Multispectral Inversion of Citrus Multi-Slope Evapotranspiration by UAV Based on Modified RSEB Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Experimental Design
2.3. Experimental Observation Data
2.3.1. UAV Multispectral Data
2.3.2. Meteorological Data
2.4. Mathematical Modeling
2.4.1. FAO Penman–Monteith Method
2.4.2. METRIC Modeling Approach
2.4.3. RSEB Modeling Approach
3. Results and Analysis
3.1. Inversion of Citrus ETc Based on the METRIC Model
3.2. Influence Factor Analysis of ETc Based on METRIC Model
3.3. Inversion of Citrus ETc Based on the RSEB Model
3.4. Influence Factor Analysis of ETc Based on the RSEB Model
3.5. Inversion of ETc from Citrus Orchard
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Li, Y.; Yin, L.; Zhao, Q. A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain. Agric. Water Manag. 2024, 291, 108626. [Google Scholar] [CrossRef]
- Huang, L.; Cai, J.; Zhang, B.; Chen, H.; Bai, L.; Wei, Z.; Peng, Z. Estimation of evapotranspiration using the crop canopy temperature at field to regional scales in large irrigation district. Agric. For. Meteorol. 2019, 269, 305–322. [Google Scholar] [CrossRef]
- Huang, H.; Song, Y.; Fan, Z.; Xu, G.; Yuan, R.; Zhao, J. Estimation of walnut crop evapotranspiration under different micro-irrigation techniques in arid zones based on deep learning sequence models. Results Appl. Math. 2023, 20, 100412. [Google Scholar] [CrossRef]
- Peerbhai, T.; Chetty, K.T.; Clark, D.J.; Gokool, S. Estimating evapotranspiration using earth observation data: A comparison between hydrological and energy balance modelling approaches. J. Hydrol. 2022, 613, 128347. [Google Scholar] [CrossRef]
- Aldarabseh, S.M.; Merati, P. An experimental investigation of the potential of empirical correlations derived based on Dalton’s law and similarity theory to predict evaporation rate from still water surface. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 6554–6578. [Google Scholar] [CrossRef]
- Bai, P.; Cai, C. Calibrating a remote sensing evapotranspiration model using the Budyko framework. Agric. For. Meteorol. 2023, 342, 109757. [Google Scholar] [CrossRef]
- Cook, K.V.; Beyer, J.E.; Xiao, X.; Hambright, K.D. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Water Res. 2023, 242, 120076. [Google Scholar] [CrossRef]
- Qin, L.; Yan, C.; Yu, L.; Chai, M.; Wang, B.; Hayat, M.; Qiu, G.Y. High-resolution spatio-temporal characteristics of urban evapotranspiration measured by unmanned aerial vehicle and infrared remote sensing. Build. Environ. 2022, 222, 109389. [Google Scholar] [CrossRef]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–330. [Google Scholar] [CrossRef]
- Kieu, H.T.; Pak, H.Y.; Trinh, H.L.; Pang, D.S.C.; Khoo, E.; Law, A.W.K. UAV-based remote sensing of turbidity in coastal environment for regulatory monitoring and assessment. Mar. Pollut. Bull. 2023, 196, 115482. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrol. Earth Syst. Sci. 2016, 20, 697–713. [Google Scholar] [CrossRef]
- Amani, S.; Shafizadeh-Moghadam, H. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agric. Water Manag. 2023, 284, 108324. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Li, J.; Huo, Z.; Zhang, Y.; Qu, Y. Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model. Agric. Water Manag. 2023, 282, 108294. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, S.; Li, C.; Zhao, J.; Li, Z.; Jia, C. Estimation of regional actual evapotranspiration based on the improved SEBAL model. J. Hydrol. 2023, 619, 129283. [Google Scholar] [CrossRef]
- Mattar, C.; Franch, B.; Sobrino, J.A.; Corbari, C.; Jiménez-Muñoz, J.C.; Olivera-Guerra, L.; Mancini, M. Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area. Remote Sens. Environ. 2014, 147, 23–42. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Xing, K.; Lei, Y.; Shen, Y. Surface temperature adjustment in METRIC model for monitoring crop water consumption in North China Plain. Agric. Water Manag. 2024, 291, 108654. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Qin, S.; Li, S.; Cheng, L.; Zhang, L.; Qiu, R.; Liu, P. Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model. Agric. Water Manag. 2023, 276, 108040. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Aryalekshmi, B.N.; Biradar, R.C.; Chandrasekar, K.; Ahamed, J.M. Analysis of various surface energy balance models for evapotranspiration estimation using satellite data. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1119–1126. [Google Scholar] [CrossRef]
- Samani, Z.; Bawazir, A.S.; Bleiweiss, M.; Skaggs, R.; Longworth, J.; Tran, V.D.; Pinon, A. Using remote sensing to evaluate the spatial variability of evapotranspiration and crop coefficient in the lower Rio Grande Valley, New Mexico. Irrig. Sci. 2009, 28, 93–100. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C.; Sepúlveda, D. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, X.; Xiao, H.; Toan, N.S.; Liao, B.; Wu, X.; Hu, R. Leaching is the main pathway of nitrogen loss from a citrus orchard in Central China. Agric. Ecosyst. Environ. 2023, 356, 108559. [Google Scholar] [CrossRef]
- Li, Y.J.; Yang, M.; Zhang, Z.Z.; Li, W.L.; Guo, C.Y.; Chen, X.P.; Zhang, Y.Q. An Ecological Research on Potential for Zero-growth of Chemical Fertilizer Use in Citrus Production in China. Ekoloji Derg. 2019, 28, 1049–1059. [Google Scholar]
- Ma, X.; Chang, Y.; Li, F.; Yang, J.; Ye, L.; Zhou, T.; Lu, X. CsABF3-activated CsSUT1 pathway is implicated in pre-harvest water deficit inducing sucrose accumulation in citrus fruit. Hortic. Plant J. 2023, 10, 103–114. [Google Scholar] [CrossRef]
- Chen, S.; Zhai, L.; Xie, J.; Shao, Y.; Wang, W.; Li, H.; Cen, H. Early diagnosis and mechanistic understanding of citrus Huanglongbing via sun-induced chlorophyll fluorescence. Comput. Electron. Agric. 2023, 215, 108357. [Google Scholar] [CrossRef]
- Cunha, A.C.; Gabriel Filho, L.R.A.; Tanaka, A.A.; Goes, B.C.; Putti, F.F. Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the penman-monteith fao 56 method. Agric. Water Manag. 2021, 243, 106491. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhao, L.; Han, L.; Hu, X.; Cai, H.; Liu, Q. Estimation of maize evapotranspiration in semi-humid regions of northern China using Penman-Monteith model and segmentally optimized Jarvis model. J. Hydrol. 2022, 607, 127483. [Google Scholar] [CrossRef]
- Han, X.; Zhou, Q.; Zhang, B.; Che, Z.; Wei, Z.; Qiu, R.; Du, T. Real-time methods for short and medium-term evapotranspiration forecasting using dynamic crop coefficient and historical threshold. J. Hydrol. 2022, 606, 127414. [Google Scholar] [CrossRef]
- Yagci, A.L. Estimation of instantaneous, diurnal, and daily evaporative fraction using readily available inputs in the wetlands of South Florida, United States. Int. J. Remote Sens. 2023, 44, 2115–2144. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Kamgar-Haghighi, A.A.; Shahsavar, A.R.; Niyogi, D. Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions. Agric. Water Manag. 2020, 227, 105838. [Google Scholar] [CrossRef]
- Castellví, F.; Suvočarev, K.; Reba, M.L.; Runkle, B.R. A new free-convection form to estimate sensible heat and latent heat fluxes for unstable cases. J. Hydrol. 2020, 586, 124917. [Google Scholar] [CrossRef]
- Yang, C.; Wu, T.; Hu, G.; Zhu, X.; Yao, J.; Li, R.; Zhang, Y. Approaches to assessing the daily average ground surface soil heat flux on a regional scale over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2023, 336, 109494. [Google Scholar] [CrossRef]
- Kustas, W.P.; Daughtry, C.S.T. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric. For. Meteorol. 1990, 49, 205–223. [Google Scholar] [CrossRef]
- Sánchez, J.M.; López-Urrea, R.; Rubio, E.; González-Piqueras, J.; Caselles, V. Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry. Agric. Water Manag. 2014, 137, 23–29. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Azi, S.O.; Aigbe, U.O.; Onyancha, R.B.; Emegha, J.O. Analyzing the uncertainties between reanalysis meteorological data and ground measured meteorological data. Measurement 2020, 165, 108110. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Bai, Y.; Wu, W.; Cui, N.; Cheng, M.; Yin, D. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103383. [Google Scholar] [CrossRef]
- Segovia-Cardozo, D.A.; Franco, L.; Provenzano, G. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard. Sci. Total Environ. 2022, 806, 150492. [Google Scholar] [CrossRef]
Factor | Relevant Formula | R2 | Relevance |
---|---|---|---|
Air velocity | y = −0.2426x + 4.4457 | 0.5844 | Negative correlation |
Temp | y = 0.6678x + 16.366 | 0.2338 | Positive correlation |
Net radiation | y = 2.1154x + 580.92 | 0.4371 | Positive correlation |
Shortwave radiation | y = 2.4274x + 704.02 | 0.4216 | Positive correlation |
Uplink longwave radiation | y = 3.3202x + 337.26 | 0.2324 | Positive correlation |
Downlink longwave radiation | y = 2.6729x + 259.51 | 0.2324 | Positive correlation |
Vegetation cover index | y = 0.0009x + 0.8027 | 0.0359 | Positive correlation |
Aerodynamic roughness | y = −0.0816x + 1.3083 | 0.5575 | Negative correlation |
Aerodynamic Impedance | y = 0.6987x + 2.5427 | 0.8657 | Positive correlation |
Factor | Air Velocity | Temp | Net Radiation | Vapor Pressure Difference | |
---|---|---|---|---|---|
Model (R2) | |||||
P-M formula | 0.3102 | 0.8017 | 0.5367 | 0.8272 | |
METRIC model | 0.5844 | 0.2338 | 0.4371 | 0.3388 |
Model | Regression Equation | R2 | RMSE | SE |
---|---|---|---|---|
RSEB model | y = 0.4357x + 1.1836 | 0.486 | 3.010 | 2.090 |
METRIC model | y = 0.4996x − 0.4241 | 0.396 | 4.940 | 4.570 |
Factor | Relevant Formula | R2 | Relevance |
---|---|---|---|
Air velocity | y = −0.2476x + 4.452 | 0.282 | Negative correlation |
Air temperature | y = 2.2004x + 9.8376 | 0.7695 | Positive correlation |
Surface temperature | y = 0.5525x + 18.689 | 0.2582 | Positive correlation |
Canopy temperature | y = 1.0875x + 290.46 | 0.3475 | Positive correlation |
Net radiation | y = 1.129x + 717.57 | 0.1471 | Positive correlation |
Radiate longwave radiation | y = 9.8418x + 272.94 | 0.7561 | Positive correlation |
Longwave radiation from the soil | y = 2.4396x + 307.68 | 0.26 | Positive correlation |
Longwave radiation from the canopy | y = 6.2044x + 382.73 | 0.3546 | Positive correlation |
Model | Sensible Heat Flux H | Soil Heat Flux G |
---|---|---|
RSEB model | 0.9992 | 0.3936 |
P-M formula | 0.4928 | 0.8511 |
Correction Model | R2 | RMSE | SE |
---|---|---|---|
RSEB | 0.486 | 3.010 | 2.090 |
0.7 RSEB | 0.486 | 1.590 | 0.350 |
0.65 RSEB | 0.486 | 1.490 | 0.060 |
0.6 RSEB | 0.486 | 1.450 | −0.230 |
0.64 RSEB | 0.486 | 1.470 | 0.003 |
0.63 RSEB | 0.486 | 1.460 | −0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Zhang, Z.; Duan, C.; Lin, Z.; Hao, K.; Li, H.; Zhong, Y. Multispectral Inversion of Citrus Multi-Slope Evapotranspiration by UAV Based on Modified RSEB Model. Water 2024, 16, 1520. https://doi.org/10.3390/w16111520
Zhu S, Zhang Z, Duan C, Lin Z, Hao K, Li H, Zhong Y. Multispectral Inversion of Citrus Multi-Slope Evapotranspiration by UAV Based on Modified RSEB Model. Water. 2024; 16(11):1520. https://doi.org/10.3390/w16111520
Chicago/Turabian StyleZhu, Shijiang, Zhiwei Zhang, Chenfei Duan, Zhen Lin, Kun Hao, Hu Li, and Yun Zhong. 2024. "Multispectral Inversion of Citrus Multi-Slope Evapotranspiration by UAV Based on Modified RSEB Model" Water 16, no. 11: 1520. https://doi.org/10.3390/w16111520
APA StyleZhu, S., Zhang, Z., Duan, C., Lin, Z., Hao, K., Li, H., & Zhong, Y. (2024). Multispectral Inversion of Citrus Multi-Slope Evapotranspiration by UAV Based on Modified RSEB Model. Water, 16(11), 1520. https://doi.org/10.3390/w16111520