The DPSIR Model-Based Sustainability Assessment of Urban Water Resources: A Comparative Study of Zhuhai and Macao
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Study Area
2.1.1. Location
2.1.2. The Interconnection between Zhuhai and Macao
2.1.3. Climate Parameters of Zhuhai and Macao
2.2. Data Collection
2.3. Research Methods
2.3.1. The Framework of DPSIR Model
2.3.2. Principal Component Analysis
2.3.3. Entropy Method
2.3.4. Comprehensive Evaluation Score
3. Results and Discussion
3.1. Key Factors for the Sustainable Development of Water Resources
3.2. Evaluation Results of the DPSIR Index
3.3. Prediction of Sustainable Utilization Level of Water Resources in Zhuhai and Macao
3.4. Proposal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Public Data of Indicators of the DPSIR Model in Zhuhai and Macao Cities
Criterion Stage | Indicator Stage | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
Driving force (D) | Per capita GDP growth rate (%) | Zhuhai | 2.93 | 7.85 | 8.82 | 7.31 | 7.88 | 14.89 | 2.91 | 0.90 | −2.99 | 7.30 |
Macao | 6.10 | 7.40 | −5.20 | −23.90 | −1.50 | 9.40 | 4.70 | −4.50 | −54.80 | 19.00 | ||
The proportion of the tertiary industry in GDP (%) | Zhuhai | 47.70 | 48.80 | 49.70 | 50.70 | 52.50 | 54.10 | 53.20 | 54.20 | 57.00 | 56.70 | |
Macao | 93.80 | 96.30 | 94.90 | 92.20 | 93.30 | 94.90 | 95.80 | 95.70 | 91.30 | 92.30 | ||
Per capita annual income of residents (CNY) | Zhuhai | 32,978 | 36,375 | 33,235 | 36,158 | 40,154 | 44,043 | 48,107 | 52,495 | 55,936 | 61,390 | |
Macao | 412,211 | 449,245 | 469,022 | 410,035 | 427,413 | 466,569 | 490,617 | 503,450 | 304,211 | 283,660 | ||
Per capita total industrial output value (CNY × 104) | Zhuhai | 18.99 | 20.42 | 21.10 | 21.94 | 23.53 | 20.42 | 21.87 | 21.33 | 19.55 | 21.77 | |
Macao | 1.27 | 1.20 | 1.31 | 1.26 | 1.32 | 1.46 | 1.34 | 1.46 | 1.16 | 1.21 | ||
Population density (person/km2) | Zhuhai | 1006 | 1041 | 1081 | 1095 | 1131 | 1192 | 1272 | 1343 | 1411 | 1430 | |
Macao | 19,000 | 19,500 | 20,500 | 21,100 | 21,400 | 21,100 | 20,000 | 20,400 | 20,800 | 20,700 | ||
Pressure (P) | Water consumption per CNY × 104 of GDP | Zhuhai | 32.01 | 29.00 | 27.00 | 25.00 | 22.90 | 20.97 | 19.42 | 18.77 | 18.41 | 14.96 |
Macao | 3.11 | 2.77 | 2.73 | 3.30 | 3.23 | 2.87 | 2.76 | 2.70 | 5.28 | 4.73 | ||
The daily average total inflow of each sewage treatment plant/station (×104 t) | Zhuhai | 61.86 | 65.99 | 73.67 | 76.70 | 86.60 | 86.65 | 96.99 | 96.77 | 96.22 | 110.09 | |
Macao | 20.31 | 21.50 | 22.90 | 23.30 | 23.70 | 24.20 | 24.90 | 25.40 | 23.40 | 23.60 | ||
Commercial fee collection water volume (×104 m3) | Zhuhai | 12,569 | 12,929 | 13,486 | 14,069 | 14,153 | 14,810 | 15,004 | 15,443 | 15,602 | 17,349 | |
Macao | 3398 | 3408 | 3630 | 3796 | 3920 | 4058 | 4236 | 4303 | 3251 | 3499 | ||
Living expenses and water volume (×104 m3) | Zhuhai | 10,058 | 10,016 | 10,524 | 11,189 | 11,610 | 12,201 | 12,877 | 13,428 | 13,930 | 14,343 | |
Macao | 3219 | 3351 | 3527 | 3632 | 3698 | 3739 | 3828 | 3915 | 4282 | 3992 | ||
Public fee collection water quantity (×104 m3) | Zhuhai | 5530 | 5892 | 6277 | 6475 | 6970 | 7250 | 8686 | 9439 | 9038 | 10,424 | |
Macao | 492 | 511 | 552 | 547 | 555 | 569 | 576 | 592 | 558 | 570 | ||
State (S) | Annual rainfall (mm) | Zhuhai | 1760 | 2885 | 1891 | 1720 | 2538 | 1949 | 2183 | 1984 | 1799 | 2393 |
Macao | 1556 | 2565 | 1584 | 1341 | 2336 | 1783 | 1796 | 2248 | 1713 | 2206 | ||
GDP output per cubic meter of water (CNY × 104/m3) | Zhuhai | 31,929 | 37,413 | 40,338 | 43,892 | 48,090 | 54,718 | 56,834 | 59,796 | 65,033 | 66,812 | |
Macao | 3.21 | 4.05 | 4.10 | 3.42 | 3.48 | 3.84 | 4.00 | 4.01 | 2.07 | 2.26 | ||
Per capita annual water supply (m3) | Zhuhai | 203 | 191 | 196 | 199 | 201 | 204 | 202 | 197 | 185 | 194 | |
Macao | 147.19 | 142.58 | 145.98 | 147.53 | 150.45 | 149.54 | 151.64 | 149.68 | 140.90 | 138.98 | ||
Per capita water resources (m3) | Zhuhai | 1142 | 1331 | 941 | 893 | 1049 | 1010 | 929 | 1100 | 718 | 667 | |
Macao | 150 | 149 | 152 | 153 | 157 | 155 | 157 | 155 | 143 | 142 | ||
Sewage treatment rate (%) | Zhuhai | 87.78 | 88.50 | 90.13 | 95.70 | 96.30 | 96.36 | 96.40 | 96.62 | 97.18 | 98.10 | |
Macao | 87.90 | 99.00 | 94.76 | 82.83 | 97.05 | 87.19 | 89.56 | 87.80 | 89.32 | 86.02 | ||
Impact (I) | Water resource development and utilization rate (%) | Zhuhai | 19.03 | 22.50 | 33.02 | 34.59 | 29.03 | 30.62 | 28.05 | 26.04 | 31.51 | 35.30 |
Macao | 96.91 | 86.95 | 86.10 | 86.11 | 85.50 | 87.37 | 86.91 | 88.14 | 87.76 | 89.21 | ||
Per capita green space area (m2/person) | Zhuhai | 16.12 | 17.77 | 18.75 | 19.50 | 19.70 | 19.80 | 19.90 | 21.00 | 22.04 | 22.18 | |
Macao | 14.00 | 14.50 | 14.00 | 13.50 | 10.90 | 10.80 | 10.60 | 10.50 | 10.50 | 11.40 | ||
Environmental expenses (CNY × 104) | Zhuhai | 12.61 | 16.19 | 7.34 | 5.62 | 10.13 | 17.26 | 11.57 | 20.84 | 17.67 | 16.82 | |
Macao | 11.91 | 7.81 | 13.52 | 13.35 | 16.87 | 15.93 | 13.68 | 12.15 | 15.66 | 17.30 |
References
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Basharat, Z.; Adnan Ramzani, P.M.; Farhad, M.; Lewinska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Faran, G.-E.; Iqbal, M. Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environ. Pollut. 2022, 313, 120064. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.R.; Wang, Y.S.; Yang, M. Discussion on the ecological theory and assessment methods of ecosystem quality and its evolution. Chin. J. Appl. Ecol. 2022, 33, 865–877. [Google Scholar]
- Turan, V. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol. Plant. 2021, 173, 418–429. [Google Scholar] [CrossRef]
- Rasool, B.; Mahmood-ur-Rahman Zubair, M.; Khan, M.A.; Ramzani, P.M.A.; Dradrach, A.; Turan, V.; Iqbal, M.; Khan, S.A.; Tauqeer, H.M.; Farhad, M.; et al. Synergetic Efficacy of Amending Pb-Polluted Soil with P-Loaded Jujube (Ziziphus mauritiana) Twigs Biochar and Foliar Chitosan Application for Reducing Pb Distribution in Moringa Leaf Extract and Improving Its Anti-cancer Potential. Water Air Soil. Pollut. 2022, 233, 344. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Morote, Á.-F.; Eslamian, S. Urban Water Scarcity in Semi-arid Regions: Water Management in Southern Spain. In Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Organization of Economic Cooperation and Development. OECD. Core Set of Indicators for Environmental Performance Review; Environmental Monograph No. 83; OECD: Paris, Italy, 1993. [Google Scholar]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean. Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Tesfaldet, Y.T.; Ndeh, N.T. Assessing face masks in the environment by means of the DPSIR framework. Sci. Total Environ. 2022, 814, 152859. [Google Scholar] [CrossRef]
- Xi, H.; Chen, Y.; Zhao, X.; Sindikubwabo, C.; Cheng, W. Safety assessment of fragile environment in Badain Jaran Desert and its surrounding areas based on the DPSIR model. Ecol. Indic. 2023, 146, 109874. [Google Scholar] [CrossRef]
- Borja, A.; Galparsoro, I.; Solaun, O.; Muxika, I.; Tello, E.M.; Uriarte, A.; Valencia, V. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuar. Coast. Shelf Sci. 2006, 66, 84–96. [Google Scholar] [CrossRef]
- Malmir, M.; Javadi, S.; Moridi, A.; Neshat, A.; Razdar, B. A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geosci. Front. 2021, 12, 264–277. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Huang, M.; Liu, H.S.; Yan, H.M. Integrated assessment of ecoenvironmental vulnerability in Pearl River Delta based on RS and GIS. Chin. J. Appl. Ecol. 2011, 22, 2987–2995. (In Chinese) [Google Scholar]
- Kagalou, I.; Leonardos, I.; Anastasiadou, C.; Neofytou, C. The DPSIR Approach for an Integrated River Management Framework. A Preliminary Application on a Mediterranean Site (Kalamas River -NW Greece). Water Resour. Manag. 2012, 26, 1677–1692. [Google Scholar] [CrossRef]
- Svarstad, H.; Petersen, L.K.; Rothman, D.; Siepel, H.; Wätzold, F. Discursive biases of the environmental research framework DPSIR. Land Use Policy 2008, 25, 116–125. [Google Scholar] [CrossRef]
- Atkins, J.P.; Burdon, D.; Elliott, M.; Gregory, A.J. Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Mar. Pollut. Bull. 2011, 62, 215–226. [Google Scholar] [CrossRef]
- Haase, D.; Nuissl, H. Does urban sprawl drive changes in the water balance and policy? The case of Leipzig (Germany) 1870–2003. Landsc. Urban. Plan. 2007, 80, 1–13. [Google Scholar] [CrossRef]
- Kaur, M.; Hewage, K.; Sadiq, R. Investigating the impacts of urban densification on buried water infrastructure through DPSIR framework. J. Clean. Product. 2020, 259, 120897. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhao, C.Y.; Ma, Q.L.; Li, Y.K.; Jing, H.J.; Sun, T.; Milne, E.; Easter, M.; Paustian, K.; Yong, H.W.A.; et al. Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis, Ga–su—A case study on application of the CBP model. J. Environ. Manag. 2015, 157, 303–310. [Google Scholar] [CrossRef]
- Nobre, A.M. An Ecological and Economic Assessment Methodology for Coastal Ecosystem Management. Environ. Manag. 2009, 44, 185–204. [Google Scholar] [CrossRef]
- Statistics and Census Service of Macau (DSEC). Yearbook of Statistics 2012 to 2021; Statistics and Census Service of Macau: Macau, China, 2022.
- Environmental Protection Bureau of Macau (DSPA). Report on the state of the Environment of Macao 2012 to 2021; Environmental Protection Bureau: Macau, China, 2022.
- Marine and Water Bureau of Macau (DSAMA). Macao Water Resources Status Report 2022; Marine and Water Bureau: Macau, China, 2022.
- Statistics of Bureau of Zhuhai. Zhuhai Yearbook 2012 to 2021; Statistics of Bureau of Zhuhai: Zhuai, China, 2022.
- Ecology and Environment of Bureau of Zhuhai. Environmental Quality Status of Zhuhai City 2012 to 2021; Ecology and Environment of Bureau of Zhuhai: Zhuai, China, 2022.
- Sheng, N.; Tang, U.W. Zhuhai. Cities 2013, 32, 70–79. [Google Scholar] [CrossRef]
- Hong, G. Locating Zhuhai between land and sea: A relational production of Zhuhai, China, as an island city. Isl. Stud. J. 2017, 12, 7–24. [Google Scholar] [CrossRef]
- Tang, U.W.; Sheng, N. Macao. Cities 2009, 26, 220–231. [Google Scholar] [CrossRef]
- Huang, J.Y.; Lou, I.C.; Li, Y.X. Integrated water resources management for emergency situations: A case study of Macau. J. Environ. Sci. 2016, 50, 72–78. [Google Scholar] [CrossRef]
- Wei, T.; Lou, I.C.; Yang, Z.F.; Li, Y.X. A system dynamics urban water management model for Macau, China. J. Environ. Sci. 2016, 50, 117–126. [Google Scholar] [CrossRef]
- Huang, J.L.; Ho, M.H.; Du, P.F. Assessment of temporal and spatial variation of coastal water quality and source identification along Macau peninsula. Stoch. Environ. Res. Risk Assess. 2011, 25, 353–361. [Google Scholar] [CrossRef]
- DSEC. Macau Yearbook of Statistic; Driving Start Engine Consulting: Macau, Chian, 2022. [Google Scholar]
- Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World 2007, 14, 543–555. [Google Scholar] [CrossRef]
- Hou, X.R.; Lv, T.; Xu, J.; Deng, X.; Liu, F.; Lam JS, L.; Zhang, Z.Z.; Han, X.S. Evaluation of urban public transport sustainability in China based on the Driving Force-Pressure-State-Impact-Response (DPSIR) framework—A case study of 36 major cities. Environ. Impact Assess. Rev. 2023, 103, 107263. [Google Scholar] [CrossRef]
- Skoulikidis, N.T. The environmental state of rivers in the Balkans—A review within the DPSIR framework. Sci. Total Environ. 2009, 407, 2501–2516. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Shen, C.B.; Ziggah, Y.Y.; Rulegeya, M.M.; Zhu, X.F. Principal component analysis (PCA) based hybrid models for the accurate estimation of reservoir water saturation. Comput. Geosci. 2020, 145, 104555. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhang, Q. Water quality assessment in the rivers along the water conveyance system of the Middle Route of the South to North Water Transfer Project (China) using multivariate statistical techniques and receptor modeling. J. Hazard. Mater. 2011, 195, 306–317. [Google Scholar] [CrossRef]
- Hu, W.M.; Zhang, S.B.; Fu, Y.S.; Jia, G.Y.; Yang, R.H.; Shen, S.Y.; Li, Y.; Li, G. Objective diagnosis of machine learning method applicability to land comprehensive carrying capacity evaluation: A case study based on integrated RF and DPSIR models. Ecol. Indic. 2023, 151, 110338. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Wang, H.; Zhang, K.J.; Han, Y. Ecological security assessment of urban park landscape using the DPSIR model and EW-PCA method. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Gong, L.L.; Yu, Y.C.; Xu, Q.Y.; Wang, C.Y.; Han, J.W. Research on the coupling relationship between ecological environment and socio-economic development in Baoji City from 2010 to 2019. J. Baoji Univ. Arts Sci. (Nat. Sci. Ed.) 2021, 41, 69–75. [Google Scholar]
- Yan, B.; Xu, Y. Evaluation and prediction of water resources carrying capacity in Jiangsu Province, China. Water Policy 2022, 24, 324–344. [Google Scholar] [CrossRef]
- Zhao, M.D.; Wei, J.H.; Han, Y.P.; Shi, J.H.; Wang, S.B. Water resource security evaluation and barrier analysis in Henan Province utilizing the DPSIR framework. Front. Env. Sci. 2024, 12, 1354175. [Google Scholar] [CrossRef]
- Peng, L.C.; Ma, X.W.; Ma, W.W.; Zhou, Y.X. Evaluation of Economic Security of Water Resources and Analysis of Influencing Factors. J. Glob. Inf. Manag. 2022, 30, 19. [Google Scholar] [CrossRef]
- Xu, M.; Li, C.H.; Wang, X.; Cai, Y.P.; Yue, W.C. Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China. J. Clean. Product. 2018, 176, 1283–1291. [Google Scholar] [CrossRef]
- Santos, E.; Fonseca, F.; Santiago, A.; Rodrigues, D. Sustainability Indicators Model Applied to Waste Management in Brazil Using the DPSIR Framework. Sustainability 2024, 16, 2192. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, O.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2012, 114, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Quiroga, S.; Moneo, M.; Garrote, L. From climate change impacts to the development of adaptation strategies: Challenges for agriculture in Europe. Clim. Chang. 2011, 112, 143–168. [Google Scholar] [CrossRef]
- Humpenoder, F.; Popp, A.; Stevanovic, M.; Muller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; et al. Land-use and carbon cycle responses to moderate climate change: Implications for land-based mitigation. Environ. Sci. Technol. 2015, 49, 6731–6739. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Egodawatta, P.; Rahman, A.; Goonetilleke, A. Assessing the significance of climate and community factors on urban water demand. Int. J. Sustain. Built Environ. 2015, 4, 222–230. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lu, J. Improvement and application of GM(1,1) model based on multivariable dynamic optimization. J. Syst. Eng. Electron. 2020, 31, 593–601. [Google Scholar]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|
Average exchange rate/% | 78.98 | 76.88 | 77.11 | 78.89 | 83.19 | 84.11 | 81.83 | 85.67 | 86.39 | 80.59 |
Criterion Stage | Indicator Stage | Safety Trends |
---|---|---|
Driving force (D) | Per capita GDP growth rate (%) | + |
The proportion of the tertiary industry in GDP (%) | + | |
Per capita annual income of residents (CNY) | + | |
Per capita total industrial output value (CNY × 104) | + | |
Population density (person/km2) | − | |
Pressure (P) | Water consumption per CNY 10,000 of GDP | − |
The daily average total inflow of each sewage treatment plant/station | − | |
Commercial fee collection water volume | − | |
Living expenses and water volume | − | |
Public fee collection water quantity | − | |
State (S) | Annual rainfall | + |
GDP output per cubic meter of water | + | |
Per capita annual water supply | + | |
Per capita water resources | + | |
Sewage treatment rate | + | |
Impact (I) | Water resource development and utilization rate | |
Per capita green space area | ||
Environmental expenses | ||
Responses I | Efficiency/rating of integrated water resource management |
Zhuhai | Macao | |||||||
---|---|---|---|---|---|---|---|---|
(D) | (P) | (S) | (I) | (D) | (P) | (S) | (I) | |
KMO of Sampling·Adequacy | 0.611 | 0.813 | 0.527 | 0.517 | 0.523 | 0.532 | 0.546 | 0.721 |
Bartlett’s·Test·of Sphericity | 0.000 | 0.000 | 0.026 | 0.000 | 0.012 | 0.000 | 0.000 | 0.044 |
Criterion Stage | Principal Component | Eigenvalue | Contribution Rate (%) | Accumulated Contribution Rate (%) | |
---|---|---|---|---|---|
Zhuhai | (D) | F1Z | 3.095 | 61.897 | 61.897 |
F2Z | 1.256 | 25.126 | 87.024 | ||
F3Z | 0.585 | 11.691 | 98.715 | ||
(P) | F4Z | 4.869 | 97.383 | 97.383 | |
(S) | F5Z | 2.632 | 52.644 | 52.644 | |
F6Z | 1.199 | 23.975 | 76.619 | ||
F7Z | 0.872 | 17.442 | 94.061 | ||
(I) | F8Z | 1.716 | 57.192 | 57.192 | |
F9Z | 1.216 | 40.520 | 97.712 | ||
Macao | (D) | F1M | 2.786 | 55.716 | 55.716 |
F2M | 1.270 | 25.400 | 81.116 | ||
F3M | 0.679 | 13.586 | 94.703 | ||
(P) | F4M | 3.075 | 61.494 | 61.494 | |
F5M | 1.831 | 36.620 | 98.114 | ||
(S) | F6M | 2.689 | 53.774 | 53.774 | |
F7M | 1.664 | 33.276 | 87.050 | ||
(I) | F8M | 1.773 | 59.103 | 59.103 | |
F9M | 0.885 | 29.496 | 88.599 |
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhuhai | (D) | F1Z | −1.34 | −0.93 | −0.86 | −0.73 | −0.39 | 0.57 | 0.22 | 0.62 | 1.22 | 1.63 |
F2Z | −0.66 | 0.29 | 0.43 | 0.06 | 0.08 | 2.19 | −0.68 | −0.95 | −1.34 | 0.58 | ||
F3Z | −1.41 | −0.49 | 0.02 | 0.72 | 1.92 | −0.88 | 0.68 | 0.26 | −1.10 | 0.28 | ||
FDZ | −1.13 | −0.33 | −0.05 | 0.12 | 0.70 | 0.56 | 0.09 | −0.08 | −0.60 | 0.72 | ||
(P) | F4Z | −1.44 | −1.18 | −0.81 | −0.50 | −0.17 | 0.11 | 0.59 | 0.84 | 0.88 | 1.67 | |
FPZ | −1.44 | −1.18 | −0.81 | −0.50 | −0.17 | 0.11 | 0.59 | 0.84 | 0.88 | 1.67 | ||
(S) | F5Z | −1.60 | −1.45 | −0.92 | −0.05 | 0.30 | 0.45 | 0.65 | 0.43 | 0.80 | 1.39 | |
F6Z | −0.99 | 1.95 | −0.85 | −1.06 | 1.14 | −0.17 | 0.25 | 0.12 | −0.87 | 0.47 | ||
F7Z | 0.68 | −1.02 | −0.56 | 0.24 | 0.87 | 1.21 | 0.84 | 0.27 | −1.94 | −0.59 | ||
FSZ | −0.43 | −0.10 | −0.74 | −0.27 | 0.83 | 0.56 | 0.59 | 0.26 | −0.93 | 0.24 | ||
(I) | F8Z | −2.06 | −1.27 | 0.26 | 0.66 | 0.05 | 0.18 | −0.02 | −0.04 | 0.88 | 1.35 | |
F9Z | −0.21 | 0.46 | −1.38 | −1.62 | −0.56 | 0.53 | −0.25 | 1.54 | 0.90 | 0.59 | ||
FIZ | −0.89 | −0.18 | −0.77 | −0.78 | −0.34 | 0.40 | −0.16 | 0.96 | 0.90 | 0.87 | ||
Macao | (D) | F1M | −0.40 | 0.04 | 0.51 | −0.29 | 0.00 | 0.94 | 0.81 | 1.45 | −1.22 | −1.84 |
F2M | −1.47 | −1.68 | −0.13 | 0.72 | 1.18 | 1.17 | −0.62 | 0.19 | 0.13 | 0.52 | ||
F3M | 0.37 | 0.26 | −0.23 | −0.89 | 0.24 | 0.72 | 0.15 | −0.20 | −2.12 | 1.68 | ||
FDM | −0.46 | −0.47 | −0.02 | −0.18 | 0.51 | 0.93 | 0.04 | 0.33 | −1.11 | 0.43 | ||
(P) | F4M | −1.87 | −1.31 | −0.28 | −0.08 | 0.23 | 0.63 | 1.06 | 1.44 | 0.00 | 0.19 | |
F5M | −0.47 | −0.51 | −0.48 | −0.18 | −0.25 | −0.52 | −0.65 | −0.62 | 2.27 | 1.40 | ||
FPM | −1.01 | −0.82 | −0.40 | −0.14 | −0.06 | −0.08 | 0.01 | 0.18 | 1.40 | 0.93 | ||
(S) | F6M | −0.07 | −0.30 | 0.40 | 0.22 | 0.73 | 0.70 | 1.07 | 0.71 | −1.61 | −1.85 | |
F7M | −0.76 | 2.07 | 0.14 | −1.53 | 1.09 | −0.51 | −0.30 | 0.19 | −0.40 | 0.02 | ||
FSM | −0.50 | 1.17 | 0.24 | −0.86 | 0.95 | −0.05 | 0.22 | 0.39 | −0.86 | −0.69 | ||
(I) | F8M | 0.68 | 2.06 | 0.75 | 0.63 | −0.90 | −0.81 | −0.39 | −0.16 | −0.87 | −0.97 | |
F9M | 2.64 | −0.64 | −0.62 | −0.63 | −0.66 | −0.13 | −0.38 | −0.08 | −0.02 | 0.51 | ||
FIM | 1.85 | 0.44 | −0.07 | −0.13 | −0.76 | −0.40 | −0.39 | −0.11 | −0.36 | −0.08 |
Criterion Stage | Indicator Stage | Zhuhai | Macao | ||
---|---|---|---|---|---|
Indicator Weight | Criteria Layer Weights | Indicator Weight | Criteria Layer Weights | ||
Driving force (D) | Per capita GDP growth rate (%) | 0.0428 | 0.3097 | 0.0292 | 0.2516 |
The proportion of the tertiary industry in GDP (%) | 0.0601 | 0.0524 | |||
Per capita annual income of residents (CNY) | 0.0498 | 0.0613 | |||
Per capita total industrial output value (CNY × 104) | 0.0911 | 0.0449 | |||
Population density (person/km2) | 0.0659 | 0.0638 | |||
Pressure (P) | Water consumption per CNY 10,000 of GDP | 0.0483 | 0.2530 | 0.0379 | 0.2469 |
The daily average total inflow of each sewage treatment plant/station | 0.0504 | 0.0545 | |||
Commercial fee collection water volume | 0.0382 | 0.0590 | |||
Living expenses and water volume | 0.0645 | 0.0395 | |||
Public fee collection water quantity | 0.0516 | 0.0561 | |||
State (S) | Annual rainfall | 0.0928 | 0.3001 | 0.0561 | 0.2546 |
GDP output per cubic meter of water | 0.0569 | 0.0465 | |||
Per capita annual water supply | 0.0395 | 0.0473 | |||
Per capita water resources | 0.0523 | 0.0499 | |||
Sewage treatment rate | 0.0586 | 0.0548 | |||
Impact (I) | Water resource development and utilization rate | 0.0431 | 0.1371 | 0.0914 | 0.2469 |
Per capita green space area | 0.0404 | 0.1222 | |||
Environmental expenses | 0.0536 | 0.0332 |
Year | Original Value | Grade Ratio λ | Original Value + Shift Value for Translation Conversion (Shift = 5) | Converted Level Ratio λ | |
---|---|---|---|---|---|
Zhuhai | 2012 | −0.965 | - | 4.035 | - |
2013 | −0.455 | 2.121 | 4.545 | 0.888 | |
2014 | −0.551 | 0.826 | 4.449 | 1.022 | |
2015 | −0.277 | 1.990 | 4.723 | 0.942 | |
2016 | 0.376 | −0.737 | 5.376 | 0.879 | |
2017 | 0.424 | 0.886 | 5.424 | 0.991 | |
2018 | 0.333 | 1.273 | 5.333 | 1.017 | |
2019 | 0.397 | 0.838 | 5.397 | 0.988 | |
2020 | −0.119 | −3.329 | 4.881 | 1.106 | |
2021 | 0.837 | −0.143 | 5.837 | 0.836 | |
Macao | 2012 | −0.035 | - | 2.965 | - |
2013 | 0.086 | −0.411 | 3.085 | 0.961 | |
2014 | −0.060 | −1.432 | 2.940 | 1.049 | |
2015 | −0.331 | 0.180 | 2.669 | 1.102 | |
2016 | 0.169 | −1.956 | 3.169 | 0.842 | |
2017 | 0.102 | 1.661 | 3.102 | 1.022 | |
2018 | −0.027 | −3.816 | 2.973 | 1.043 | |
2019 | 0.199 | −0.134 | 3.199 | 0.930 | |
2020 | −0.243 | −0.818 | 2.757 | 1.160 | |
2021 | 0.140 | −1.733 | 3.140 | 0.878 |
City | Development Coefficient a | Grey Action Amount b | Posteriori Difference Ratio C Value | p-Value |
---|---|---|---|---|
Zhuhai | −0.0249 | 4.4558 | 0.2832 | 0.800 |
Macao | −0.0030 | 2.9553 | 0.9782 | 0.500 |
Year | Zhuhai | Macao | ||
---|---|---|---|---|
Original Value | Predict Value | Original Value | Predict Value | |
2012 | −0.965 | −0.965 | −0.035 | −0.035 |
2013 | −0.455 | −0.387 | 0.086 | −0.032 |
2014 | −0.551 | −0.270 | −0.060 | −0.023 |
2015 | −0.277 | −0.151 | −0.331 | −0.014 |
2016 | 0.376 | −0.029 | 0.169 | −0.005 |
2017 | 0.424 | 0.097 | 0.102 | 0.004 |
2018 | 0.333 | 0.225 | −0.027 | 0.013 |
2019 | 0.397 | 0.357 | 0.199 | 0.022 |
2020 | −0.119 | 0.492 | −0.243 | 0.031 |
2021 | 0.837 | 0.631 | 0.140 | 0.040 |
2022 | − | 0.773 | − | 0.049 |
2023 | − | 0.918 | − | 0.058 |
2024 | − | 1.068 | − | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Qin, J.; Liu, W.; Li, L.; Wu, Y.; Zhang, P. The DPSIR Model-Based Sustainability Assessment of Urban Water Resources: A Comparative Study of Zhuhai and Macao. Water 2024, 16, 1413. https://doi.org/10.3390/w16101413
Bai Y, Qin J, Liu W, Li L, Wu Y, Zhang P. The DPSIR Model-Based Sustainability Assessment of Urban Water Resources: A Comparative Study of Zhuhai and Macao. Water. 2024; 16(10):1413. https://doi.org/10.3390/w16101413
Chicago/Turabian StyleBai, Yang, Jiaman Qin, Wenjing Liu, Linhan Li, Yang Wu, and Peng Zhang. 2024. "The DPSIR Model-Based Sustainability Assessment of Urban Water Resources: A Comparative Study of Zhuhai and Macao" Water 16, no. 10: 1413. https://doi.org/10.3390/w16101413
APA StyleBai, Y., Qin, J., Liu, W., Li, L., Wu, Y., & Zhang, P. (2024). The DPSIR Model-Based Sustainability Assessment of Urban Water Resources: A Comparative Study of Zhuhai and Macao. Water, 16(10), 1413. https://doi.org/10.3390/w16101413