Arctic Oceanic Carbon Cycle: A Comprehensive Review of Mechanisms, Regulations, and Models
Highlights
- Crucial Arctic oceanic carbon cycle research faces significant gaps.
- The review focuses on Arctic research, particularly pertaining to mechanisms, regulations, and modelling approaches.
- The study covers the oceanic carbon cycle, sinks, climate impacts, and maritime shipping.
- Data collection in the Arctic is challenged by high costs and a lack of observers.
- The review compares Arctic Ocean models, highlighting limits and possibilities for future development.
Abstract
:1. Introduction
2. Carbon Cycle in the Arctic Ocean
2.1. Challenges and Gaps
2.2. Comparison with Terrestrial Carbon Cycle
2.3. Relevant Policies of the Arctic Carbon Cycle
2.4. Carbon-Cycle Modelling in the Arctic
3. Overview and Analysis of the Ocean Carbon Sink
3.1. Challenges and Gaps
3.2. Relevant Policies for Arctic Carbon Sink and Protection
3.3. Carbon Sink Modelling in the Arctic
4. Impacts of Marine Transportation Pollution on the Arctic Oceanic Carbon Cycle
4.1. Challenges and Gaps
4.2. Relevant Policies for Arctic Shipping
4.3. Carbon-Based Maritime Transportation/Pollution Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raven, J.A.; Falkowski, P.G. Oceanic sinks for atmospheric CO2. Plant Cell Environ. 1999, 22, 741–755. [Google Scholar] [CrossRef]
- DeVries, T. The Ocean Carbon Cycle. Annu. Rev. Environ. Resour. 2022, 47, 317–341. [Google Scholar] [CrossRef]
- Bruhwiler, L.; Michalak, A.M.; Birdsey, R.; Fisher, J.B.; Houghton, R.A.; Huntzinger, D.N.; Miller, J.B. Chapter 1: Overview of the Global Carbon Cycle. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 42–70. [Google Scholar]
- McGuire, A.D.; Anderson, L.G.; Christensen, T.R.; Dallimore, S.; Guo, L.; Hayes, D.J.; Heimann, M.; Lorenson, T.D.; Macdonald, R.W.; Roulet, N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef]
- Manizza, M. Carbon streams into the deep Arctic Ocean. Nat. Geosci. 2023, 16, 6–7. [Google Scholar] [CrossRef]
- United Nations. How is Climate Change Impacting the World’s Ocean. Available online: https://www.un.org/en/climatechange/science/climate-issues/ocean-impacts (accessed on 1 May 2024).
- WWF. Effects of Climate Change|Threats|WWF. Available online: https://www.worldwildlife.org/threats/effects-of-climate-change (accessed on 1 May 2024).
- Granskog, M.A.; Assmy, P.; Gerland, S.; Spreen, G.; Steen, H.; Smedsrud, L.H. Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos Trans. AGU 2016, 97, 22–26. [Google Scholar] [CrossRef]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Haumann, F.A.; Talley, L.D.; Johnson, K.S.; Sarmiento, J.L. The deep ocean’s carbon exhaust. Glob. Biogeochem. Cycles 2022, 36, e2021GB007156. [Google Scholar] [CrossRef] [PubMed]
- Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quere, C.; Bakker, D.C. The ocean carbon sink–impacts, vulnerabilities and challenges. Earth Syst. Dyn. 2015, 6, 327–358. [Google Scholar] [CrossRef]
- Pohlman, J.W.; Greinert, J.; Ruppel, C.; Silyakova, A.; Vielstädte, L.; Casso, M.; Mienert, J.; Bünz, S. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proc. Natl. Acad. Sci. 2017, 114, 5355–5360. [Google Scholar] [CrossRef] [PubMed]
- Tatar, V.; ÖZER, M.B. The impacts of CO2 emissions from maritime transport on the environment and climate change. Int. J. Environ. Trends (IJENT) 2018, 2, 5–24. [Google Scholar]
- Åkerman, J.; Höjer, M. How much transport can the climate stand?—Sweden on a sustainable path in 2050. Energy Policy 2006, 34, 1944–1957. [Google Scholar] [CrossRef]
- Dobush, B.-J.; Gallo, N.D.; Guerra, M.; Guilloux, B.; Holland, E.; Seabrook, S.; Levin, L.A. A new way forward for ocean-climate policy as reflected in the UNFCCC Ocean and Climate Change Dialogue submissions. Clim. Policy 2022, 22, 254–271. [Google Scholar] [CrossRef]
- Ryabinin, V.; Barbière, J.; Haugan, P.; Kullenberg, G.; Smith, N.; McLean, C.; Troisi, A.; Fischer, A.; Aricò, S.; Aarup, T. The UN decade of ocean science for sustainable development. Front. Mar. Sci. 2019, 6, 470. [Google Scholar] [CrossRef]
- Vellinga, M.; Wood, R.A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 2002, 54, 251–267. [Google Scholar] [CrossRef]
- Chidichimo, M.P.; Perez, R.C.; Speich, S.; Kersalé, M.; Sprintall, J.; Dong, S.; Lamont, T.; Sato, O.T.; Chereskin, T.K.; Hummels, R. Energetic overturning flows, dynamic interocean exchanges, and ocean warming observed in the South Atlantic. Commun. Earth Environ. 2023, 4, 10. [Google Scholar] [CrossRef]
- Constable, A.J.; Harper, S.; Dawson, J.; Holsman, K.; Mustonen, T.; Piepenburg, D.; Rost, B.; Bokhorst, S.; Boike, J.; Cunsolo, A. Cross-chapter paper 6: Polar regions. In IPCC AR WGII; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Peck, L.S.; Massom, R.; Rintoul, S.; Storey, J.; Vaughan, D.; Wilson, T. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 2015, 27, 3–18. [Google Scholar] [CrossRef]
- Boniface, K.; Gioia, C.; Pozzoli, L.; Diehl, T.; Dobricic, S.; Fortuny Guasch, J.; Greidanus, H.; Kliment, T.; Kucera, J.; Janssens-Maenhout, G.; et al. Europe’s Earth Observation, Satellite Navigation, and Satellite Communications Missions and Services for the Benefit of the Arctic-Inventory of Current and Future Capabilities, Their Synergies and Their Societal Benefits; EUR 30629 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Meier, W.N.; Hovelsrud, G.K.; Van Oort, B.E.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 52, 185–217. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.; Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 2008, 35, L19603. [Google Scholar] [CrossRef]
- Fransson, A.; Chierici, M.; Nojiri, Y. New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean. Cont. Shelf Res. 2009, 29, 1317–1328. [Google Scholar] [CrossRef]
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Di Girolamo, L.; Giglio, L. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–468. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Anthes, R.A.; Belward, A.; Brown, O.B.; Habermann, T.; Karl, T.R.; Running, S.; Ryan, B.; Tanner, M.; Wielicki, B. Challenges of a sustained climate observing system. In Climate Science for Serving Society: Research, Modeling and Prediction Priorities; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–50. [Google Scholar]
- Manizza, M.; Follows, M.; Dutkiewicz, S.; Menemenlis, D.; Hill, C.; Key, R. Changes in the Arctic Ocean CO2 sink (1996–2007): A regional model analysis. Glob. Biogeochem. Cycles 2013, 27, 1108–1118. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J. Climate Change in the Polar Regions; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Smith, G.C.; Allard, R.; Babin, M.; Bertino, L.; Chevallier, M.; Corlett, G.; Crout, J.; Davidson, F.; Delille, B.; Gille, S.T. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. 2019, 6, 429. [Google Scholar] [CrossRef] [PubMed]
- McMahon, C.R.; Roquet, F.; Baudel, S.; Belbeoch, M.; Bestley, S.; Blight, C.; Boehme, L.; Carse, F.; Costa, D.P.; Fedak, M.A. Animal borne ocean sensors–AniBOS–An essential component of the global ocean observing system. Front. Mar. Sci. 2021, 8, 751840. [Google Scholar] [CrossRef]
- Lee, C.M.; DeGrandpre, M.; Guthrie, J.; Hill, V.; Kwok, R.; Morison, J.; Cox, C.J.; Singh, H.; Stanton, T.P.; Wilkinson, J. Emerging technologies and approaches for in situ, autonomous observing in the Arctic. Oceanography 2022, 35, 210–221. [Google Scholar] [CrossRef]
- Dupont, F.; Higginson, S.; Bourdallé-Badie, R.; Lu, Y.; Roy, F.; Smith, G.C.; Lemieux, J.-F.; Garric, G.; Davidson, F. A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans. Geosci. Model Dev. 2015, 8, 1577–1594. [Google Scholar] [CrossRef]
- Fennel, K.; Alin, S.; Barbero, L.; Evans, W.; Bourgeois, T.; Cooley, S.; Dunne, J.; Feely, R.A.; Hernandez-Ayon, J.M.; Hu, X. Carbon cycling in the North American coastal ocean: A synthesis. Biogeosciences 2019, 16, 1281–1304. [Google Scholar] [CrossRef]
- Rayfuse, R. Melting moments: The future of polar oceans governance in a warming world. Rev. Eur. Community Int. Environ. Law 2007, 16, 196–216. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. North Atlantic Biogeochemical Carbon Pump Virtual Scientific Workshop Summary; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2022.
- Qiu, L.; Yu, M.; Wu, Y.; Yao, Y.; Wang, Z.; Shi, Z.; Guan, Y. Assessing and predicting soil carbon density in China using CMIP5 earth system models. Sci. Total Environ. 2021, 799, 149247. [Google Scholar] [CrossRef]
- Fennel, K.; Mattern, J.P.; Doney, S.C.; Bopp, L.; Moore, A.M.; Wang, B.; Yu, L. Ocean biogeochemical modelling. Nat. Rev. Methods Primers 2022, 2, 76. [Google Scholar] [CrossRef]
- Meier, H.M.; Edman, M.K.; Eilola, K.J.; Placke, M.; Neumann, T.; Andersson, H.C.; Brunnabend, S.-E.; Dieterich, C.; Frauen, C.; Friedland, R. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 2018, 5, 440. [Google Scholar] [CrossRef]
- Srivastava, R. Best Practices for Terrestrial Sequestration of Carbon Dioxide (TSCD); DIANE Publishing: Darby, PA, USA, 2010. [Google Scholar]
- Sosdian, S.; Babila, T.; Greenop, R.; Foster, G.; Lear, C. Ocean carbon storage across the middle Miocene: A new interpretation for the Monterey Event. Nat. Commun. 2020, 11, 134. [Google Scholar] [CrossRef]
- Keenan, T.; Williams, C. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- Sidder, A. Tracing Anthropogenically Emitted Carbon Dioxide into the Ocean. Available online: http://eos.org/research-spotlights/tracing-anthropogenically-emitted-carbon-dioxide-into-the-ocean (accessed on 1 May 2024).
- Holzer, M.; DeVries, T. Source-Labeled Anthropogenic Carbon Reveals a Large Shift of Preindustrial Carbon From the Ocean to the Atmosphere. Glob. Biogeochem. Cycles 2022, 36, e2022GB007405. [Google Scholar] [CrossRef]
- Cooper, R.N. Climate Change 2001 (Book). Foreign Aff. 2002, 81, 208. [Google Scholar]
- Riebeek, H. The Carbon Cycle. Available online: https://earthobservatory.nasa.gov/features/CarbonCycle (accessed on 1 May 2024).
- Jayakrishnan, K.; Bala, G.; Cao, L.; Caldeira, K. Contrasting climate and carbon-cycle consequences of fossil-fuel use versus deforestation disturbance. Environ. Res. Lett. 2022, 17, 064020. [Google Scholar] [CrossRef]
- Messori, G.; Ruiz-Pérez, G.; Manzoni, S.; Vico, G. Climate drivers of the terrestrial carbon cycle variability in Europe. Environ. Res. Lett. 2019, 14, 063001. [Google Scholar] [CrossRef]
- Matyssek, R.; Wieser, G.; Calfapietra, C.; De Vries, W.; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.; Le Thiec, D. Forests under climate change and air pollution: Gaps in understanding and future directions for research. Environ. Pollut. 2012, 160, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, J.L.; Hughes, T.M.; Stouffer, R.J.; Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 1998, 393, 245–249. [Google Scholar] [CrossRef]
- Basu, S.; Mackey, K.R. Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability 2018, 10, 869. [Google Scholar] [CrossRef]
- USGS. Unraveling the Impacts of North Pacific and North Atlantic Ocean Warming on Arctic Climate. Available online: https://www.usgs.gov/news/unraveling-impacts-north-pacific-and-north-atlantic-ocean-warming-arctic-climate (accessed on 1 May 2024).
- Isson, T.T.; Planavsky, N.J.; Coogan, L.; Stewart, E.; Ague, J.; Bolton, E.; Zhang, S.; McKenzie, N.; Kump, L. Evolution of the global carbon cycle and climate regulation on earth. Glob. Biogeochem. Cycles 2020, 34, e2018GB006061. [Google Scholar] [CrossRef]
- Bodansky, D. The United Nations framework convention on climate change: A commentary. Yale J. Int’l l. 1993, 18, 451. [Google Scholar]
- Oberthür, S. Institutional interaction to address greenhouse gas emissions from international transport: ICAO, IMO and the Kyoto Protocol. Clim. Policy 2003, 3, 191–205. [Google Scholar] [CrossRef]
- IMO. Revised GHG Reduction Strategy for Global Shipping Adopted. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/pages/Revised-GHG-reduction-strategy-for-global-shipping-adopted-.aspx (accessed on 1 May 2024).
- Testa, D. Controlling GHG Emissions from Shipping: The Role, Relevance and Fitness for Purpose of UNCLOS. In The Environmental Rule of Law for Oceans: Designing Legal Solutions; Pozdnakova, A., Platjouw, F.M., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 31–45. [Google Scholar]
- IMO. EEXI and CII—Ship Carbon Intensity and Rating System. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx (accessed on 1 May 2024).
- Shi, Y. Climate Change and International Shipping: The Regulatory Framework for the Reduction of Greenhouse Gas Emissions; Brill: Leiden, The Netherlands, 2016. [Google Scholar]
- IMO. IMO Strategy on Reduction of GHG Emissions from Ships. Available online: https://www.imo.org/en/OurWork/Environment/Pages/IMO-Strategy-on-reduction-of-GHG-emissions-from-ships.aspx (accessed on 1 May 2024).
- Kopela, S. Climate Change and the International Maritime Organization. In Research Handbook on Climate Change, Oceans and Coasts. Edward Elgar; Edward Elgar Publishing: Northampton, UK, 2020; pp. 134–151. [Google Scholar]
- Francis, R. Carbon Pricing in the Shipping Industry. Available online: https://clcouncil.org/blog/carbon-pricing-in-the-shipping-industry/ (accessed on 1 May 2024).
- Abate, R.S.; Greenlee, A.B. Sowing seeds uncertain: Ocean iron fertilization, climate change, and the international environmental law framework. Pace Envtl. L. Rev. 2009, 27, 555. [Google Scholar] [CrossRef]
- Doelle, M.; Dremliuga, R. Comparing Russian and Canadian Climate Policy. Arct. Rev. Law Politics 2022, 13, 258–285. [Google Scholar]
- IMO. International Code for Ships Operating in Polar Waters (Polar Code). Available online: https://www.imo.org/en/ourwork/safety/pages/polar-code.aspx (accessed on 1 May 2024).
- Hebbar, A.A.; Schröder-Hinrichs, J.-U.; Mejia, M.Q.; Deggim, H.; Pristrom, S. The IMO regulatory framework for Arctic shipping: Risk perspectives and goal-based pathways. In Governance of Arctic Shipping: Rethinking Risk, Human Impacts and Regulation; Springer Polar Sciences: Halifax, Canada, 2020; pp. 229–247. [Google Scholar]
- Arctic Council. International Cooperation in the Arctic. Available online: https://arctic-council.org/explore/work/cooperation/ (accessed on 1 May 2024).
- Koivurova, T.; Kankaanpää, P.; Stępień, A. Innovative environmental protection: Lessons from the Arctic. J. Environ. Law 2015, 27, 285–311. [Google Scholar] [CrossRef]
- ECCC. Arctic Council Action for Reducing Black Carbon and Methane Emissions; Environment, Climate Change Canada: Montreal, QC, Canada, 2016.
- Arctic Monitoring. Arctic Monitoring and Assessment Programme (AMAP): Work Plan 2015–2017; AMAP: Oslo, Norway, 2015. [Google Scholar]
- Government of Canada. National Inventory Report: Greenhouse Gas Sources and Sinks in Canada; Government of Canada, Public Services Procurement: Gatineau, QC, Canada, 2023.
- C-12: An Act Respecting Transparency and Accountability in Canada’s Efforts to Achieve Net-Zero Greenhouse Gas Emissions by the Year 2050; Second Session; Forty-Third Parliament. 2021, pp. 42–43. Available online: https://www.parl.ca/LegisInfo/en/bill/43-2/C-12 (accessed on 1 May 2024).
- Jeong, B.; Kim, M.; Park, C. Decarbonization trend in international shipping sector. J. Int. Marit. Saf. Environ. Aff. Shipp. 2022, 6, 236–243. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. Joint Statement by the U.S. Department of Transportation and Transport Canada on the Nexus between Transportation and Climate Change. Available online: https://www.transportation.gov/briefing-room/joint-statement-us-department-transportation-and-transport-canada-nexus-between (accessed on 1 May 2024).
- Mackenzie, F.; Lerman, A.; Andersson, A. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 2004, 1, 11–32. [Google Scholar] [CrossRef]
- Vardy, M.; Oppenheimer, M.; Dubash, N.K.; O’Reilly, J.; Jamieson, D. The intergovernmental panel on climate change: Challenges and opportunities. Annu. Rev. Environ. Resour. 2017, 42, 55–75. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/ (accessed on 1 May 2024).
- Jones, C.D.; Arora, V.; Friedlingstein, P.; Bopp, L.; Brovkin, V.; Dunne, J.; Graven, H.; Hoffman, F.; Ilyina, T.; John, J.G. C4MIP–The coupled climate–carbon cycle model intercomparison project: Experimental protocol for CMIP6. Geosci. Model Dev. 2016, 9, 2853–2880. [Google Scholar] [CrossRef]
- Glotter, M.J.; Pierrehumbert, R.T.; Elliott, J.W.; Matteson, N.J.; Moyer, E.J. A simple carbon cycle representation for economic and policy analyses. Clim. Change 2014, 126, 319–335. [Google Scholar] [CrossRef]
- Wong, T.E.; Bakker, A.M.; Ruckert, K.; Applegate, P.; Slangen, A.; Keller, K. BRICK v0. 2, a simple, accessible, and transparent model framework for climate and regional sea-level projections. Geosci. Model Dev. 2017, 10, 2741–2760. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Hogg, A.M.; Ellwood, M.J.; Eggins, S.M.; Opdyke, B.N. The [simple carbon project] model v1. 0. Geosci. Model Dev. 2019, 12, 1541–1572. [Google Scholar] [CrossRef]
- Strassmann, K.M.; Joos, F. The Bern Simple Climate Model (BernSCM) v1. 0: An extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations. Geosci. Model Dev. 2018, 11, 1887–1908. [Google Scholar] [CrossRef]
- Choi, S.H.; Manousiouthakis, V.I. Modeling the Carbon Cycle Dynamics and the Greenhouse Effect. Ifac-Papersonline 2022, 55, 424–428. [Google Scholar] [CrossRef]
- Schwinger, J.; Goris, N.; Tjiputra, J.F.; Kriest, I.; Bentsen, M.; Bethke, I.; Ilicak, M.; Assmann, K.M.; Heinze, C. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1). Geosci. Model Dev. 2016, 9, 2589–2622. [Google Scholar] [CrossRef]
- Tjiputra, J.; Assmann, K.; Bentsen, M.; Bethke, I.; Otterå, O.; Sturm, C.; Heinze, C. Bergen Earth system model (BCM-C): Model description and regional climate-carbon cycle feedbacks assessment. Geosci. Model Dev. 2010, 3, 123–141. [Google Scholar] [CrossRef]
- Steinacher, M.; Joos, F.; Frölicher, T.L.; Plattner, G.-K.; Doney, S.C. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 2009, 6, 515–533. [Google Scholar] [CrossRef]
- Yool, A.; Popova, E.E.; Anderson, T.R. MEDUSA-2.0: An intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies. Geosci. Model Dev. 2013, 6, 1767–1811. [Google Scholar] [CrossRef]
- Martínez Montero, M.; Crucifix, M.; Couplet, V.; Brede, N.; Botta, N. SURFER v2. 0: A flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise. Geosci. Model Dev. 2022, 15, 8059–8084. [Google Scholar] [CrossRef]
- Willeit, M.; Ilyina, T.; Liu, B.; Heinze, C.; Perrette, M.; Heinemann, M.; Dalmonech, D.; Brovkin, V.; Munhoven, G.; Börker, J. The Earth system model CLIMBER-X v1. 0–Part 2: The global carbon cycle. Geosci. Model Dev. Discuss. 2023, 16, 1–47. [Google Scholar]
- Matear, R.; Wong, C.; Xie, L. Can CFCs be used to determine anthropogenic CO2? Glob. Biogeochem. Cycles 2003, 17, 1–9. [Google Scholar] [CrossRef]
- Egleston, E.S.; Sabine, C.L.; Morel, F.M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 2010, 24, GB1002. [Google Scholar] [CrossRef]
- Kwiatkowski, L.; Torres, O.; Bopp, L.; Aumont, O.; Chamberlain, M.; Christian, J.R.; Dunne, J.P.; Gehlen, M.; Ilyina, T.; John, J.G. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 2020, 17, 3439–3470. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’sullivan, M.; Andrew, R.M.; Bakker, D.C.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J. Global carbon budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- McKinley, G.A.; Fay, A.R.; Lovenduski, N.S.; Pilcher, D.J. Natural variability and anthropogenic trends in the ocean carbon sink. Annu. Rev. Mar. Sci. 2017, 9, 125–150. [Google Scholar] [CrossRef]
- Gruber, N.; Bakker, D.C.; DeVries, T.; Gregor, L.; Hauck, J.; Landschützer, P.; McKinley, G.A.; Müller, J.D. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 2023, 4, 119–134. [Google Scholar] [CrossRef]
- NASA. Carbon Cycle|Science Mission Directorate. Available online: https://science.nasa.gov/earth-science/oceanography/ocean-earth-system/ocean-carbon-cycle (accessed on 1 May 2024).
- Lamirande, H.R. From sea to carbon cesspool: Preventing the world’s marine ecosystems from falling victim to ocean acidification. Suffolk Transnat’l L. Rev. 2011, 34, 183. [Google Scholar]
- IEF. Oceans Offer Tantalizing Carbon Capture Potential. Will It Be Realized? Available online: https://www.ief.org/news/oceans-offer-tantalizing-carbon-capture-potential-will-it-be-realized (accessed on 1 May 2024).
- Speich, S. The Ocean, a Heat Reservoir. Available online: https://ocean-climate.org/wp-content/uploads/2020/01/200114_FichesScientifiques_EN_ppp.pdf (accessed on 1 May 2024).
- Ocean & Climate Platform. The Ocean, a Carbon Sink. Available online: https://ocean-climate.org/en/awareness/the-ocean-a-carbon-sink/ (accessed on 1 May 2024).
- Comeau, S.; Cornwall, C.; McCulloch, M. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci. Rep. 2017, 7, 7573. [Google Scholar] [CrossRef]
- Bates, N.; Best, M.; Neely, K.; Garley, R.; Dickson, A.; Johnson, R. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 2012, 9, 2509–2522. [Google Scholar] [CrossRef]
- Chang, B. Acidification of the Deep Atlantic Ocean Is Accelerated by Ocean Circulation. Available online: https://environment-review.yale.edu/acidification-deep-atlantic-ocean-accelerated-ocean-circulation-0 (accessed on 1 May 2024).
- National Park Service. Arctic Ocean Acidification (U.S. National Park Service). Available online: https://www.nps.gov/articles/oceanacidification.htm (accessed on 1 May 2024).
- McVeigh, K. Arctic Ocean Acidifying up to Four Times as Fast as Other Oceans, Study Finds. Available online: https://www.theguardian.com/environment/2022/sep/29/arctic-ocean-acidifying-up-to-four-times-as-fast-as-other-oceans-study-finds (accessed on 1 May 2024).
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Sabine, C.L.; Ducklow, H.; Hood, M. International carbon coordination: Roger Revelle’s legacy in the Intergovernmental Oceanographic Commission. Oceanography 2010, 23, 48–61. [Google Scholar] [CrossRef]
- Millero, F.J. The marine inorganic carbon cycle. Chem. Rev. 2007, 107, 308–341. [Google Scholar] [CrossRef] [PubMed]
- Rewrie, L.C.; Voynova, Y.G.; van Beusekom, J.E.; Sanders, T.; Körtzinger, A.; Brix, H.; Ollesch, G.; Baschek, B. Significant shifts in inorganic carbon and ecosystem state in a temperate estuary (1985–2018). Limnol. Oceanogr. 2023, 68, 1920–1935. [Google Scholar] [CrossRef]
- Trapp, R.J. Mesoscale-Convective Processes in the Atmosphere; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Schuster, U.; McKinley, G.A.; Bates, N.; Chevallier, F.; Doney, S.C.; Fay, A.R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J. An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009. Biogeosciences 2013, 10, 607–627. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Rehdanz, K.; Tol, R.S.; Wetzel, P. Ocean carbon sinks and international climate policy. Energy Policy 2006, 34, 3516–3526. [Google Scholar] [CrossRef]
- UN Climate Change. “Blueing” the Paris Agreement at COP27. Available online: https://unfccc.int/news/blueing-the-paris-agreement-at-cop27 (accessed on 1 May 2024).
- Palazot, S.; Deprez, A.; Picourt, L. At COP27, a Disappointing Outcome Despite Some Progress for the Ocean and a Long Overdue Agreement on Loss and Damage. Available online: https://ocean-climate.org/en/at-cop27-a-disappointing-outcome-despite-some-progress-for-the-ocean-and-a-long-overdue-agreement-on-loss-and-damage/ (accessed on 1 May 2024).
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- UN Climate Change. Ocean Action under the UNFCCC. Available online: https://unfccc.int/topics/ocean/ocean-action-under-the-unfccc (accessed on 1 May 2024).
- Government of Canada. Policy and Operational Framework for Integrated Management of Estuarine, Coastal, and Marine Environments in Canada. Available online: https://www.dfo-mpo.gc.ca/oceans/publications/cosframework-cadresoc/page01-eng.html (accessed on 1 May 2024).
- DFO. Canada’s Oceans Action Plan: For Present and Future Generations; Government of Canada: Ottawa, ON, Canada, 2005.
- Jordan, B. Blue Economy Strategy: Engagement Paper; Government of Canada: Ottawa, ON, Canada, 2021.
- DFO. Protecting Canada’s Oceans by 2025 and Beyond. Available online: https://www.dfo-mpo.gc.ca/oceans/conservation/plan/MCT-OCM-eng.html (accessed on 1 May 2024).
- DFO. United Nations Decade of Ocean Science for Sustainable Development (2021–2030). Available online: https://www.dfo-mpo.gc.ca/campaign-campagne/un-decade-decennie-nu/index-eng.html (accessed on 1 May 2024).
- Boettcher, M.; Geden, O.; Schenuit, F. Into the Blue: The Role of the Ocean in Climate Policy. In Europe Needs to Clarify the Balance between Protection and Use; SWP Comment: Berlin, Germany, 2023. [Google Scholar]
- Jones, J.; Keller, P.; van der Flier Keller, E. Review of official responsibility for the Salish Sea marine environment. Ocean. Coast. Manag. 2021, 211, 105748. [Google Scholar] [CrossRef]
- Cross, J.N.; Turner, J.A.; Cooley, S.R.; Newton, J.A.; Azetsu-Scott, K.; Chambers, R.C.; Dugan, D.; Goldsmith, K.; Gurney-Smith, H.; Harper, A.R. Building the knowledge-to-action pipeline in North America: Connecting ocean acidification research and actionable decision support. Front. Mar. Sci. 2019, 6, 356. [Google Scholar] [CrossRef]
- Dodick, D.; Edvinsson, L.; Makino, T.; Grisold, W.; Sakai, F.; Jensen, R.; Balch, A.; Ruiz de la Torre, E.; Henscheid-Lorenz, D.; Craven, A. Vancouver declaration on global headache patient advocacy 2018. Cephalalgia 2018, 38, 1899–1909. [Google Scholar] [CrossRef]
- DFO. A Collaborative Framework for Joint DFO/NOAA Ocean Acidification Research and Monitoring. Available online: https://www.dfo-mpo.gc.ca/science/publications/accasp-psaccma/noaa-collaborative/page01-eng.html (accessed on 1 May 2024).
- Gooya, P.; Swart, N.C.; Hamme, R.C. Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale. Earth Syst. Dyn. 2023, 14, 383–398. [Google Scholar] [CrossRef]
- Joos, F.; Bruno, M.; Fink, R.; Siegenthaler, U.; Stocker, T.F.; Le Quere, C.; Sarmiento, J.L. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B 1996, 48, 397–417. [Google Scholar] [CrossRef]
- Gasser, T.; Ciais, P.; Boucher, O.; Quilcaille, Y.; Tortora, M.; Bopp, L.; Hauglustaine, D. The Compact Earth System Model OSCAR v2. 2: Description and First Results. Geosci. Model Dev. 2017, 10, 271–319. [Google Scholar] [CrossRef]
- Quilcaille, Y.; Gasser, T.; Ciais, P.; Boucher, O. CMIP6 simulations with the compact Earth system model OSCAR v3. 1. Geosci. Model Dev. 2023, 16, 1129–1161. [Google Scholar] [CrossRef]
- Bossy, T.; Gasser, T.; Ciais, P. Pathfinder v1. 0.1: A Bayesian-inferred simple carbon–climate model to explore climate change scenarios. Geosci. Model Dev. 2022, 15, 8831–8868. [Google Scholar] [CrossRef]
- Millar, R.J.; Nicholls, Z.R.; Friedlingstein, P.; Allen, M.R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 2017, 17, 7213–7228. [Google Scholar] [CrossRef]
- Smith, C.J.; Forster, P.M.; Allen, M.; Leach, N.; Millar, R.J.; Passerello, G.A.; Regayre, L.A. FAIR v1. 3: A simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 2018, 11, 2273–2297. [Google Scholar] [CrossRef]
- Dai, Y.; Cao, L.; Wang, B. Marine biogeochemical cycling and oceanic CO2 uptake simulated by the NUIST Earth System Model version 3 (NESM v3). Geosci. Model Dev. 2020, 13, 3119–3144. [Google Scholar] [CrossRef]
- Neumann, T.; Radtke, H.; Cahill, B.; Schmidt, M.; Rehder, G. Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2)–implementation and budget estimates. Geosci. Model Dev. 2022, 15, 8473–8540. [Google Scholar] [CrossRef]
- Grimm, R.; Notz, D.; Glud, R.N.; Rysgaard, S.; Six, K.D. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice-biogeochemical model (MPIOM/HAMOCC). Elementa 2016, 4, 000136. [Google Scholar] [CrossRef]
- Marsland, S.J.; Haak, H.; Jungclaus, J.H.; Latif, M.; Röske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean. Model. 2003, 5, 91–127. [Google Scholar] [CrossRef]
- Walker, T.R.; Adebambo, O.; Feijoo, M.C.D.A.; Elhaimer, E.; Hossain, T.; Edwards, S.J.; Morrison, C.E.; Romo, J.; Sharma, N.; Taylor, S. Environmental effects of marine transportation. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 505–530. [Google Scholar]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.; McEvoy, D.; Mullett, J. Implications of climate change for shipping: Ports and supply chains. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e508. [Google Scholar] [CrossRef]
- Schnurr, R.E.; Walker, T.R. Marine transportation and energy use. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–9. [Google Scholar]
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Rodrigue, J.-P. The Geography of Transport Systems; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Rony, Z.I.; Mofijur, M.; Hasan, M.; Rasul, M.; Jahirul, M.; Ahmed, S.F.; Kalam, M.; Badruddin, I.A.; Khan, T.Y.; Show, P.-L. Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel 2023, 338, 127220. [Google Scholar] [CrossRef]
- Zis, T.; North, R.J.; Angeloudis, P.; Ochieng, W.Y.; Bell, M.G. Environmental balance of shipping emissions reduction strategies. Transp. Res. Rec. 2015, 2479, 25–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, S.; Feng, Y.; Hu, Z.; Yuan, L. Influences of solar energy on the energy efficiency design index for new building ships. Int. J. Hydrog. Energy 2017, 42, 19389–19394. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Wan, S.; Yang, X.; Chen, X.; Qu, Z.; An, C.; Zhang, B.; Lee, K.; Bi, H. Emerging marine pollution from container ship accidents: Risk characteristics, response strategies, and regulation advancements. J. Clean. Prod. 2022, 376, 134266. [Google Scholar] [CrossRef]
- Keen, M.; Parry, I.; Strand, J. Planes, ships and taxes: Charging for international aviation and maritime emissions. Econ. Policy 2013, 28, 701–749. [Google Scholar] [CrossRef]
- Bădîrcea, R.M.; Manta, A.G.; Florea, N.M.; Puiu, S.; Manta, L.F.; Doran, M.D. Connecting Blue Economy and Economic Growth to Climate Change: Evidence from European Union Countries. Energies 2021, 14, 4600. [Google Scholar] [CrossRef]
- Baranzini, A.; Van den Bergh, J.C.; Carattini, S.; Howarth, R.B.; Padilla, E.; Roca, J. Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations. Wiley Interdiscip. Rev. Clim. Change 2017, 8, e462. [Google Scholar] [CrossRef]
- Garcia, B.; Foerster, A.; Lin, J. Net zero for the international shipping sector? An Analysis of the Implementation and Regulatory Challenges of the IMO Strategy on Reduction of GHG Emissions. J. Environ. Law 2021, 33, 85–112. [Google Scholar] [CrossRef]
- März, C.; Butler, P.; Carter, G.; Verhagen, I. The marine carbon cycle: From ancient storage to future challenges. Front. Earth Sci. 2021, 9, 748701. [Google Scholar] [CrossRef]
- Yumashev, D.; van Hussen, K.; Gille, J.; Whiteman, G. Towards a balanced view of Arctic shipping: Estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Change 2017, 143, 143–155. [Google Scholar] [CrossRef]
- Lasserre, F. Canadian Arctic Marine Transportation Issues, Opportunities and Challenges. Sch. Public Policy Publ. 2022, 15, 1–55. [Google Scholar]
- Hovelsrud, G.K.; Poppel, B.; Van Oort, B.; Reist, J.D. Arctic societies, cultures, and peoples in a changing cryosphere. Ambio 2011, 40, 100–110. [Google Scholar] [CrossRef]
- Marchenko, N.A. “Marine Emergencies in the Arctic”-GIS Online Resource for Preparedness, Response and Education. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; p. ISOPE–I-19-545. [Google Scholar]
- Hassellöv, I.M.; Turner, D.R.; Lauer, A.; Corbett, J.J. Shipping contributes to ocean acidification. Geophys. Res. Lett. 2013, 40, 2731–2736. [Google Scholar] [CrossRef]
- Tracy, L.F. No Time to Waste: IMO Must Tackle Black Carbon Emissions in the Arctic. Available online: https://www.arcticwwf.org/newsroom/features/no-time-to-waste-imo-must-tackle-black-carbon-emissions-in-the-arctic/ (accessed on 1 May 2024).
- Yan, X.; He, Y.; Fan, A. Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships. Renew. Sustain. Energy Rev. 2023, 173, 113068. [Google Scholar] [CrossRef]
- Herdzik, J. Indication of the target alternative fuel for shipping. Adv. Sci. Technology. Res. J. 2022, 16, 48–55. [Google Scholar] [CrossRef]
- Tsolaki, E.; Diamadopoulos, E. Technologies for ballast water treatment: A review. J. Chem. Technol. Biotechnol. 2010, 85, 19–32. [Google Scholar] [CrossRef]
- Zhang, B.; Matchinski, E.J.; Chen, B.; Ye, X.; Jing, L.; Lee, K. Chapter 21—Marine Oil Spills—Oil Pollution, Sources and Effects. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 391–406. [Google Scholar]
- Stone, M. The Shipping Industry Faces a Climate Crisis Reckoning—Will It Decarbonize? Available online: https://www.theguardian.com/environment/2021/nov/12/shipping-industry-climate-crisis-reckoning (accessed on 1 May 2024).
- Schwarzkopf, D.A.; Petrik, R.; Matthias, V.; Quante, M.; Majamäki, E.; Jalkanen, J.-P. A ship emission modeling system with scenario capabilities. Atmos. Environ. X 2021, 12, 100132. [Google Scholar] [CrossRef]
- Aricò, S.; Wanninkhof, R.; Sabine, C. Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade; UNESCO-IOC: Paris, France, 2021. [Google Scholar]
- Duke, P.; Richaud, B.; Arruda, R.; Länger, J.; Schuler, K.; Gooya, P.; Ahmed, M.; Miller, M.; Braybrook, C.; Kam, K. Canada’s marine carbon sink: An early career perspective on the state of research and existing knowledge gaps. Facets 2023, 8, 1–21. [Google Scholar] [CrossRef]
- Rocliffe, S.; Peabody, S.; Samoilys, M.; Hawkins, J.P. Towards a network of locally managed marine areas (LMMAs) in the Western Indian Ocean. PLoS ONE 2014, 9, e103000. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.D.; Hubach, C.; Long, J.; Minteer, K.; Young, S. The Scramble for the Arctic: The United Nations Convention on the Law of the Sea (UNCLOS) and Extending National Seabed Claims. In Proceedings of the 2009 Annual Meeting of the Midwest Political Science Association, Chicago, IL, USA, 2–5 April 2009. [Google Scholar]
- Røsæg, E. Marine Pollution Preparedness, Response and Cooperation in the Arctic High Seas. In High Seas Governance; Brill Nijhoff: Leiden, The Netherlands, 2018; pp. 273–299. [Google Scholar]
- Christodoulou, A.; Dalaklis, D.; Raneri, P.; Sheehan, R. An overview of the legal search and rescue framework and related infrastructure along the Arctic Northeast Passage. Mar. Policy 2022, 138, 104985. [Google Scholar] [CrossRef]
- Transport Canada. Marine Acts and Regulations. Available online: https://tc.canada.ca/en/marine-transportation/marine-safety/2-marine-acts-regulations (accessed on 1 May 2024).
- Dodds, K. ‘Real interest’? Understanding the 2018 agreement to prevent unregulated high seas fisheries in the Central Arctic Ocean. Glob. Policy 2019, 10, 542–553. [Google Scholar] [CrossRef]
- Transport Canada. Marine Transportation. Available online: https://tc.canada.ca/en/corporate-services/transparency/corporate-management-reporting/transportation-canada-annual-reports/transportation-canada-2011/marine-transportation (accessed on 1 May 2024).
- Huntington, H.P.; Olsen, J.; Zdor, E.; Zagorskiy, A.; Shin, H.C.; Romanenko, O.; Kaltenborn, B.; Dawson, J.; Davies, J.; Abou-Abbsi, E. Effects of Arctic commercial shipping on environments and communities: Context, governance, priorities. Transp. Res. Part D Transp. Environ. 2023, 118, 103731. [Google Scholar] [CrossRef]
- Transport Canada. Arctic Waters Pollution Prevention Act (AWPPA). Available online: https://tc.canada.ca/en/marine-transportation/arctic-shipping/arctic-waters-pollution-prevention-act-awppa (accessed on 1 May 2024).
- Riedel, A.; McDonald, H.; Röschel, L.; Bührke, J.; Horstkötter, S.; Seeger, I. Marine Conservation in the Canadian Arctic; Marine Conservation in the Canadian Arctic, Ecologic Institute: Berlin, Germany, 2022. [Google Scholar]
- Transport Canada. Oceans Protection Plan; Government of Canada: Ottawa, ON, Canada, 2023.
- Canada, P.M. United States-Canada Joint Arctic Leaders’ Statement. Available online: https://pm.gc.ca/en/news/statements/2016/12/20/united-states-canada-joint-arctic-leaders-statement (accessed on 1 May 2024).
- Olivié, D.; Cariolle, D.; Teyssèdre, H.; Salas, D.; Voldoire, A.; Clark, H.; Saint-Martin, D.; Michou, M.; Karcher, F.; Balkanski, Y. Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM. Atmos. Chem. Phys. 2012, 12, 1449–1480. [Google Scholar] [CrossRef]
- Eide, M.; Dalsøren, S.; Endresen, Ø.; Samset, B.; Myhre, G.; Fuglestvedt, J.; Berntsen, T. Reducing CO2 from shipping–do non-CO2 effects matter? Atmos. Chem. Phys. 2013, 13, 4183–4201. [Google Scholar] [CrossRef]
- Hajima, T.; Watanabe, M.; Yamamoto, A.; Tatebe, H.; Noguchi, M.A.; Abe, M.; Ohgaito, R.; Ito, A.; Yamazaki, D.; Okajima, H. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 2020, 13, 2197–2244. [Google Scholar] [CrossRef]
- Bleck, R.; Smith, L.T. A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. J. Geophys. Res. Ocean. 1990, 95, 3273–3285. [Google Scholar] [CrossRef]
- Hunke, E.C.; Lipscomb, W.H.; Turner, A.K.; Jeffery, N.; Elliott, S. Cice: The los alamos sea ice model documentation and software user’s manual version 4.1 la-cc-06-012. T-3 Fluid Dyn. Group Los Alamos Natl. Lab. 2010, 675, 500. [Google Scholar]
- Maier-Reimer, E.; Kriest, I.; Segschneider, J.; Wetzel, P. The Hamburg Ocean Carbon Cycle Model HAMOCC5. 1-Technical Description Release 1.1; Max Planck Institute for Meteorology: Hamburg, Germany, 2005. [Google Scholar]
- Tjiputra, J.; Roelandt, C.; Bentsen, M.; Lawrence, D.; Lorentzen, T.; Schwinger, J.; Seland, Ø.; Heinze, C. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. Discuss. 2012, 5, 3035–3087. [Google Scholar] [CrossRef]
- Key, R.M.; Kozyr, A.; Sabine, C.L.; Lee, K.; Wanninkhof, R.; Bullister, J.L.; Feely, R.A.; Millero, F.J.; Mordy, C.; Peng, T.H. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 2004, 18, GB4041. [Google Scholar] [CrossRef]
No. | Model | Description | Advantages | Disadvantages | Modelling Applicability | Reference |
---|---|---|---|---|---|---|
1 | SCP-M (v1.0) | Box-type model of global carbon-cycle model with emphasized ocean characteristics | Accessible Python code Easy to change data Fast runtime CMIP5 model-aligned results | Reduced resolution Latitude-Partitioned Boxes Unable to independently study oceans | Yes, but combined in one box/area | [81] |
2 | BernSCM (v1.0) | Simplified box-type global carbon-cycle model for temperature and carbon uptake simulation | Open-source Linux code Effective evaluation on global emission reduction strategy Useful for carbon sink analysis | Only global results for carbon sink uptakes Only surface ocean considered for carbon storage | No, but pattern scaling can show Arctic temperature changes | [82] |
3 | Globe+ | Box-type model to simulate global temperature based on atmospheric CO2 concentration | MATLAB-based code Comprehensive carbon-cycle modelling (ocean storage, sedimentation, etc.) | Model is only based on mass balances Only result is global temperature Excludes function for ice coverage | No | [83] |
4 | NorESM-OC (v1.2) | Oceanic carbon-cycle component of NorESM | A coupled model for CMIP5 Oceanic carbon-cycle effect integration (ocean temperature, AMOC, O2, DIC) | OEM software and usage license requirement Global focus | Yes, CICE sea-ice model is included | [84] |
5 | BCM-C | Regional carbon-cycle feedback assessment ESM | Carbon-cycle feedback integration | Intensive computational requirements Restricted public access | Yes, regions are fully represented | [85] |
6 | CSM1.4-carbon | Integrated ESM for assessing carbon-cycle effects of anthropogenic emissions | Sea-ice component incorporation Arctic carbon-cycle impact assessment, mainly acidification | Intensive computational requirements Restricted public access | Yes | [86] |
7 | MEDUSA | Oceanic biogeochemical carbon-cycle model for simulating marine productivity and climate change | Online availability of source code Good model agreement with CIMP5 Incorporation of carbon-cycle impacts (e.g., calcification changes) | Intermediate modelling complexity Extrapolation needed for Arctic data Open to inaccuracies | Yes, but initial Arctic data lacks observational basis | [87] |
8 | SURFER (v2.0) | SCM for global sea-level rise and ocean acidification from anthropogenic emissions | Minimal code Fast simulation time | Acidification modelled only in the surface ocean Only computes global mean sea-level rise | No | [88] |
9 | BRICK (v0.2) | SCM for global temperature rise and regional sea level increases due to anthropogenic emissions | Incorporation of socio-economic flood risk module | Omission of additional climate impacts | Yes, regional sea-level rise is viewable | [80] |
10 | BEAM | Box-type atmosphere–oceanic carbon-cycle model for estimating future atmospheric CO2 concentrations | Non-linear modelling of oceanic CO2 uptake | Omission of sea-ice loss and sea-level rise | No | [79] |
11 | CLIMBER-X (v1.0) | Intermediate ESM for global carbon-cycle simulation | Inclusion of carbon-cycle feedback Climate-induced oceanic impact modelling Air–sea carbon flux variations | HAMOCC integration with proprietary software (other code is open source) | Yes, includes sea-ice model SISIM and impacts in the North Atlantic Ocean | [89] |
No. | Model | Description | Advantages | Disadvantages | Modelling Applicability | Reference(s) |
---|---|---|---|---|---|---|
1 | OSCAR v3.1 | Simple box-type earth system model for climate projection | Open source Calibration through complex ESMs | Highly land focused Assumption of unchanged biological pump Undivided oceanic carbon uptake by region | No | [130,131] |
2 | Pathfinder v1.0 | Simple climate model for sea-level rise and ocean acidification prediction | Open source Emphasis on oceanic carbon sink effects | Global effects only Only surface ocean acidification considered Exclusion of biological pump consideration | Partially, sea-level rise accounts for glacial melt effects | [132] |
3 | FAIR v1.3 | Impulse-response carbon-cycle model for climate change factors (CO2 concentration, temperature change) | Open source Temporal carbon sink efficiency consideration Capable of emulating diverse emission scenarios | Omission of natural emissions Global emphasis with unified ocean representation | No | [133,134] |
4 | NESM v3 | CIMP6 Earth System model for global carbon-cycle simulation | Regional representation of Arctic/North Atlantic areas Strong representation of biological pumps (NPP, marine ecosystem) | Modelling center requirement Overestimated biological uptake Underestimated arctic NPP Underestimated North Atlantic DIC Constrained to Baltic Sea | Yes, incorporates CICE 4.1 sea-ice model and Arctic observational data | [135] |
5 | ERGOM v1.0 | Biogeochemical model for nutrient and carbon cycles in the Baltic Sea | Capable of illustrating regional effects | Only considers biological sinks | No, but includes a coupled sea-ice model for the Baltic Sea | [136] |
6 | MPIOM | Biogeochemical model for the sea-ice carbon pump | Regional Arctic representation Useful for carbon sink effect studies (DIC, AMOC strength) | Modelling center support requirement Oceanic model only | Yes, includes sea-ice models and is used for Arctic studies | [137,138] |
No. | Model | Description | Advantages | Disadvantages | Modelling Applicability | Reference |
---|---|---|---|---|---|---|
1 | MIROC-ES2L | Earth System Model for long-term climate impact on nitrogen cycle and ocean nutrients | Inclusion of black carbon effects in oceanic biological pump Black carbon input in atmospheric module | Pollutant consideration in NPP of plankton only Black carbon iron excludes atmospheric chemistry interaction No exclusive marine shipping black carbon quantification | Yes, global results of iron uptake are due to black carbon emissions | [183] |
2 | CNRM-CM3.3 | Transportation-induced climate impact general circulation model | Non-CO2 pollutant effect consideration Sea-level rise linked to shipping CO2 emissions Pollution-induced AMOC changes | Partial carbon-cycle simulation by model | Partially, results are reported by latitude | [181] |
3 | OsloCTM2 | Atmospheric circulation model for radiative forcing from shipping emissions | Ship-type-based analysis of shipping pollution Traffic-driven emission atmospheric distribution consideration | Partial carbon-cycle simulation by model No oceanic components in the model | No, only global temperature results are provided | [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Zhang, B.; Dawson, J.; Amon, C.D.; Ezechukwu, C.; Igwegbe, E.; Kang, Q.; Song, X.; Chen, B. Arctic Oceanic Carbon Cycle: A Comprehensive Review of Mechanisms, Regulations, and Models. Water 2024, 16, 1667. https://doi.org/10.3390/w16121667
Ye X, Zhang B, Dawson J, Amon CD, Ezechukwu C, Igwegbe E, Kang Q, Song X, Chen B. Arctic Oceanic Carbon Cycle: A Comprehensive Review of Mechanisms, Regulations, and Models. Water. 2024; 16(12):1667. https://doi.org/10.3390/w16121667
Chicago/Turabian StyleYe, Xudong, Baiyu Zhang, Justin Dawson, Christabel D. Amon, Chisom Ezechukwu, Ezinne Igwegbe, Qiao Kang, Xing Song, and Bing Chen. 2024. "Arctic Oceanic Carbon Cycle: A Comprehensive Review of Mechanisms, Regulations, and Models" Water 16, no. 12: 1667. https://doi.org/10.3390/w16121667
APA StyleYe, X., Zhang, B., Dawson, J., Amon, C. D., Ezechukwu, C., Igwegbe, E., Kang, Q., Song, X., & Chen, B. (2024). Arctic Oceanic Carbon Cycle: A Comprehensive Review of Mechanisms, Regulations, and Models. Water, 16(12), 1667. https://doi.org/10.3390/w16121667