Reuse of Treated Slaughterhouse Wastewater from Immediate One-Step Lime Precipitation and Atmospheric Carbonation to Produce Aromatic Plants in Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Slaughterhouse Wastewater Sampling
2.2. Experimental Set-Up
2.2.1. IOSLM/AC Test
2.2.2. Hydroponics Test
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Raw SWW
3.2. IOSLM/AC
3.3. Hydroponics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Norsyahariati, N.; Daud, N.; Anijiofor, S.C. Chicken Slaughterhouse Wastewater Disposal: The Challenges Ahead. Asian J. Agri. Biol. 2018, 18, 42–45. [Google Scholar]
- Karlis, P.; Presicce, F.; Giner-Santonja, G.; Brinkmann, T.; Roudier, S. Best Available Techniques (BAT) Reference Document for the Slaughterhouses, Animal By-Products and Edible Co-Products Industries; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Berden-Zrimec, M.; Reinhardt, R.; Cerar, A.; Resman, L.; Mihelic, R.; Lazar, B.; Slapnik, M. Turning Wastewater into added-value products for circular economy in agriculture. Project Water2Return—Recovery and Recycling of Nutrients. In Proceedings of the TBMCE 2019, Portorož, Slovenia, 24–25 October 2019. [Google Scholar] [CrossRef]
- Matheyarasu, R.; Bolan, N.S.; Naidu, R. Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development. Water Air Soil Pollut. 2016, 227, 253. [Google Scholar] [CrossRef] [PubMed]
- Menegassi, L.C.; Rossi, F.; Dominical, L.D.; Tommaso, G.; Montes, C.R.; Gomide, C.A.; Gomes, T.M. Reuse in the agro-industrial: Irrigation with treated slaughterhouse effluent in grass. J. Clean. Prod. 2020, 251, 119698. [Google Scholar] [CrossRef]
- Mahedi, M.; Cetin, B.; Dayioglu, A.Y. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Manag. 2019, 95, 334–355. [Google Scholar] [CrossRef]
- Serra, A.P.; Marchetti, M.E.; Dupas, E.; Carducci, C.E.; Silva, E.F.; da Pinheiro, E.R. Phosphorus in Forage Production. In New Perspectives in Forage Crops; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Madeira, L.; Carvalho, F.; Almeida, A.; Ribau Teixeira, M. Integrated Process of Immediate One-Step Lime Precipitation, Atmospheric Carbonation, Constructed Wetlands, or Adsorption for Industrial Wastewater Treatment: A Review. Water 2023, 15, 3929. [Google Scholar] [CrossRef]
- Madeira, L.; Carvalho, F.; Almeida, A.; Ribau Teixeira, M. Optimization of atmospheric carbonation in the integrated treatment immediate one-step lime precipitation and atmospheric carbonation. The case study of slaughterhouse effluents. Results Eng. 2023, 17, 100807. [Google Scholar] [CrossRef]
- Madeira, L.; Ribau Teixeira, M.; Almeida, A.; Santos, T.; Carvalho, F. Reuse of lime sludge from immediate one-step lime precipitation process as a coagulant (aid) in slaughterhouse wastewater treatment. J. Environ. Manag. 2023, 342, 118278. [Google Scholar] [CrossRef]
- Afonso, A.; Regato, M.; Patanita, M.; Luz, S.; Carvalho, M.J.; Fernandes, A.; Lopes, A.; Almeida, A.; Costa, I.; Carvalho, F. Reuse of Pretreated Agro-Industrial Wastewaters for Hydroponic Production of Lettuce. Water 2023, 15, 1856. [Google Scholar] [CrossRef]
- Afonso, A.; Ribeiro, C.; Carvalho, M.J.; Correia, T.; Correia, P.; Regato, M.; Costa, I.; Fernandes, A.; Almeida, A.; Lopes, A.; et al. Pretreated Agro-Industrial Effluents as a Source of Nutrients for Tomatoes Grown in a Dual Function Hydroponic System: Tomato Quality Assessment. Sustainability 2023, 16, 315. [Google Scholar] [CrossRef]
- Carvalho, R.d.S.C.; Bastos, R.G.; Souza, C.F. Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agric. Water Manag. 2018, 203, 311–321. [Google Scholar] [CrossRef]
- Egbuikwem, P.N.; Mierzwa, J.C.; Saroj, D.P. Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agric. Water Manag. 2020, 231, 106034. [Google Scholar] [CrossRef]
- Gebeyehu, A.; Shebeshe, N.; Kloos, H.; Belay, S. Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia. BMC Biotechnol. 2018, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Sci. Total Environ. 2020, 698, 134154. [Google Scholar] [CrossRef] [PubMed]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A.; Buckley, C. Partially treated domestic wastewater as a nutrient source for tomatoes (Lycopersicum solanum) grown in a hydroponic system: Effect on nutrient absorption and yield. Heliyon 2020, 6, e05745. [Google Scholar] [CrossRef] [PubMed]
- Prazeres, A.R.; Albuquerque, A.; Luz, S.; Jerónimo, E.; Carvalho, F. Hydroponic System: A Promising Biotechnology for Food Production and Wastewater Treatment. In Food Biosynthesis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–350. [Google Scholar] [CrossRef]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 2023, 16, 1690. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Regulation of essential oil in aromatic plants under changing environment. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100441. [Google Scholar] [CrossRef]
- Domingues, P.M.; Santos, L. Essential oil of pennyroyal (Mentha pulegium): Composition and applications as alternatives to pesticides—New tendencies. Ind. Crops Prod. 2019, 139, 111534. [Google Scholar] [CrossRef]
- Surendran, U.; Chandran, C.; Joseph, E.J. Hydroponic cultivation of Mentha spicata and comparison of biochemical and antioxidant activities with soil-grown plants. Acta Physiol. Plant. 2017, 39, 26. [Google Scholar] [CrossRef]
- Zeljkovic, S.C.; Aucique-Perez, C.E.; Stefelova, N.; De Diego, N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem. 2022, 375, 131845. [Google Scholar] [CrossRef] [PubMed]
- Mumivand, H.; Izadi, Z.; Amirizadeh, F.; Maggi, F.; Morshedloo, M.R. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. J. Hazard. Mater. 2023, 446, 130674. [Google Scholar] [CrossRef] [PubMed]
- Al Smadi, B.M.; Al-Hayek, W.; Abu Hajar, H.A. Treatment of Amman Slaughterhouse Wastewater by Anaerobic Baffled Reactor. Int. J. Civ. Eng. 2019, 17, 1445–1454. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.; Mehrvar, M. Slaughterhouse Wastewater: Treatment, Management and Resource Recovery. In Physico-Chemical Wastewater Treatment and Resource Recovery; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Njoya, M.; Basitere, M.; Ntwampe, S.K.O. Analysis of the characteristics of poultry slaughterhouse wastewater (PSW) and its treatability. Water Pract. Technol. 2019, 14, 959–970. [Google Scholar] [CrossRef]
- Baird, R.; Eaton, A.D.; Rice, E.W.; Bridgewater, L.; American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Al-Mutairi, N.Z.; Hamoda, M.F.; Al-Ghusain, I. Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant. Bioresour. Technol. 2004, 95, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Husam, A.-N.; Nassar, A. Slaughterhouses Wastewater Characteristics in the Gaza Strip. J. Water Resour. Prot. 2019, 11, 844–851. [Google Scholar] [CrossRef]
- Del Nery, V.; De Nardi, I.R.; Damianovic, M.H.R.Z.; Pozzi, E.; Amorim, A.K.B.; Zaiat, M. Long-term operating performance of a poultry slaughterhouse wastewater treatment plant. Resour. Conserv. Recycl. 2007, 50, 102–114. [Google Scholar] [CrossRef]
- Li, Y.; Nan, X.; Li, D.; Wang, L.; Xu, R.; Li, Q. Advances in the treatment of phosphorus-containing wastewater. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012163. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Luz, S.; Fernandes, F.; Jeronimo, E. Cheese wastewater treatment by acid and basic precipitation: Application of H2SO4, HNO3, HCl, Ca(OH)2 and NaOH. J. Environ. Chem. Eng. 2020, 8, 103556. [Google Scholar] [CrossRef]
- Semerjian, L.; Ayoub, G.M. High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv. Environ. Res. 2003, 7, 389–403. [Google Scholar] [CrossRef]
- Madeira, L.; Teixeira, M.R.; Carvalho, F. Modeling and optimization of atmospheric CO2 capture for neutralization of high alkaline wastewaters using response surface methodology. J. CO2 Util. 2024, 81, 102705. [Google Scholar] [CrossRef]
- Madeira, L.; Almeida, A.; Ribau Teixeira, M.; Prazeres, A.; Chaves, H.; Carvalho, F. Immediate one-step lime precipitation and atmospheric carbonation as pre-treatment for low biodegradable and high nitrogen wastewaters: A case study of explosives industry. J. Environ. Chem. Eng. 2020, 8, 103808. [Google Scholar] [CrossRef]
- Ion, N. Melliferous charactheristics of spontaneous Lamiaceae species, identified in the danube valley. Sci. Pap. Anim. Sci. Biotechnol. 2007, 40, 71–79. [Google Scholar]
- Malekmohammad, K.; Rafieian-Kopaei, M.; Sardari, S.; Sewell, R.D.E. Toxicological effects of Mentha × piperita (peppermint): A review. Toxin Rev. 2021, 40, 445–459. [Google Scholar] [CrossRef]
- Madeira, L.; Almeida, A.; da Costa, A.M.R.; Mestre, A.S.; Carvalho, F.; Teixeira, M.R. Tunning processes for organic matter removal from slaughterhouse wastewater treated by immediate one-step lime precipitation and atmospheric carbonation. J. Environ. Chem. Eng. 2023, 11, 110450. [Google Scholar] [CrossRef]
- Madeira, L.; Carvalho, F.; Teixeira, M.R.; Ribeiro, C.; Almeida, A. Vertical flow constructed wetland as a green solution for low biodegradable and high nitrogen wastewater: A case study of explosives industry. Chemosphere 2021, 272, 129871. [Google Scholar] [CrossRef]
- Tabatabaie, S.J.; Nazari, J.; Nazemiyeh, H.; Zehtab, S.; Azarmi, F. Influence of various electrical conductivity levels on the growth and essential oil content of Peppermint (Menta piperita L.) grown in hydroponic. Acta Hortic. 2007, 747, 197–201. [Google Scholar] [CrossRef]
- Turkdogan, F.I.; Yetilmezsoy, K.; Goncaloglu, B.I.; Keskintimur, N.; Gungordu, M.; Akyol, C. Removal of Ammonium Nitrogen from the DAF-Pretreated Poultry Slaughterhouse Wastewater by Lemna minor. Eur. J. Eng. Nat. Sci. 2019, 3, 1–5. [Google Scholar]
- Spasiano, D.; Petrella, A.; Lacedra, V. Chemical Destabilization of Fresh and Spent Cutting Oil Emulsions: Differences between an Ecofriendly and Two Commercial Synthetic Lubricants. Sustainability 2020, 12, 5697. [Google Scholar] [CrossRef]
Parameters | Units | Average ± Standard Deviation |
---|---|---|
pH | Sorensen | 6.7 ± 0.2 |
TSS | mg L−1 | 1841 ± 171 |
COD | mg L−1 | 3982 ± 330 |
BOD5 | mg L−1 | 2000 ± 190 |
TKN | mg N L−1 | 242 ± 22 |
TP | mg L−1 | 491.6 ± 90.0 |
Oils and Fats | mg L−1 | 597 ± 70 |
Conductivity | mS cm−1 | 1.6 ± 0.0 |
NH4+ | mg N L−1 | 115 ± 5 |
Nitrate | mg N L−1 | <2 |
Nitrites | mg N L−1 | <0.05 |
Turbidity | NTU | 1596 ± 40 |
E. coli | MPN/100 mL | 10,000 |
Parameters | Unit | Hydroponic Nutrient Solution | |
---|---|---|---|
Initial | Final | ||
pH | Sorensen | 8.0 ± 0.5 | 7.5 ± 0.2 |
Conductivity | mS cm−1 | 1.6 ± 0.2 | 1.13 ± 0.49 |
NH4+ | mg N L−1 | 20 ± 1 | 2 ± 1 |
Abs. at 254 nm | cm−1 | 0.050 ± 0.008 | 0.027 ± 0.009 |
Abs. at 410 nm | cm−1 | 0.042 ± 0.010 | 0.034 ± 0.004 |
T. Alkalinity | mg CaCO3 L−1 | 238 ± 108 | 186 ± 79 |
Dissolved oxygen | mg O2 L−1 | 2.1 ± 1.7 | 4.8 ± 2.8 |
Total hardness | mg CaCO3 L−1 | 1059 ± 651 | 2401 ± 174 |
Nitrate | mg N L−1 | <2 | <2 |
Nitrites | mg N L−1 | <0.05 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madeira, L.; Ribau Teixeira, M.; Nunes, S.; Almeida, A.; Carvalho, F. Reuse of Treated Slaughterhouse Wastewater from Immediate One-Step Lime Precipitation and Atmospheric Carbonation to Produce Aromatic Plants in Hydroponics. Water 2024, 16, 1566. https://doi.org/10.3390/w16111566
Madeira L, Ribau Teixeira M, Nunes S, Almeida A, Carvalho F. Reuse of Treated Slaughterhouse Wastewater from Immediate One-Step Lime Precipitation and Atmospheric Carbonation to Produce Aromatic Plants in Hydroponics. Water. 2024; 16(11):1566. https://doi.org/10.3390/w16111566
Chicago/Turabian StyleMadeira, Luís, Margarida Ribau Teixeira, Sérgio Nunes, Adelaide Almeida, and Fátima Carvalho. 2024. "Reuse of Treated Slaughterhouse Wastewater from Immediate One-Step Lime Precipitation and Atmospheric Carbonation to Produce Aromatic Plants in Hydroponics" Water 16, no. 11: 1566. https://doi.org/10.3390/w16111566
APA StyleMadeira, L., Ribau Teixeira, M., Nunes, S., Almeida, A., & Carvalho, F. (2024). Reuse of Treated Slaughterhouse Wastewater from Immediate One-Step Lime Precipitation and Atmospheric Carbonation to Produce Aromatic Plants in Hydroponics. Water, 16(11), 1566. https://doi.org/10.3390/w16111566