Climate Change Adaptation Strategies for Coastal Resilience: A Stakeholder Surveys
Abstract
:1. Introduction
2. Survey Design and Objectives
2.1. Study Area
2.2. Scenarios
2.2.1. Scenario 1 (GR-SSP2-RCP4.5)—“Symphony of Disintegration”
2.2.2. Scenario 2 (GR-SSP5-RCP8.5)—“For whom the storm tolls”
- Community information and participation: This category of adaptation measures includes building public awareness and community engagement about the impacts of climate change, using strategies such as the provision of information on news and social media, the participation of residents in co-creative workshops, living labs, etc.
- Individual anti-flood measures (property flood-proofing): Individual anti-flood measures involve homeowners taking direct action to protect their properties from the impacts of rising sea levels and associated flood risks. These actions include elevating new structures above flood levels, property flood-proofing, and building barriers. Homeowners take into consideration the cost in relation to the expected results on their property.
- Property insurance: This category includes individual property insurance for natural hazards as well as the implementation of mandatory insurance by the public authorities as an adaptation strategy for climate change. Insurance provides a financial safety net, ensuring that homeowners can recover and rebuild more quickly after a flood event.
- Nature-based protection measures (living shorelines): Nature-based solutions include methods like wetland restoration, beach nourishment, and the creation of living shorelines. They can enhance ecosystem services, habitat quality, and sustainability with lower construction and maintenance costs.
- Hard protection measures: Hard coastal protection measures, often employed to guard against erosion and sea-level rise, include structures like seawalls, breakwaters, and groynes. They offer immediate effectiveness, a high level of protection, and durability. Meanwhile, they have significant environmental impacts, higher construction costs, and possible aesthetic degradation.
- Managed retreat, realignment, and setbacks: Managed retreat, or managed realignment, is a coastal management method that entails controlled inundation of low-lying coastal zones and the strategic relocation of communities and infrastructure, allowing the natural inward movement of shorelines. Creating these setback zones offers long-term sustainability, community resilience through relocation to safer locations, and ecological benefits by allowing natural processes to occur.
- Evaluate the effectiveness of various adaptation measures, including community engagement, property flood-proofing, insurance, nature-based solutions, hard protection measures, and managed retreat.
- Estimate thresholds for initiating adaptation actions under different climate scenarios, focusing on sea-level rise and coastal flooding.
- Identify key challenges and opportunities in setting realistic thresholds for governmental action in coastal resilience models.
2.3. Methodology
2.4. Survey Design
- i.
- Survey dissemination and respondent personal information
- ii.
- Part A—Evaluation of adaptation measures: Stakeholders rate the effectiveness of six categories of adaptation measures on a scale from 1 to 7, focusing on community engagement, property flood-proofing, insurance, nature-based solutions, hard protection measures, and managed retreat (Supplementary Materials, Questions M.1–M.7). Afterwards, the participants were asked to select the criteria based on which they made their evaluation in a multiple-choice question.
- iii.
- Part B—Estimation of adaptation thresholds: Stakeholders estimate thresholds for initiating adaptation actions under two climate scenarios, GR-SSP2-RCP4.5 (Supplementary Materials, Questions Q1.1–1.7) and GR-SSP5-RCP8.5 (Supplementary Materials, Questions Q2.1–Q2.6), focusing on indicators such as climate change awareness, insurance coverage, sea-level rise, and the Coastal Resilience Index (CResI).
- iv.
- Part C—Open questions: Stakeholders provide qualitative insights on recommended approaches for updating thresholds, additional indicators for setting thresholds, and key challenges in governmental action on coastal resilience (Supplementary Materials, Questions O.Q.1–O.Q.3).
3. Data Collection and Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Šarović, K.; Klaić, Z.B. Effect of Climate Change on Water Temperature and Stratification of a Small, Temperate, Karstic Lake (Lake Kozjak, Croatia). Environ. Process. 2023, 10, 49. [Google Scholar] [CrossRef]
- Pinto, R.; da Conceição Cunha, M.; Roseta-Palma, C.; Marques, J.C. Mainstreaming Sustainable Decision-Making for Ecosystems: Integrating Ecological and Socio-Economic Targets within a Decision Support System. Environ. Process. 2014, 1, 7–19. [Google Scholar] [CrossRef]
- Conde, C.; Lonsdale, K. Engaging Stakeholders in the Adaptation Process. In Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures; Burton, I., Malone, E., Huq, S., Eds.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bosetti, V.; Carraro, C.; De Cian, E.; Massetti, E.; Tavoni, M. Incentives and Stability of International Climate Coalitions: An Integrated Assessment. Energy Policy 2013, 55, 44–56. [Google Scholar] [CrossRef]
- Golosov, M.; Hassler, J.; Krusell, P.; Tsyvinski, A. Optimal Taxes on Fossil Fuel in General Equilibrium. Econometrica 2014, 82, 41–88. [Google Scholar] [CrossRef]
- Han, Y.; Ash, K.; Mao, L.; Peng, Z.-R. An Agent-Based Model for Community Flood Adaptation under Uncertain Sea-Level Rise. Clim. Chang. 2020, 162, 2257–2276. [Google Scholar] [CrossRef]
- Laatabi, A.; Becu, N.; Marilleau, N.; Amalric, M.; Pignon-Mussaud, C.; Anselme, B.; Beck, E.; Bertin, X.; Monfort, A.; Hayoun, C.; et al. LittoSIM-GEN: A Generic Platform of Coastal Flooding Management for Participatory Simulation. Environ. Model. Softw. 2022, 149, 105319. [Google Scholar] [CrossRef]
- Mills, A.K.; Ruggiero, P.; Bolte, J.P.; Serafin, K.A.; Lipiec, E. Quantifying Uncertainty in Exposure to Coastal Hazards Associated with Both Climate Change and Adaptation Strategies: A U.S. Pacific Northwest Alternative Coastal Futures Analysis. Water 2021, 13, 545. [Google Scholar] [CrossRef]
- Abebe, Y.A.; Ghorbani, A.; Nikolic, I.; Vojinovic, Z.; Sanchez, A. Flood Risk Management in Sint Maarten—A Coupled Agent-Based and Flood Modelling Method. J. Environ. Manag. 2019, 248, 109317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jin, X.; Wang, L.; Zhou, Y.; Shu, B. Multi-Agent Based Modeling of Spatiotemporal Dynamical Urban Growth in Developing Countries: Simulating Future Scenarios of Lianyungang City, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 63–78. [Google Scholar] [CrossRef]
- Yao, M.; Tramberend, S.; Kabat, P.; Hutjes, R.W.A.; Werners, S.E. Building Regional Water-Use Scenarios Consistent with Global Shared Socioeconomic Pathways. Environ. Process. 2017, 4, 15–31. [Google Scholar] [CrossRef]
- Walker, W.E.; Loucks, D.P.; Carr, G. Social Responses to Water Management Decisions. Environ. Process. 2015, 2, 485–509. [Google Scholar] [CrossRef]
- Nikolic, V.V.; Simonovic, S.P. Multi-Method Modeling Framework for Support of Integrated Water Resources Management. Environ. Process. 2015, 2, 461–483. [Google Scholar] [CrossRef]
- Santamarta, J.C.; Hernández-Alemán, A.; Cruz-Pérez, N.; Gamallo-Paz, I.; Rodríguez-Martín, J.; de Martín-Pinillos Castellanos, I.; García-Gil, A. Optimizing Water Sustainability: Revealing Cost Recovery Strategies in the Canary Islands (Spain). Stochastic Frontier Model. Environ. Process. 2024, 11, 13. [Google Scholar] [CrossRef]
- Lawyer, C.; An, L.; Goharian, E. A Review of Climate Adaptation Impacts and Strategies in Coastal Communities: From Agent-Based Modeling towards a System of Systems Approach. Water 2023, 15, 2635. [Google Scholar] [CrossRef]
- Jager, N.W.; Newig, J.; Challies, E.; Kochskämper, E. Corrigendum to: Pathways to Implementation: Evidence on How Participation in Environmental Governance Impacts on Environmental Outcomes. J. Public Adm. Res. Theory 2021, 31, 616. [Google Scholar] [CrossRef]
- Palla, A.; Pezzagno, M.; Spadaro, I.; Ermini, R. Participatory Approach to Planning Urban Resilience to Climate Change: Brescia, Genoa, and Matera—Three Case Studies from Italy Compared. Sustainability 2024, 16, 2170. [Google Scholar] [CrossRef]
- Borgonovo, E.; Pangallo, M.; Rivkin, J.; Rizzo, L.; Siggelkow, N. Sensitivity Analysis of Agent-Based Models: A New Protocol. Comput. Math. Organ. Theory 2022, 28, 52–94. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A.; González-Eguino, M.; Arto, I.; Anger-Kraavi, A. From Integrated to Integrative: Delivering on the Paris Agreement. Sustainability 2018, 10, 2299. [Google Scholar] [CrossRef]
- Koasidis, K.; Karamaneas, A.; Kanellou, E.; Neofytou, H.; Nikas, A.; Doukas, H. Towards Sustainable Development and Climate Co-Governance: A Multicriteria Stakeholders’ Perspective; Doumpos, M., Ferreira, F.A.F., Zopounidis, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 39–74. [Google Scholar]
- Doukas, H.; Nikas, A. Decision Support Models in Climate Policy. Eur. J. Oper. Res. 2020, 280, 1–24. [Google Scholar] [CrossRef]
- Romsdahl, R.J. Decision Support for Climate Change Adaptation Planning in the US: Why It Needs a Coordinated Internet-Based Practitioners’ Network. Clim. Chang. 2011, 106, 507–536. [Google Scholar] [CrossRef]
- Sanderson, H.; Hilden, M.; Russel, D.; Dessai, S. Database Support for Adaptation to Climate Change: An Assessment of Web-Based Portals across Scales. Integr. Environ. Assess Manag. 2016, 12, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Shiau, T.-A.; Liu, J.-S. Developing an Indicator System for Local Governments to Evaluate Transport Sustainability Strategies. Ecol. Indic. 2013, 34, 361–371. [Google Scholar] [CrossRef]
- Soma, K.; Dijkshoorn-Dekker, M.W.C.; Polman, N.B.P. Stakeholder Contributions through Transitions towards Urban Sustainability. Sustain. Cities Soc. 2018, 37, 438–450. [Google Scholar] [CrossRef]
- Meliadou, A.; Santoro, F.; Nader, M.R.; Dagher, M.A.; Al Indary, S.; Salloum, B.A. Prioritising Coastal Zone Management Issues through Fuzzy Cognitive Mapping Approach. J. Environ. Manag. 2012, 97, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Mallampalli, V.R.; Mavrommati, G.; Thompson, J.; Duveneck, M.; Meyer, S.; Ligmann-Zielinska, A.; Druschke, C.G.; Hychka, K.; Kenney, M.A.; Kok, K.; et al. Methods for Translating Narrative Scenarios into Quantitative Assessments of Land Use Change. Environ. Model. Softw. 2016, 82, 7–20. [Google Scholar] [CrossRef]
- Berkes, F. Sacred Ecology; Routledge: London, UK, 2017; ISBN 9781315114644. [Google Scholar]
- Eckstein, M.K.; Master, S.L.; Xia, L.; Dahl, R.E.; Wilbrecht, L.; Collins, A.G.E. The interpretation of computational model parameters depends on the context. eLife 2022, 11, e75474. [Google Scholar] [CrossRef] [PubMed]
- Leitch, A.M.; Palutikof, J.P.; Rissik, D.; Boulter, S.L.; Tonmoy, F.N.; Webb, S.; Vidaurre, A.C.P.; Campbell, M.C. Co-Development of a Climate Change Decision Support Framework through Engagement with Stakeholders. Clim Change 2019, 153, 587–605. [Google Scholar] [CrossRef]
- Smith, I.; Hicks, C.; McGovern, T. Adapting Lean Methods to Facilitate Stakeholder Engagement and Co-Design in Healthcare. BMJ 2020, 368, m35. [Google Scholar] [CrossRef]
- Karamaneas, A.; Koasidis, K.; Frilingou, N.; Xexakis, G.; Nikas, A.; Doukas, H. A Stakeholder-Informed Modelling Study of Greece’s Energy Transition amidst an Energy Crisis: The Role of Natural Gas and Climate Ambition. Renew. Sustain. Energy Transit. 2023, 3, 100049. [Google Scholar] [CrossRef]
- Elkady, S.; Hernantes, J.; Labaka, L. Towards a Resilient Community: A Decision Support Framework for Prioritizing Stakeholders’ Interaction Areas. Reliab. Eng. Syst. Saf. 2023, 237, 109358. [Google Scholar] [CrossRef]
- Stamou, A.; Mitsopoulos, G.; Koutroulis, A. Proposed Methodology for Climate Change Adaptation of Water Infrastructures in the Mediterranean Region. Environ. Process. 2024, 11, 12. [Google Scholar] [CrossRef]
- Roukounis, C.N.; Tsihrintzis, V.A. Indices of Coastal Vulnerability to Climate Change: A Review. Environ. Process. 2022, 9, 29. [Google Scholar] [CrossRef]
- Roukounis, C.N.; Tsoukala, V.K.; Tsihrintzis, V.A. An Index-Based Method to Assess the Resilience of Urban Areas to Coastal Flooding: The Case of Attica, Greece. J. Mar. Sci. Eng. 2023, 11, 1776. [Google Scholar] [CrossRef]
- Gargiulo, C.; Zucaro, F. A Method Proposal to Adapt Urban Open-Built and Green Spaces to Climate Change. Sustainability 2023, 15, 8111. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Daniels, E.; Bharwani, S.; Gerger Swartling, Å.; Vulturius, G.; Brandon, K. Refocusing the Climate Services Lens: Introducing a Framework for Co-Designing “Transdisciplinary Knowledge Integration Processes” to Build Climate Resilience. Clim. Serv. 2020, 19, 100181. [Google Scholar] [CrossRef]
- Chambers, J.M.; Wyborn, C.; Ryan, M.E.; Reid, R.S.; Riechers, M.; Serban, A.; Bennett, N.J.; Cvitanovic, C.; Fernández-Giménez, M.E.; Galvin, K.A.; et al. Six Modes of Co-Production for Sustainability. Nat. Sustain. 2021, 4, 983–996. [Google Scholar] [CrossRef]
- André, K.; Järnberg, L.; Gerger Swartling, Å.; Berg, P.; Segersson, D.; Amorim, J.H.; Strömbäck, L. Assessing the Quality of Knowledge for Adaptation–Experiences From Co-Designing Climate Services in Sweden. Front. Clim. 2021, 3, 636069. [Google Scholar] [CrossRef]
- André, K.; Gerger Swartling, Å.; Englund, M.; Petutschnig, L.; Attoh, E.M.N.A.N.; Milde, K.; Lückerath, D.; Cauchy, A.; Botnen Holm, T.; Hanssen Korsbrekke, M.; et al. Improving Stakeholder Engagement in Climate Change Risk Assessments: Insights from Six Co-Production Initiatives in Europe. Front. Clim. 2023, 5, 1120421. [Google Scholar] [CrossRef]
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
Questions * | N | Minimum | Maximum | Mean | Std. Deviation | |
Adaptation Measures Evaluation | M.1 | 47 | 1 | 7 | 4.83 | 1.60 |
M.2 | 47 | 1 | 7 | 4.21 | 1.65 | |
M.3 | 47 | 1 | 7 | 4.09 | 1.85 | |
M.4 | 47 | 1 | 7 | 5.21 | 1.50 | |
M.5 | 47 | 2 | 7 | 5.49 | 1.16 | |
M.6 | 47 | 1 | 7 | 5.43 | 1.58 | |
Criteria | Effectiveness | 47 | 0 | 1 | 0.72 | 0.45 |
Simplicity | 47 | 0 | 1 | 0.13 | 0.34 | |
Sustainability | 47 | 0 | 1 | 0.57 | 0.50 | |
Aesthetic_Degradation | 47 | 0 | 1 | 0.19 | 0.40 | |
Action_Cost | 47 | 0 | 1 | 0.23 | 0.43 | |
Financial_Impacts | 47 | 0 | 1 | 0.28 | 0.45 | |
Other | 47 | 0 | 1 | 0.09 | 0.28 | |
Scenario 1: GR-SSP2xRCP4.5 Thresholds | Q.1.1 | 46 | 20% | 100% | 55.39% | 19.53% |
Q.1.2 | 47 | 10% | 90% | 45.74% | 21.74% | |
Q.1.3 | 46 | 0.00 | 0.50 | 0.22 | 0.12 | |
Q.1.4 | 46 | 0.00 | 0.50 | 0.25 | 0.12 | |
Q.1.5 | 45 | 1.0 | 4.0 | 2.80 | 0.64 | |
Q.1.6 | 45 | 0.0 | 16.0 | 6.38 | 5.10 | |
Q.1.7 | 43 | 0 | 16 | 8.40 | 5.19 | |
Scenario 2: GR-SSP5xRCP8.5 Thresholds | Q.2.1 | 46 | 20% | 100% | 50.72% | 24.04% |
Q.2.2 | 46 | 5% | 100% | 47.50% | 24.49% | |
Q.2.3 | 46 | 0.00 | 0.50 | 0.24 | 0.12 | |
Q.2.4 | 45 | 0.00 | 0.50 | 0.26 | 0.12 | |
Q.2.5 | 45 | 0.3 | 5.0 | 2.99 | 0.98 | |
Q.2.6 | 44 | 0.0 | 16.0 | 7.48 | 4.88 | |
Valid N (listwise) | 42 |
Occupation | M.1 * | M.2 * | M.3 * | M.4 * | M.5 * | M.6 * | ||
---|---|---|---|---|---|---|---|---|
Local Authorities | N | Valid | 2 | 2 | 2 | 2 | 2 | 2 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 5.00 | 5.50 | 3.00 | 4.00 | 7.00 | 4.50 | ||
Std. Deviation | 0.00 | 0.70 | 0.00 | 2.83 | 0.00 | 3.53 | ||
Minimum | 5 | 5 | 3 | 2 | 7 | 2 | ||
Maximum | 5 | 6 | 3 | 6 | 7 | 7 | ||
Port/Marina Authorities | N | Valid | 3 | 3 | 3 | 3 | 3 | 3 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 5.00 | 4.33 | 6.33 | 6.00 | 5.33 | 6.00 | ||
Std. Deviation | 0.00 | 0.58 | 1.15 | 1.00 | 0.57 | 0.00 | ||
Minimum | 5 | 4 | 5 | 5 | 5 | 6 | ||
Maximum | 5 | 5 | 7 | 7 | 6 | 6 | ||
University | N | Valid | 19 | 19 | 19 | 19 | 19 | 19 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 5.21 | 4.63 | 4.37 | 5.11 | 5.74 | 5.32 | ||
Std. Deviation | 1.78 | 1.83 | 1.86 | 1.45 | 1.04 | 1.83 | ||
Minimum | 2 | 1 | 2 | 1 | 3 | 1 | ||
Maximum | 7 | 7 | 7 | 7 | 7 | 7 | ||
Research institution | N | Valid | 4 | 4 | 4 | 4 | 4 | 4 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 3.50 | 4.00 | 3.50 | 5.50 | 5.00 | 6.50 | ||
Std. Deviation | 2.08 | 2.31 | 2.64 | 1.73 | 0.81 | 0.58 | ||
Minimum | 1 | 2 | 1 | 4 | 4 | 6 | ||
Maximum | 6 | 6 | 7 | 7 | 6 | 7 | ||
Consultancy | N | Valid | 12 | 12 | 12 | 12 | 12 | 12 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 4.92 | 3.67 | 3.42 | 5.42 | 5.00 | 5.25 | ||
Std. Deviation | 1.44 | 1.61 | 1.67 | 1.31 | 1.47 | 1.29 | ||
Minimum | 2 | 2 | 1 | 2 | 2 | 3 | ||
Maximum | 7 | 7 | 7 | 7 | 7 | 7 | ||
Freelancer | N | Valid | 5 | 5 | 5 | 5 | 5 | 5 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 3.80 | 3.40 | 4.20 | 4.40 | 5.80 | 5.20 | ||
Std. Deviation | 1.48 | 1.14 | 1.79 | 1.95 | 1.09 | 1.79 | ||
Minimum | 2 | 2 | 3 | 2 | 4 | 3 | ||
Maximum | 6 | 5 | 7 | 7 | 7 | 7 |
Occupation | Q.1.1 * | Q.1.2 * | Q.1.3 * | Q.1.4 * | Q.1.5 * | Q.1.6 * | Q.1.7 * | ||
---|---|---|---|---|---|---|---|---|---|
Local Authorities | N | Valid | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 62.50% | 42.50% | 0.17 | 0.18 | 3.00 | 4.50 | 7.50 | ||
Std. Deviation | 17.68% | 45.96% | 0.03 | 0.09 | 1.41 | 0.70 | 3.53 | ||
Minimum | 50% | 10% | 0.15 | 0.125 | 2.0 | 4.0 | 5 | ||
Maximum | 75% | 75% | 0.20 | 0.250 | 4.0 | 5.0 | 10 | ||
Port/Marina Authorities | N | Valid | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 56.67% | 46.67% | 0.20 | 0.23 | 2.83 | 11.00 | 9.33 | ||
Std. Deviation | 11.55% | 25.66% | 0.08 | 0.06 | 0.29 | 7.81 | 7.02 | ||
Minimum | 50% | 25% | 0.10 | 0.200 | 2.5 | 2.0 | 2 | ||
Maximum | 70% | 75% | 0.25 | 0.300 | 3.0 | 16.0 | 16 | ||
University | N | Valid | 19 | 19 | 19 | 19 | 18 | 19 | 19 |
Missing | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ||
Mean | 55.68% | 44.21% | 0.2026 | 0.22105 | 3.000 | 7.579 | 9.11 | ||
Std. Deviation | 21.91% | 21.81% | 0.11 | 0.11 | 0.62 | 5.48 | 5.23 | ||
Minimum | 30% | 15% | 0.00 | 0.000 | 2.0 | 2.0 | 2 | ||
Maximum | 100% | 90% | 0.50 | 0.500 | 4.0 | 16.0 | 16 | ||
Research institution | N | Valid | 4 | 4 | 4 | 4 | 4 | 4 | 3 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
Mean | 48.75% | 57.50% | 0.22 | 0.30 | 3.12 | 6.75 | 15.00 | ||
Std. Deviation | 24.62% | 35.94% | 0.19 | 0.18 | 0.63 | 6.70 | 1.732 | ||
Minimum | 20% | 10% | 0.05 | 0.100 | 2.5 | 0.0 | 13 | ||
Maximum | 80% | 90% | 0.50 | 0.500 | 4.0 | 16.0 | 16 | ||
Consultancy | N | Valid | 11 | 12 | 11 | 11 | 11 | 10 | 10 |
Missing | 1 | 0 | 1 | 1 | 1 | 2 | 2 | ||
Mean | 60.00% | 45.83% | 0.2727 | 0.28455 | 2.409 | 3.750 | 6.00 | ||
Std. Deviation | 19.87% | 17.23% | 0.14 | 0.13 | 0.66 | 3.24 | 4.94 | ||
Minimum | 25% | 10% | 0.00 | 0.100 | 1.0 | 0.0 | 0 | ||
Maximum | 85% | 80% | 0.50 | 0.500 | 3.0 | 10.0 | 16 | ||
Freelancer | N | Valid | 5 | 5 | 5 | 5 | 5 | 5 | 4 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
Mean | 53.00% | 52.00% | 0.21 | 0.26 | 2.70 | 6.30 | 7.25 | ||
Std. Deviation | 14.83% | 13.04% | 0.11 | 0.09 | 0.45 | 3.56 | 4.85 | ||
Minimum | 40% | 30% | 0.10 | 0.150 | 2.0 | 0.5 | 1 | ||
Maximum | 75% | 60% | 0.40 | 0.400 | 3.0 | 10.0 | 12 |
Occupation | Q2.1 * | Q.2.2 * | Q.2.3 * | Q.2.4 * | Q.2.5 * | Q.2.6 * | ||
---|---|---|---|---|---|---|---|---|
Local Authorities | N | Valid | 2 | 2 | 2 | 2 | 2 | 2 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 47.50% | 40.00% | 0.2500 | 0.3250 | 3.750 | 1.000 | ||
Std. Deviation | 38.89% | 49.50% | 0.07 | 0.10 | 1.06 | 0.00 | ||
Minimum | 20% | 5% | 0.20 | 0.25 | 3.0 | 1.0 | ||
Maximum | 75% | 75% | 0.30 | 0.40 | 4.5 | 1.0 | ||
Port/Marina Authorities | N | Valid | 3 | 3 | 3 | 3 | 3 | 3 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 56.67% | 56.67% | 0.23 | 0.26 | 3.33 | 10.000 | ||
Std. Deviation | 11.55% | 32.14% | 0.12 | 0.06 | 0.58 | 7.21 | ||
Minimum | 50% | 20% | 0.09 | 0.20 | 3.0 | 2.0 | ||
Maximum | 70% | 80% | 0.30 | 0.30 | 4.0 | 16.0 | ||
University | N | Valid | 21 | 21 | 21 | 21 | 20 | 20 |
Missing | 0 | 0 | 0 | 0 | 1 | 1 | ||
Mean | 51.74% | 46.05% | 0.22 | 0.22 | 3.03 | 8.61 | ||
Std. Deviation | 27.36 | 26.24% | 0.11 | 0.09 | 0.83 | 4.74 | ||
Minimum | 20% | 15% | 0.00 | 0.00 | 1.0 | 2.0 | ||
Maximum | 100% | 100% | 0.40 | 0.40 | 4.0 | 16.0 | ||
Research institution | N | Valid | 4 | 4 | 4 | 4 | 4 | 4 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 50.00% | 45.00% | 0.21 | 0.25 | 3.37 | 6.75 | ||
Std. Deviation | 31.62% | 23.80% | 0.20 | 0.19 | 1.10 | 6.70 | ||
Minimum | 20% | 10% | 0.05 | 0.10 | 2.5 | 0.0 | ||
Maximum | 90% | 60% | 0.50 | 0.50 | 5.0 | 16.0 | ||
Consultancy | N | Valid | 11 | 11 | 11 | 10 | 11 | 10 |
Missing | 1 | 1 | 1 | 2 | 1 | 2 | ||
Mean | 53.64% | 56.82% | 0.27 | 0.31 | 2.66 | 6.65 | ||
Std. Deviation | 22.37% | 22.16% | 0.12 | 0.15 | 1.30 | 4.59 | ||
Minimum | 25% | 20% | 0.06 | 0.01 | 0.3 | 0.5 | ||
Maximum | 90% | 90% | 0.50 | 0.50 | 4.0 | 16.0 | ||
Freelancer | N | Valid | 5 | 5 | 5 | 5 | 5 | 5 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | ||
Mean | 47.00% | 40.00% | 0.3100 | 0.3700 | 2.700 | 7.800 | ||
Std. Deviation | 19.87% | 15.81% | 0.09 | 0.10 | 0.84 | 3.35 | ||
Minimum | 30% | 20% | 0.20 | 0.25 | 2.0 | 4.0 | ||
Maximum | 75% | 60% | 0.40 | 0.50 | 4.0 | 12.0 |
Effect | Value | F | Hypothesis df | Error df | Sig. | |
---|---|---|---|---|---|---|
Intercept | Pillai’s Trace | 0.99 | 36.65 b | 26.000 | 11.000 | <0.001 |
Wilks’ Lambda | 0.01 | 36.65 b | 26.000 | 11.000 | <0.001 | |
Hotelling’s Trace | 86.62 | 36.65 b | 26.000 | 11.000 | <0.001 | |
Roy’s Largest Root | 86.62 | 36.65 b | 26.00 | 11.00 | <0.001 | |
Occupation | Pillai’s Trace | 3.41 | 1.235 | 130.00 | 75.00 | 0.16 |
Wilks’ Lambda | 0.001 | 1.29 | 130.00 | 59.17 | 0.14 | |
Hotelling’s Trace | 18.09 | 1.31 | 130.00 | 47.00 | 0.15 | |
Roy’s Largest Root | 9.41 | 5.43 c | 26.00 | 15.00 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roukounis, C.N.; Tsihrintzis, V.A. Climate Change Adaptation Strategies for Coastal Resilience: A Stakeholder Surveys. Water 2024, 16, 1519. https://doi.org/10.3390/w16111519
Roukounis CN, Tsihrintzis VA. Climate Change Adaptation Strategies for Coastal Resilience: A Stakeholder Surveys. Water. 2024; 16(11):1519. https://doi.org/10.3390/w16111519
Chicago/Turabian StyleRoukounis, Charalampos Nikolaos, and Vassilios A. Tsihrintzis. 2024. "Climate Change Adaptation Strategies for Coastal Resilience: A Stakeholder Surveys" Water 16, no. 11: 1519. https://doi.org/10.3390/w16111519
APA StyleRoukounis, C. N., & Tsihrintzis, V. A. (2024). Climate Change Adaptation Strategies for Coastal Resilience: A Stakeholder Surveys. Water, 16(11), 1519. https://doi.org/10.3390/w16111519