanos. 2024. "Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China" Water 16, no. 12: 1701. https://doi.org/10.3390/w16121701
APA StyleDai, D., & Alamanos, A. (2024). Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China. Water, 16(12), 1701. https://doi.org/10.3390/w16121701