Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Gathering and Processing Data
2.3. Correction of Climate Model Bias
2.4. Land Change Modeler (LCM)
2.5. Current Scenario
2.6. Environmental Vulnerability Index
3. Results and Discussion
4. Conclusions
- Reductions in the basin’s average annual rainfall of more than 300 mm and an increase in the average annual temperature of up to 2 °C are predicted for the period 2020–2050.
- Future scenario 4, with RCP 8.5 and land use and land cover for 2050 with reforested legal reserves, had the highest percentage of area in the low and very low environmental vulnerability classes, while future scenario 3, with RCP 4.5 and land use and land cover for 2050, simulated the largest area of the basin in the high and very high vulnerability classes.
- For all simulated future scenarios, a relative improvement in environmental vulnerability was predicted for 2050 compared to the current scenario due to the precipitation reduction. However, it is important to consider their complex relationships.
- The results obtained in this study may serve as a subsidy for the adoption of measures to mitigate environmental damage and adapt to future climatic conditions in the Doce River Basin.
- Future investigations can be implemented to develop models for early warning systems and disaster response plans, which can contribute to better preparation of the region for extreme weather events.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trevisan, D.P.; Bispo, P.d.C.; Almeida, D.; Imani, M.; Balzter, H.; Moschini, L.E. Environmental Vulnerability Index: An Evaluation of the Water and the Vegetation Quality in a Brazilian Savanna and Seasonal Forest Biome. Ecol. Indic. 2020, 112, 106163. [Google Scholar] [CrossRef]
- Anjinho, P.d.S.; Barbosa, M.A.G.A.; Costa, C.W.; Mauad, F.F. Environmental Fragility Analysis in Reservoir Drainage Basin Land Use Planning: A Brazilian Basin Case Study. Land Use Policy 2021, 100, 104946. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Balogun, A.L.; Yekeen, S.T.; Pradhan, B.; Wan Yusof, K.B. Oil Spill Trajectory Modelling and Environmental Vulnerability Mapping Using GNOME Model and GIS. Environ. Pollut. 2021, 268, 115812. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Shi, S.; Zhang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Regional-Scale Assessment of Environmental Vulnerability in an Arid Inland Basin. Ecol. Indic. 2020, 109, 105792. [Google Scholar] [CrossRef]
- Sahoo, S.; Dhar, A.; Debsarkar, A.; Kar, A. Future Scenarios of Environmental Vulnerability Mapping Using Grey Analytic Hierarchy Process. Nat. Resour. Res. 2019, 28, 1461–1483. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Wanyama, D.; Kar, B.; Moore, N.J. Quantitative Multi-Factor Characterization of Eco-Environmental Vulnerability in the Mount Elgon Ecosystem. GIScience Remote Sens. 2021, 58, 1571–1592. [Google Scholar] [CrossRef]
- Campos, J.A.; da Silva, D.D.; Fernandes Filho, E.I.; Pires, G.F.; Amorim, R.S.S.; de Menezes Filho, F.C.M.; de Melo Ribeiro, C.B.; Uliana, E.M.; Aires, U.R.V. Environmental Vulnerability Assessment of the Doce River Basin, Southeastern Brazil. Environ. Monit. Assess. 2023, 195, 1119. [Google Scholar] [CrossRef]
- Luo, D.; Caldas, M.M.; Goodin, D.G. Estimating Environmental Vulnerability in the Cerrado with Machine Learning and Twitter Data. J. Environ. Manag. 2021, 289, 112502. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Nguyen, A.K.; Li, M.-H. Assessing Spatiotemporal Eco-Environmental Vulnerability by Landsat Data. Ecol. Indic. 2017, 80, 52–65. [Google Scholar] [CrossRef]
- Nguyen, K.-A.; Liou, Y.-A. Global Mapping of Eco-Environmental Vulnerability from Human and Nature Disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, J.; Meng, J.; Cui, C.; Wang, M.; Yang, R. A Method to Construct an Environmental Vulnerability Model Based on Multi-Source Data to Evaluate the Hazard of Short-Term Precipitation-Induced Flooding. Remote Sens. 2023, 15, 1609. [Google Scholar] [CrossRef]
- Rorato, A.C.; Escada, M.I.S.; Camara, G.; Picoli, M.C.A.; Verstegen, J.A. Environmental Vulnerability Assessment of Brazilian Amazon Indigenous Lands. Environ. Sci. Policy 2022, 129, 19–36. [Google Scholar] [CrossRef]
- Orozco, I.; Martínez, A.; Ortega, V. Assessment of the Water, Environmental, Economic and Social Vulnerability of a Watershed to the Potential Effects of Climate Change and Land Use Change. Water 2020, 12, 1682. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, S.; Shi, Y.; Feng, J.; Wang, Z. Prediction of Eco-Environmental Vulnerability in Mainland China under the Future Scenarios. Pol. J. Environ. Stud. 2022, 31, 3941–3953. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Pruski, F.F.; Nearing, M.A. Climate-Induced Changes in Erosion during the 21st Century for Eight U.S. Locations. Water Resour. Res. 2002, 38, 34-1–34-11. [Google Scholar] [CrossRef]
- Mullan, D.; Favis-Mortlock, D.; Fealy, R. Addressing Key Limitations Associated with Modelling Soil Erosion under the Impacts of Future Climate Change. Agric. For. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling Response of Soil Erosion and Runoff to Changes in Precipitation and Cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of Climate Change on Water Erosion: A Review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Souza, E.; Machado Pontes, L.; Inácio Fernandes Filho, E.; Ernesto Goncalves Reynaud Schaefer, C.; Elizabet dos Santos, E. Spatial and Temporal Potential Groundwater Recharge: The Case of the Doce River Basin, Brazil. RBCS-Rev. Bras. De Ciências Do Solo 2019, 43, 1–27. [Google Scholar] [CrossRef]
- ECOPLAN-LUME. Plano Integrado de Recursos Hídricos Da Bacia Hidrográfica Do Rio Doce; Consórcio Ecoplan/LUME: Belo Horizonte, Brazil, 2010. [Google Scholar]
- IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis Rompimento Da Barragem de Fundão. Documentos Relacionados Ao Desastre Da Samarco Em Mariana/MG. Available online: https://www.ibama.gov.br/informes/rompimento-da-barragem-de-fundao#pareceres (accessed on 10 May 2023).
- Brazil Lei N° 12.651, De 25 De Maio De 2012. Available online: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm (accessed on 8 September 2020).
- CBH-DOCE. Comitê da Bacia Hidrográfica do Rio Doce. A Bacia Hidrográfica Do Rio Doce. Available online: http://www.cbhdoce.org.br/institucional/a-bacia (accessed on 5 May 2022).
- Ribeiro, S.M.C.; Rajão, R.; Nunes, F.; Assis, D.; Neto, J.A.; Marcolino, C.; Lima, L.; Rickard, T.; Salomão, C.; Filho, B.S. A Spatially Explicit Index for Mapping Forest Restoration Vocation (FRV) at the Landscape Scale: Application in the Rio Doce Basin, Brazil. Sci. Total Environ. 2020, 744, 140647. [Google Scholar] [CrossRef] [PubMed]
- MapBiomas. Projeto MapBiomas Coleção 6—Série Anual de Mapas de Cobertura e Uso de Solo Do Brasil. Available online: http://mapbiomas.org/ (accessed on 5 October 2021).
- SOS Mata Atlântica; INPE—Instituto Nacional de Pesquisas Espaciais. Atlas Dos Remanescentes Florestais Da Mata Atlântica—Período 2020–2021; SOS/INPE: São Paulo, Brazil, 2022; 72p, ISBN 9780874216561. [Google Scholar]
- ANA—Agência Nacional de Águas. Encarte Especial Sobre a Bacia Do Rio Doce. Rompimento Da Barragem Em Mariana/MG; Superintendência de Planejamento de Recursos Hídricos—SPR: Brasília, Brazil, 2016; 50p. [Google Scholar]
- Carmo, F.F.d.; Kamino, L.H.Y.; Junior, R.T.; Campos, I.C.d.; Carmo, F.F.d.; Silvino, G.; Castro, K.J.d.S.X.d.; Mauro, M.L.; Rodrigues, N.U.A.; Miranda, M.P.d.S.; et al. Fundão Tailings Dam Failures: The Environment Tragedy of the Largest Technological Disaster of Brazilian Mining in Global Context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Lima, H.S.; Cavalcante, J.P.C.M.; Silva, L.C.F.; da Silva, M.d.C.S.; de Paula, S.O.; Kasuya, M.C.M.; da Silva, C.C. Structure and Putative Function of a Soil Microbial Community Impacted by the Deposition of Tailings and Subsequent Revegetation after the Rupture of the Fundao Dam. Land Degrad. Dev. 2022, 33, 1235–1248. [Google Scholar] [CrossRef]
- Aires, U.R.V.; Santos, B.S.M.; Coelho, C.D.; da Silva, D.D.; Calijuri, M.L. Changes in Land Use and Land Cover as a Result of the Failure of a Mining Tailings Dam in Mariana, MG, Brazil. Land Use Policy 2018, 70, 63–70. [Google Scholar] [CrossRef]
- Rudorff, N.; Rudorff, C.M.; Kampel, M.; Ortiz, G. Remote Sensing Monitoring of the Impact of a Major Mining Wastewater Disaster on the Turbidity of the Doce River Plume off the Eastern Brazilian Coast. ISPRS J. Photogramm. Remote Sens. 2018, 145, 349–361. [Google Scholar] [CrossRef]
- Macedo, D.R.; Hughes, R.M.; Kaufmann, P.R.; Callisto, M. Development and Validation of an Environmental Fragility Index (EFI) for the Neotropical Savannah Biome. Sci. Total Environ. 2018, 635, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, F.S.; Cordeiro, C.M.; Bueno, G.T.; Carvalho, V.L.M.; Nero, M.A. Uma Proposta Para Automatização Do Índice de Dissecação Do Relevo. Rev. Bras. De Geomorfol. 2017, 18, 155–167. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Mapa Digital de Solos Do Brasil. Escala 1:250,000. Available online: https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/vetores/escala_250_mil/ (accessed on 25 June 2019).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Mapa Geológico Digital Do Brasil. Escala 1:250,000. Available online: https://geoftp.ibge.gov.br/informacoes_ambientais/geologia/levantamento_geologico/vetores/escala_250_mil/ (accessed on 25 June 2019).
- Ross, J.L.S. Análise Empírica Da Fragilidade de Ambientes Naturais e Antropizados. Geogr. Dep. Univ. Sao Paulo 1994, 8, 63–74. [Google Scholar] [CrossRef]
- Crepani, E.; Medeiros, J.S.; Filho, P.H.; Gallotti, T.; Valdete, F.; Cláudio, D.; Faria Barbosa, C. Sensoriamento Remoto e Geoprocessamento Aplicados Ao Zoneamento Ecológico-Econômico e Ao Ordenamento Territorial; INPE: São José dos Campos, Brazil, 2001; 124p. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Bases Cartográficas Contínuas Do Brasil. Escala 1:250,000. Versão 2021. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/bases-cartograficas-continuas/15759-brasil.html?=&t=downloads (accessed on 18 November 2021).
- Pruski, F.F. Conservação de Solo e Água, 2nd ed.; Editora UFV: Viçosa, Brazil, 2009; 279p. [Google Scholar]
- INPE—Instituto Nacional de Pesquisas Espaciais. PROJETA (Projeções de Mudança Do Clima Para a América Do Sul Regionalizadas Pelo Modelo ETA). Available online: https://projeta.cptec.inpe.br/#/dashboard (accessed on 25 June 2020).
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and Evaluation of an Earth-System Model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T.; O’ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [Google Scholar] [CrossRef]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Evaluation of the Eta Simulations Nested in Three Global Climate Models. Am. J. Clim. Chang. 2014, 3, 438–454. [Google Scholar] [CrossRef]
- Mesinger, F.; Chou, S.C.; Gomes, J.L.; Jovic, D.; Bastos, P.; Bustamante, J.F.; Lazic, L.; Lyra, A.A.; Morelli, S.; Ristic, I.; et al. An Upgraded Version of the Eta Model. Meteorol. Atmos. Phys. 2012, 116, 63–79. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107415324. [Google Scholar]
- Smith, M.R.; Myers, S.S. Impact of Anthropogenic CO2 Emissions on Global Human Nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily Gridded Meteorological Variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Rosolem, R.; Hagemann, S.; Nobre, C.A. Performance Evaluation of Eta/HadGEM2-ES and Eta/MIROC5 Precipitation Simulations over Brazil. Atmos. Res. 2020, 244, 105053. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Lakshmi Kumar, T.V.; Thakur, M.K.; Buriti, C.d.O.; Uzcátegui-Briceño, C. Drought Assessment in the São Francisco River Basin Using Satellite-Based and Ground-Based Indices. Remote Sens. 2021, 13, 3921. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing Current and Future Trends of Climate Extremes across Brazil Based on Reanalyses and Earth System Model Projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L.F. Performance Evaluation of Bias Correction Methods for Climate Change Monthly Precipitation Projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef]
- Jong, P.d.; Barreto, T.B.; Tanajura, C.A.S.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Andrade Torres, E. The Impact of Regional Climate Change on Hydroelectric Resources in South America. Renew. Energy 2021, 173, 76–91. [Google Scholar] [CrossRef]
- Zou, T.; Yoshino, K. Environmental Vulnerability Evaluation Using a Spatial Principal Components Approach in the Daxing’anling Region, China. Ecol. Indic. 2017, 78, 405–415. [Google Scholar] [CrossRef]
- GEE—Google Earth Engine. Introduction: Google Earth Engine API—Google Developers. Available online: https://earthengine.google.com/ (accessed on 1 June 2017).
- Mihi, A.; Benarfa, N.; Arar, A. Assessing and Mapping Water Erosion-Prone Areas in Northeastern Algeria Using Analytic Hierarchy Process, USLE/RUSLE Equation, GIS, and Remote Sensing. Appl. Geomat. 2020, 12, 179–191. [Google Scholar] [CrossRef]
- Alvarado, A.; Esteller, M.V.; Quentin, E.; Expósito, J.L. Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on Their Vulnerability to Contamination. Water Resour. Manag. 2016, 30, 1549–1566. [Google Scholar] [CrossRef]
- Cruz, B.B.; Manfré, L.A.; Ricci, D.S.; Brunoro, D.; Appolinario, L.; Quintanilha, J.A. Environmental Fragility Framework for Water Supply Systems: A Case Study in the Paulista Macro Metropolis Area (SE Brazil). Environ. Earth Sci. 2017, 76, 441. [Google Scholar] [CrossRef]
- Xu, Y. R Package, Version 1.4.3. Hyfo: Hydrology and Climate Forecasting. R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Teutschbein, C.; Seibert, J. Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Déqué, M. Frequency of Precipitation and Temperature Extremes over France in an Anthropogenic Scenario: Model Results and Statistical Correction According to Observed Values. Glob. Planet. Chang. 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-Statistical Downscaling and Error Correction of Regional Climate Models and Its Impact on the Climate Change Signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical Bias Correction for Daily Precipitation in Regional Climate Models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Akhter, J.; Das, L.; Deb, A. CMIP5 Ensemble-Based Spatial Rainfall Projection over Homogeneous Zones of India. Clim. Dyn. 2017, 49, 1885–1916. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M. R Package, Version 0.4-0. HydroGOF: Goodness-of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series. R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Eastman, J.R. Manual TerrSet2020. Geospatial Monitoring and Modeling System; Clark Labs: Worcester, MA, USA, 2020; 389p. [Google Scholar]
- Azari, M.; Billa, L.; Chan, A. Multi-Temporal Analysis of Past and Future Land Cover Change in the Highly Urbanized State of Selangor, Malaysia. Ecol. Process. 2022, 11, 2. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Azareh, A.; Sardooi, E.R.; Gholami, H.; Mosavi, A.; Shahdadi, A.; Barkhori, S. Detection and Prediction of Lake Degradation Using Landscape Metrics and Remote Sensing Dataset. Environ. Sci. Pollut. Res. 2021, 28, 27283–27298. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.e.; Xavier, A.P.C.; da Silva, R.M.; Santos, C.A.G. Modeling Land Cover Change Based on an Artificial Neural Network for a Semiarid River Basin in Northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Rodrigues, A.L.M.; Reis, G.B.; dos Santos, M.T.; da Silva, D.D.; dos Santos, V.J.; de Siqueira Castro, J.; Calijuri, M.L. Influence of Land Use and Land Cover’s Change on the Hydrological Regime at a Brazilian Southeast Urbanized Watershed. Environ. Earth Sci. 2019, 78, 595. [Google Scholar] [CrossRef]
- Floreano, I.X.; de Moraes, L.A.F. Land Use/Land Cover (LULC) Analysis (2009–2019) with Google Earth Engine and 2030 Prediction Using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [Google Scholar] [CrossRef]
- SICAR. Sistema Nacional de Cadastro Ambiental Rural. Available online: https://www.car.gov.br/publico/imoveis/index (accessed on 18 February 2020).
- Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I. New Improved Brazilian Daily Weather Gridded Data (1961–2020). Int. J. Climatol. 2022, 42, 8390–8404. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Nguyen, A.K.; Liou, Y.-A.; Li, M.-H.; Tran, T.A. Zoning Eco-Environmental Vulnerability for Environmental Management and Protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- França, L.C.d.J.; Lopes, L.F.; Morais, M.S.d.; Lisboa, G.d.S.; Rocha, S.J.S.d.; Junior, V.T.M.d.M.; Santana, R.C.; Mucida, D.P. Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. Conservation 2022, 2, 349–366. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Morales, F.; Vries, W.T.d. Establishment of Land Use Suitability Mapping Criteria Using Analytic Hierarchy Process (AHP) with Practitioners and Beneficiaries. Land 2021, 10, 235. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Using the Analytic Hierarchy Process to Identify Parameter Weights for Developing a Water Quality Index. Ecol. Indic. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Djurdjević, V.; Braunović, S.; Čakmak, D.; Mitrović, M.; Pavlović, P. Effects of Changes in Climate and Land Use on Soil Erosion: A Case Study of the Vranjska Valley, Serbia. Reg. Environ. Chang. 2019, 19, 1035–1046. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Selva Tutorial; Clark University: Worcester, MA, USA, 2012; 354p. [Google Scholar]
- Alizadeh-Choobari, O.; Qadimi, M.; Marjani, S. Evaluation of 2-m Temperature and Precipitation Products of the Climate Forecast System Version 2 over Iran. Dyn. Atmos. Ocean. 2019, 88, 101105. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Inter-comparison of Historical Simulation and Future Projections of Rainfall and Temperature by CMIP5 and CMIP6 GCMs over Egypt. Int. J. Climatol. 2021, 42, 4316–4332. [Google Scholar] [CrossRef]
- Lovino, M.A.; Müller, O.V.; Berbery, E.H.; Müller, G.V. Evaluation of CMIP5 Retrospective Simulations of Temperature and Precipitation in Northeastern Argentina. Int. J. Climatol. 2018, 38, e1158–e1175. [Google Scholar] [CrossRef]
- Chou, S.C.; de Arruda Lyra, A.; Gomes, J.L.; Rodriguez, D.A.; Alves Martins, M.; Costa Resende, N.; da Silva Tavares, P.; Pereira Dereczynski, C.; Lopes Pilotto, I.; Martins, A.M.; et al. Downscaling Projections of Climate Change in Sao Tome and Principe Islands, Africa. Clim. Dyn. 2020, 54, 4021–4042. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef]
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.A.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Shepherd, T.G. Atmospheric Circulation as a Source of Uncertainty in Climate Change Projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar] [CrossRef]
- Sooraj, K.P.; Annamalai, H.; Kumar, A.; Wang, H. A Comprehensive Assessment of CFS Seasonal Forecasts over the Tropics. Weather Forecast. 2012, 27, 3–27. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate Change Projections over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model at 5-Km Resolution. Theor. Appl. Climatol. 2018, 132, 663–682. [Google Scholar] [CrossRef]
- Oliveira, V.A.d.; de Mello, C.R.; Beskow, S.; Viola, M.R.; Srinivasan, R. Modeling the Effects of Climate Change on Hydrology and Sediment Load in a Headwater Basin in the Brazilian Cerrado Biome. Ecol. Eng. 2019, 133, 20–31. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Ministério Público Federal Brasil. Termo de Transação e Ajustamento de Conduta (TTAC). Available online: https://www.ibama.gov.br/phocadownload/emergenciasambientais/termo_de_transacao_e_de_ajustamento_de_conduta_completo.pdf (accessed on 2 April 2024).
- Cavalcante, R.B.L.; Nunes, S.; Viademonte, S.; Rodrigues, C.M.F.; Gomes, W.C.; Ferreira, J.d.S.; Pontes, P.R.M.; Giannini, T.C.; Awade, M.; de S. Miranda, L.; et al. Multicriteria Approach to Prioritize Forest Restoration Areas for Biodiversity Conservation in the Eastern Amazon. J. Environ. Manag. 2022, 318, 115590. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Santiami, E.; Rosa, M.; Pugliese, L.; Brancalion, P.H.S.; Rodrigues, R.R.; Metzger, J.P.; Calmon, M.; Scaramuzza, C.A.d.M.; Matsumoto, M.H.; et al. There Is Hope for Achieving Ambitious Atlantic Forest Restoration Commitments. Perspect. Ecol. Conserv. 2019, 17, 80–83. [Google Scholar] [CrossRef]
- Raj, A.D.; Kumar, S.; Sooryamol, K.R. Modelling Climate Change Impact on Soil Loss and Erosion Vulnerability in a Watershed of Shiwalik Himalayas. Catena 2022, 214, 106279. [Google Scholar] [CrossRef]
- Cecílio, R.A.; Pimentel, S.M.; Zanetti, S.S. Modeling the Influence of Forest Cover on Streamflows by Different Approaches. Catena 2019, 178, 49–58. [Google Scholar] [CrossRef]
- Pires, A.P.F.; Rezende, C.L.; Assad, E.D.; Loyola, R.; Scarano, F.R. Forest Restoration Can Increase the Rio Doce Watershed Resilience. Perspect. Ecol. Conserv. 2017, 15, 187–193. [Google Scholar] [CrossRef]
- Campos, J.A.; Silva, D.D.d.; Moreira, M.C.; Filho, F.C.M.d.M. Environmental Fragility and Land Use Capacity as Instruments of Environmental Planning, Caratinga River Basin, Brazil. Environ. Earth Sci. 2021, 80, 264. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Mello, C.R.; Beskow, S.; Viola, M.R. Rainfall Erosivity in South America: Current Patterns and Future Perspectives. Sci. Total Environ. 2020, 724, 138315. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.P.d.; Avanzi, J.C.; Viola, M.R.; Chou, S.C.; Acuña-Guzman, S.F.; Pontes, L.M.; Curi, N. Projections of Rainfall Erosivity in Climate Change Scenarios for the Largest Watershed within Brazilian Territory. Catena 2022, 213, 106225. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of Climate and Land Use Changes on the Hydrological and Erosion Processes of Two Contrasting Mediterranean Catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, A.B.; Costa-Neto, G.; Fritsche-Neto, R.; da Matta, D.H.; Fernandes, I.K. Enviromic Prediction Is Useful to Define the Limits of Climate Adaptation: A Case Study of Common Bean in Brazil. Field Crops Res. 2022, 286, 108628. [Google Scholar] [CrossRef]
- Babaeian, F.; Delavar, M.; Morid, S.; Srinivasan, R. Robust Climate Change Adaptation Pathways in Agricultural Water Management. Agric. Water Manag. 2021, 252, 106904. [Google Scholar] [CrossRef]
- Siqueira, P.P.; Oliveira, P.T.S.; Bressiani, D.; Meira Neto, A.A.; Rodrigues, D.B.B. Effects of Climate and Land Cover Changes on Water Availability in a Brazilian Cerrado Basin. J. Hydrol. Reg. Stud. 2021, 37, 100931. [Google Scholar] [CrossRef]
- Oliveira-Júnior, J.F.d.; Mendes, D.; Correia Filho, W.L.F.; Silva Junior, C.A.d.; Gois, G.d.; Jardim, A.M.d.R.F.; Silva, M.V.d.; Lyra, G.B.; Teodoro, P.E.; Pimentel, L.C.G.; et al. Fire Foci in South America: Impact and Causes, Fire Hazard and Future Scenarios. J. South Am. Earth Sci. 2021, 112, 103623. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Hou, X.; Yi, Y. Impacts on Watershed-Scale Runoff and Sediment Yield Resulting from Synergetic Changes in Climate and Vegetation. Catena 2019, 179, 129–138. [Google Scholar] [CrossRef]
- Shrestha, B.; Cochrane, T.A.; Caruso, B.S.; Arias, M.E.; Piman, T. Uncertainty in Flow and Sediment Projections Due to Future Climate Scenarios for the 3S Rivers in the Mekong Basin. J. Hydrol. 2016, 540, 1088–1104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, J.A.; da Silva, D.D.; Pires, G.F.; Filho, E.I.F.; Amorim, R.S.S.; de Menezes Filho, F.C.M.; de Melo Ribeiro, C.B.; Lorentz, J.F.; Aires, U.R.V. Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil. Water 2024, 16, 1459. https://doi.org/10.3390/w16101459
Campos JA, da Silva DD, Pires GF, Filho EIF, Amorim RSS, de Menezes Filho FCM, de Melo Ribeiro CB, Lorentz JF, Aires URV. Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil. Water. 2024; 16(10):1459. https://doi.org/10.3390/w16101459
Chicago/Turabian StyleCampos, Jasmine Alves, Demetrius David da Silva, Gabrielle Ferreira Pires, Elpídio Inácio Fernandes Filho, Ricardo Santos Silva Amorim, Frederico Carlos Martins de Menezes Filho, Celso Bandeira de Melo Ribeiro, Juliana Ferreira Lorentz, and Uilson Ricardo Venâncio Aires. 2024. "Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil" Water 16, no. 10: 1459. https://doi.org/10.3390/w16101459
APA StyleCampos, J. A., da Silva, D. D., Pires, G. F., Filho, E. I. F., Amorim, R. S. S., de Menezes Filho, F. C. M., de Melo Ribeiro, C. B., Lorentz, J. F., & Aires, U. R. V. (2024). Modeling Environmental Vulnerability for 2050 Considering Different Scenarios in the Doce River Basin, Brazil. Water, 16(10), 1459. https://doi.org/10.3390/w16101459