Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Biocoagulant Preparation and Characterization
2.3. Experimental Designs
2.4. Jar Tests
2.5. Water Physicochemical Characterization
2.6. Statistical Analysis and Process Optimization
3. Results and Discussion
3.1. Biocoagulant Properties
3.2. Optimal pH and Doses of the Prickly Pear Peel Waste Biocoagulant
3.3. Potential of Prickly Pear Peel Waste as a Biocoagulant Aid Mixed with Aluminum Sulfate
3.4. Potential of Prickly Pear Peel Waste Biocoagulant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The Sustainable Development Goals Report 2023. Available online: https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf (accessed on 24 December 2023).
- Suman, A.; Ahmad, T.; Ahmad, K. Dairy wastewater treatment using water treatment sludge as coagulant: A novel treatment approach. Environ. Dev. Sustain. 2018, 20, 1615–1625. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 80246. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Liu, M.; Ma, Z.; Fang, W.; Bi, J. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China. Water Res. 2022, 224, 119059. [Google Scholar] [CrossRef] [PubMed]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human Health Risks due to Exposure to Water Pollution: A Review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: A review of recent developments. RSC Adv. 2023, 13, 19335. [Google Scholar] [CrossRef] [PubMed]
- Bachand, P.A.M.; Bachand, S.M.; Lopus, S.E.; Heyvaert, A.; Werner, I. Treatment with chemical coagulants at different dosing levels changes ecotoxicity of stormwater from the Tahoe basin, California, USA. J. Environ. Sci. Health Part A 2010, 45, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Bin Omar, M.A.; Mohd Zin, N.S.B.; Mohd Salleh, S.N.A.B. A review on performance of chemical, natural and composite coagulant. Int. J. Eng. Technol. 2018, 7, 56–60. [Google Scholar]
- Koul, B.; Bhat, N.; Abubakar, M.; Mishra, M.; Arukha, A.P.; Yadav, D. Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals. Water 2022, 14, 3751. [Google Scholar] [CrossRef]
- Aragaw, T.; Bogale, F.M. Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: A review and future outlooks. Front. Environ. Sci. 2023, 11, 1142227. [Google Scholar] [CrossRef]
- Dos Santos, J.D.; Veit, M.T.; Juchen, P.T.; da Cunha Gonçalves, G.; Palacio, S.M.; Fagundes-Klen, M. Use of different coagulants for cassava processing wastewater treatment. J. Environ. Chem. Eng. 2018, 6, 1821–1827. [Google Scholar] [CrossRef]
- Aguilera-Flores, M.M.; Valdivia-Cabral, G.I.; Medellín-Castillo, N.A.; Ávila-Vázquez, V.; Sánchez-Mata, O.; García-Torres, J. Study on the Effectiveness of Two Biopolymer Coagulants on Turbidity and Chemical Oxygen Demand Removal in Urban Wastewater. Polymers 2023, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Gisonni, C.; Crispino, G.; Pirozzi, F.; Pizzi, A. Use of Aloe vera as an Organic Coagulant for Improving Drinking Water Quality. Water 2021, 13, 2024. [Google Scholar] [CrossRef]
- Jamshidi, A.; Rezaei, S.; Hassani, G.; Firoozi, Z.; Ghaffari, H.R.; Sadeghi, H. Coagulating potential of Iranian oak (Quercus branti) extract as a natural coagulant in turbidity removal from water. J. Environ. Health Sci. Eng. 2020, 18, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandham, K.; Karri, R.R. Preparation and characterization of Azadirachta indica A. Juss. plant based natural coagulant for the application of urban sewage treatment: Modelling and cost assessment. Environ. Technol. Innov. 2021, 23, 101733. [Google Scholar] [CrossRef]
- Dhivya, S.; Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V. Performance of natural coagulant extracted from Plantago ovata seed for the treatment of turbid water. Water Air Soil Pollut. 2017, 228, 423. [Google Scholar] [CrossRef]
- Asrafuzzaman, M.; Fakhruddin, A.N.M.; Hossain, M.A. Reduction of Turbidity of Water Using Locally Available Natural Coagulants. ISRN Microbiol. 2011, 2011, 632189. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.Z.; Ismail, N.; Yunus, R.; Ahamad, I.S.; Idris, A. A preliminary study on Jatropha curcas as coagulant in wastewater treatment. Environ. Technol. 2011, 32, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Banana pith as a natural coagulant for polluted river water. Ecol. Eng. 2016, 95, 699–705. [Google Scholar] [CrossRef]
- Mohd-Salleh, S.N.A.; Mohd-Zin, N.S.; Othman, N. A review of Wastewater Treatment using Natural Material and Its Potential as Aid and Composite Coagulant. Sains Malays. 2019, 48, 155–164. [Google Scholar] [CrossRef]
- Aguilera-Flores, M.M.; Medellín-Castillo, N.A.; Ávila-Vázquez, V.; González-García, R.; Cardona-Benavides, A.; Carranza-Álvarez, C. Evaluation of a biocoagulant from devilfish invasive species for the removal of contaminants in ceramic industry wastewater. Sci. Rep. 2022, 12, 9917. [Google Scholar] [CrossRef] [PubMed]
- Medellín-Castillo, N.A.; Aguilera-Flores, M.M.; Ávila-Vázquez, V.; González-García, R.; García-Torres, J. Evaluation of the Devilfish (Pterygoplichthys spp.) Natural Coagulant as a Treatment for the Removal of Turbidity in Fish Farm Wastewater. Water Air Soil. Pollut. 2022, 233, 167. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches, A.; Lara, C.; Cifuentes, R.; Gómez, A. Use of Opuntia ficus-indica fruit peel as a novel source of mucilage with coagulant physicochemical/molecular characteristics. Polymers 2022, 14, 3832. [Google Scholar] [CrossRef]
- Fideicomiso de Riesgo Compartido. La TUNA, una fruta muy mexicana. Available online: https://www.gob.mx/firco/articulos/la-tuna-una-fruta-muy-mexicana?idiom=es (accessed on 1 December 2023).
- Cerezal, P.; Duarte, G. Use of Skin in the Elaboration of Concentrated Products of Cactus Pear (Opuntia ficus-indica (L.) Miller). J. Prof. Assoc. Cactus Dev. 2005, 7, 61–83. [Google Scholar]
- Pimienta-Barrios, E. Prickly pear (Opuntia spp.): A valuable fruit crop for the semi-arid lands of Mexico. J. Arid. Environ. 1994, 28, 1–11. [Google Scholar] [CrossRef]
- Secretaría de Comercio y Fomento Industrial. Norma Mexicana NMX-AA-003-1980 Aguas Residuales—Muestreo. Available online: https://www.gob.mx/cms/uploads/attachment/file/166762/NMX-AA-003-1980.pdf (accessed on 1 December 2023).
- World Health Organization. Guidelines for Drinking-Water Quality. Available online: https://iris.who.int/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence=1 (accessed on 25 December 2023).
- United States Environmental Protection Agency. Water: Monitoring and Assessment, 5.9 Conductivity. Available online: https://archive.epa.gov/water/archive/web/html/vms59.html (accessed on 24 December 2023).
- Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-001-SEMARNAT-2021, Que Establece Los Límites Permisibles de Contaminantes en Las Descargas de Aguas Residuales en Cuerpos Receptores Propiedad de la Nación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022 (accessed on 25 December 2023).
- Sáenz, C.; Berger, H.; Corrales-García, J.; Galletti, L.; García de Cortázar, V.; Higuera, I.; Mondragón, C.; Rodríguez-Félix, A.; Sepúlveda, E.; Varnero, M.T. FAO Agricultural Services Bulletin 162, Agroindustrial Use of Nopal. Available online: https://repositorio.uchile.cl/bitstream/handle/2250/120301/Utilizacion-agroindustrial-del-nopal.pdf?sequence=1 (accessed on 22 September 2023).
- Secretaría de Economía. Norma Mexicana NMX-AA-034-SCFI-2015 Análisis de Agua—Medición de Sólidos y Sales Disueltas en Aguas Naturales, Residuales y Residuales Tratadas—Método de Prueba. Available online: https://www.gob.mx/cms/uploads/attachment/file/166146/nmx-aa-034-scfi-2015.pdf (accessed on 22 September 2023).
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principios de Análisis Instrumental, 6th ed.; Cengage Learning: Ciudad de Mexico, Mexico, 2008; pp. 461–463. [Google Scholar]
- Chang, R. Fisicoquímica, 3rd ed.; McGraw-Hill/Interamericana: Ciudad de Mexico, Mexico, 2008; pp. 724–725. [Google Scholar]
- Peláez, A.; Velázquez, I.; Herrera, A.; García, J. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization. J. Environ. Manag. 2013, 130, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Bernardino, A.; Montañez, J.; Conde, E.; Negrete, M.; Teniente, G.; Vargas, E.; Juárez, J.; Acosta, G.; González, L. Spectroscopic and structural analyses of Opuntia Robusta mucilage and its potential as an edible coating. Coatings 2018, 8, 466. [Google Scholar] [CrossRef]
- Gopi, D.; Kanimozhi, K.; Kavitha, L. Opuntia ficus-indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2015, 141, 135–143. [Google Scholar] [CrossRef]
- Lodhi, M.S.; Shaheen, A.; Khan, M.T.; Shafiq, M.I.; Samra, Z.Q.; Wei, D.Q. A novel method of affinity purification and characterization of polygalacturonase of Aspergillus flavus by galacturonic acid engineered magnetic nanoparticle. Food Chem. 2022, 372, 131317. [Google Scholar] [CrossRef]
- Teng, H.; He, Z.; Li, X.; Shen, W.; Wang, J.; Zhao, D.; Sun, H.; Xu, X.; Li, C.; Zha, X. Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J. Mol. Struct. 2022, 1264, 133309. [Google Scholar] [CrossRef]
- Gómez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Méndez, D.A.; Martínez-Abad, A.; Martínez-Sanz, M.; López-Rubio, A.; Fabra, M.J. Tailoring structural, rheological and gelling properties of watermelon rind pectin by enzymatic treatments. Food Hydrocoll. 2023, 135, 108119. [Google Scholar] [CrossRef]
- Choudhary, M.; Ray, M.B.; Neogi, S. Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Sep. Purif. Technol. 2019, 209, 714–724. [Google Scholar] [CrossRef]
- Santos, J.D.; Espeleta, A.F.; Branco, A.; de Assis, S.A. Aqueous extraction of pectin from sisal waste. Carbohydr. Polym. 2013, 92, 1997–2001. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, K.; Zhang, X.; Li, L.; Zhang, H.; Zhou, L.; Liang, J.; Li, X. In vitro binding capacities, physicochemical properties and structural characteristics of polysaccharides fractionated from Passiflora edulis peel. Food Biosci. 2022, 50, 102016. [Google Scholar] [CrossRef]
- Zhao, X.; Qiao, L.; Wu, A.M. Effective extraction of Arabidopsis adherent seed mucilage by ultrasonic treatment. Sci. Rep. 2017, 7, 40672. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.M.; Wang, J.F.; Zha, X.Q.; Pan, L.H.; Zhang, H.L.; Luo, J.P. Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish. Carbohydr. Polym. 2017, 159, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Ghori, M.U.; Mohammad, M.A.; Rudrangi, S.R.; Fleming, L.T.; Merchant, H.A.; Smith, A.M.; Conway, B.R. Impact of purification on physicochemical, surface and functional properties of okra biopolymer. Food Hydrocoll. 2017, 71, 311–320. [Google Scholar] [CrossRef]
- Mirbahoush, S.M.; Chaibakhsh, N.; Moradi-Shoeili, Z. Highly efficient removal of surfactant from industrial effluents using flaxseed mucilage in coagulation/photo-Fenton oxidation process. Chemosphere 2019, 231, 51–59. [Google Scholar] [CrossRef]
- Kristianto, H. The potency of Indonesia native plants as natural coagulant: A mini review. Water Conserv. Sci. Eng. 2017, 2, 51–60. [Google Scholar] [CrossRef]
- Yin, C. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 2010, 45, 1437–1444. [Google Scholar] [CrossRef]
- Choy, S.; Prasad, N.; Wu, Y.; Raghunandan, E.; Ramanan, N. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. Environ. Sci. 2014, 26, 2178–2189. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Unuabonah, E.I.; Amuda, O.S.; Kolawole, O.M. Mechanistic insight into the coagulation efficiency of polysaccharide-based coagulants. In Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment, 1st ed.; Navard, P., Antipolis, S., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 13–35. [Google Scholar]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. Int. J. Environ. Res. Public. Health 2020, 17, 9312. [Google Scholar] [CrossRef]
- Kursun, I. Determination of flocculation and adsorption-desorption characteristics of Na-feldspar concentrate in the presence of different polymers. Physicochem. Probl. Miner. Process 2010, 44, 127–142. [Google Scholar]
- Vaca, M.; López, R.; Flores, J.; Terres, H.; Lizardi, A.; Rojas, N. Aplicación del Nopal (Opuntia ficus indica) como coagulante primario para aguas residuales. Rev. AIDIS Ing. Cienc. Ambient. 2014, 7, 210–216. [Google Scholar]
- Villabona, A.; Paz, I.; Martínez, J. Caracterización de Opuntia ficus-indica para su uso como coagulante natural. Rev. Colomb. Biotecnol. 2013, 15, 137–144. [Google Scholar]
- Nharingo, T.; Zivurawa, M.T.; Guyo, U. Exploring the use of cactus Opuntia ficus-indica in the biocoagulation-flocculation of Pb (II) ions from wastewaters. Int. J. Environ. Sci. Technol. 2015, 12, 3791–3802. [Google Scholar] [CrossRef]
- Yongabi, K. Biocoagulants for Water and Wastewater Purification: A Review. Int. Rev. Chem. Eng. 2010, 2, 444–458. [Google Scholar]
- Marichamy, M.K.; Kumaraguru, A.; Jonna, N. Particle size distribution modeling and kinetic study for coagulation treatment of tannery industry wastewater at response surface optimized condition. J. Cleaner Prod. 2021, 297, 126657. [Google Scholar] [CrossRef]
- Altaher, H.; ElQada, E.; Omar, W. Pretreatment of Wastewater Streams from Petroleum/Petrochemical Industries Using Coagulation. Adv. Chem. Eng. Sci. 2011, 4, 245–251. [Google Scholar] [CrossRef]
- Gandiwa, B.I.; Moyo, L.B.; Ncube, S.; Mamvura, T.A.; Mguni, L.L.; Hlabangana, N. Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment: (Moringa Oleifera-Cactus Opuntia-alum blend). S. Afr. J. Chem. Eng. 2020, 34, 158–164. [Google Scholar] [CrossRef]
- Marobhe, N.; Renman, G.; Jackson, M. Investigation on the performance of local plant materials for coagulation of turbid river water. J. Inst. Eng. Tanzan. 2007, 8, 50–62. [Google Scholar]
- Osode, A.N.; Okoh, A.I. Impact of discharged wastewater final effluent on the physicochemical qualities of a receiving watershed in a suburban community of the Eastern Cape Province. CLEAN Soil Air Water 2009, 37, 938–944. [Google Scholar] [CrossRef]
- Carpinteyro-Urban, S.; Vaca, M.; Torres, L.G. Can vegetal biopolymers work as coagulant-flocculant aids in the treatment of high-load cosmetic industrial wastewaters? Water Air Soil Pollut. 2012, 223, 4925–4936. [Google Scholar] [CrossRef]
- Ayangunna, R.R.; Giwa, S.O.; Giwa, A. Coagulation-flocculation treatment of industrial wastewater using tamarind seed powder. Int. J. Chemtech Res. 2016, 9, 771–780. [Google Scholar]
- Ratnayaka, D.D.; Brandt, M.J.; Johnson, K.M. Storage, clarification and chemical treatment. Water Supply 2009, 7, 267–314. [Google Scholar]
- Yonge, D.A. Comparison of Aluminum and Iron-Based Coagulants for Treatment of Surface Water in Sarasota County, Florida. Available online: https://stars.library.ucf.edu/etd/2435 (accessed on 6 January 2024).
- Ang, T.H.; Kiatkittipong, K.; Kiatkittipong, W.; Chua, S.C.; Lim, J.W.; Show, P.L.; Bashir, M.J.K.; Ho, Y.C. Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. Water 2020, 12, 1388. [Google Scholar] [CrossRef]
Physicochemical Parameter | Estimated Value 1 | Estimated Value 2 | Reference Value | Unit |
---|---|---|---|---|
Temperature | 13 ± 0.50 | 14 ± 0.50 | <25 3 | °C |
Electrical conductivity (EC) | 2.82 ± 0.09 | 2.36 ± 0.11 | 0.15–0.50 4 | mS/cm |
pH | 7.69 ± 0.01 | 7.77 ± 0.02 | 6.5–8.5 3 | - |
Turbidity | 84.92 ± 0.00 | 45.39 ± 0.01 | <5 3 | NTU |
Total Suspended Solids (TSS) | 156.60 ± 1.40 | 150.85 ± 1.12 | 20–140 5 | mg/L |
Trial Number | pH | Doses (mg/L) |
---|---|---|
1 | 4.44 | 108.58 |
2 | 6.56 | 108.58 |
3 | 4.44 | 391.42 |
4 | 6.56 | 391.42 |
5 | 4.00 | 250.00 |
6 | 7.70 | 250.00 |
7 | 5.50 | 50.00 |
8 | 5.50 | 450.00 |
9 | 5.50 | 250.00 |
10 | 5.50 | 250.00 |
11 | 5.50 | 250.00 |
12 | 5.50 | 250.00 |
13 | 5.50 | 250.00 |
Trial Number | Biocoagulant Proportion | Aluminum Sulfate Proportion |
---|---|---|
1 | 1.00 | 0.00 |
2 | 0.67 | 0.33 |
3 | 0.33 | 0.67 |
4 | 0.00 | 1.00 |
5 | 0.75 | 0.25 |
6 | 0.25 | 0.75 |
7 | 0.50 | 0.50 |
8 | 0.00 | 1.00 |
9 | 1.00 | 0.00 |
10 | 0.00 | 1.00 |
Trial Number | pH | Doses (mg/L) | ΔpH (pHfinal-initial) | ΔEC (ECfinal-initial) | ΔTSS (TSSfinal-initial) | Turbidity Removal (%) |
---|---|---|---|---|---|---|
1 | 4.44 | 108.58 | 0.37 | 0.48 | −79.94 | 67.17 |
2 | 6.56 | 108.58 | 0.16 | 0.19 | −93.27 | 24.24 |
3 | 4.44 | 391.42 | 0.40 | −0.11 | −143.27 | 13.64 |
4 | 6.56 | 391.42 | 0.31 | −0.10 | −43.27 | 26.42 |
5 | 4.00 | 250.00 | 0.40 | 0.72 | −144.94 | 38.86 |
6 | 7.70 | 250.00 | 0.31 | −0.30 | −141.60 | 51.70 |
7 | 5.50 | 50.00 | 0.33 | 0.50 | −66.60 | 34.32 |
8 | 5.50 | 450.00 | 0.40 | 0.26 | −89.94 | 18.95 |
9 | 5.50 | 250.00 | 0.40 | −0.11 | −109.94 | 18.26 |
10 | 5.50 | 250.00 | 0.25 | 0.30 | −66.60 | 39.13 |
11 | 5.50 | 250.00 | 0.35 | 0.38 | −51.60 | 24.77 |
12 | 5.50 | 250.00 | 0.38 | 0.05 | −119.94 | 12.19 |
13 | 5.50 | 250.00 | 0.33 | 0.13 | −68.27 | 17.83 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 2434.28 | 4 | 608.57 | 7.33 | 0.0087 | Significant |
pH | 145.91 | 1 | 145.91 | 1.76 | 0.2214 | Not significant |
Doses | 667.46 | 1 | 667.46 | 8.04 | 0.0219 | Significant |
pH × Doses | 775.56 | 1 | 775.56 | 9.35 | 0.0156 | Significant |
pH2 | 990.67 | 1 | 990.67 | 11.94 | 0.0086 | Significant |
Residual | 663.83 | 8 | 82.98 | |||
Lack of fit | 235.88 | 4 | 58.97 | 0.55 | 0.7109 | Not significant |
Pure Error | 427.94 | 4 | 106.99 | |||
Total | 3090.11 | 12 |
Trial Number | Biocoagulant Proportion | Aluminum Sulfate Proportion | ΔpH (pHfinal-initial) | ΔEC (ECfinal-initial) | ΔTSS (TSSfinal-initial) | Turbidity Removal (%) |
---|---|---|---|---|---|---|
1 | 1.00 | 0.00 | 0.09 | 0.39 | −150.85 | 51.56 |
2 | 0.67 | 0.33 | −0.44 | 0.15 | −150.85 | 0.00 |
3 | 0.33 | 0.67 | −0.61 | 0.33 | −95.85 | 55.15 |
4 | 0.00 | 1.00 | −1.19 | 0.52 | −139.19 | 93.82 |
5 | 0.75 | 0.25 | −0.29 | 0.00 | −150.85 | 0.00 |
6 | 0.25 | 0.75 | −0.74 | 0.38 | −150.85 | 62.75 |
7 | 0.50 | 0.50 | −0.57 | 0.26 | −42.52 | 11.83 |
8 | 0.00 | 1.00 | −1.22 | 0.47 | −150.85 | 99.99 |
9 | 1.00 | 0.00 | 0.08 | 0.37 | −105.85 | 49.12 |
10 | 0.00 | 1.00 | −1.11 | 0.56 | −147.52 | 99.99 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 13,350.47 | 3 | 4450.16 | 229.89 | <0.0001 | Significant |
Linear Mixture | 6420.07 | 1 | 6420.07 | 331.65 | <0.0001 | Significant |
AB 1 | 5873.16 | 1 | 5873.16 | 303.40 | <0.0001 | Significant |
AB (A − B) 1 | 1322.70 | 1 | 1322.70 | 68.33 | 0.0002 | |
Residual | 116.15 | 6 | 19.36 | |||
Lack of fit | 83.07 | 3 | 27.69 | 2.51 | 0.2347 | Not significant |
Pure Error | 33.08 | 3 | 11.03 | |||
Cor Total | 13,466.62 | 9 | ||||
Model | 13,350.47 | 3 | 4450.16 | 229.89 | <0.0001 | Significant |
Biocoagulant Source | Water Type | Biocoagulant Doses (mg/L) | Water pH | Turbidity Removal (%) | Reference |
---|---|---|---|---|---|
Aloe vera | Drinking water | 10 | 6.0 | 53.5 | [14] |
Azadirachta indica | Urban wastewater | 4000 | 4.5 | 73.0 | [16] |
Banana pith | River water | 100 | 4.0 | 98.5 | [20] |
Cicer arietinum seeds | Synthetic turbid water | 100 | 7.5 | 96.0 | [18] |
Dolichos lablab seeds | Synthetic turbid water | 100 | 7.5 | 89.0 | [18] |
Jatropha curcas seeds | Kaolin synthetic water | 120 | 3.0 | >96.0 | [19] |
Moringa oleifera seeds | Synthetic turbid water | 100 | 7.5 | 94.0 | [18] |
Opuntia mucilage | Cosmetic wastewater | 150 | 5.6 | 50.0 | [65] |
Opuntia robusta mucilage | Urban wastewater | 10 | 7.7 | 68.7 | [13] |
Plantago ovata seeds | Turbid water | 50 | 10.0 | >80.0 | [17] |
Tamarind seeds | Detergent wastewater | 400 | 7.3 | 98.0 | [66] |
Uncaria tomentosa | Urban wastewater | 200 | 7.7 | 17.2 | [13] |
Prickly pear peel waste | Domestic wastewater | 100 | 4.0 | 76.1 | This study |
Prickly pear peel waste | Domestic wastewater | 250 | 7.8 | 51.7 | This study |
30% prickly pear peel waste and 70% aluminum sulfate | Domestic wastewater | 250 | 7.8 | 58.2 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera Flores, M.M.; Robles Miranda, O.E.; Medellín Castillo, N.A.; Ávila Vázquez, V.; Sánchez Mata, O.; Vázquez Bañuelos, R.; Chávez Murillo, C.E. Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment. Water 2024, 16, 1444. https://doi.org/10.3390/w16101444
Aguilera Flores MM, Robles Miranda OE, Medellín Castillo NA, Ávila Vázquez V, Sánchez Mata O, Vázquez Bañuelos R, Chávez Murillo CE. Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment. Water. 2024; 16(10):1444. https://doi.org/10.3390/w16101444
Chicago/Turabian StyleAguilera Flores, Miguel Mauricio, Oswaldo Emmanuel Robles Miranda, Nahum Andrés Medellín Castillo, Verónica Ávila Vázquez, Omar Sánchez Mata, Rosendo Vázquez Bañuelos, and Carolina Estefanía Chávez Murillo. 2024. "Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment" Water 16, no. 10: 1444. https://doi.org/10.3390/w16101444
APA StyleAguilera Flores, M. M., Robles Miranda, O. E., Medellín Castillo, N. A., Ávila Vázquez, V., Sánchez Mata, O., Vázquez Bañuelos, R., & Chávez Murillo, C. E. (2024). Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment. Water, 16(10), 1444. https://doi.org/10.3390/w16101444