Slope Gradient Effects on Sediment Yield of Different Land Cover and Soil Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model Description
2.3. SWAT Model Implementation
2.4. Assessment of Model Accuracy
2.5. Identifying the Principal Factor for Sediment Yield and Slope Gradient Effects
3. Results
3.1. Parameterization and Model Performance Assessment
3.2. Annual Variations in Sediment Output
3.3. Spatial Variations of Sediment Yield
3.4. Impact of Slope, Soil Type, and Land Cover on Sediment Yield Variations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, M.J.; Morgan, R.P.C. Soil Erosion; Wiley: New York, NY, USA; Chichester, UK, 1980. [Google Scholar]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2019, 3, 51–55. [Google Scholar] [CrossRef]
- Barten, P.K.; Ernst, C.E. Land conservation and watershed management for source protection. J. Am. Water Works Assoc. 2004, 96, 121–135. [Google Scholar] [CrossRef]
- Marden, M. Effectiveness of reforestation in erosion mitigation and implications for future sediment yields, east coast catchments, New Zealand: A review. N. Z. Geogr. 2012, 68, 24–35. [Google Scholar] [CrossRef]
- Webb, A.A.; Dragovich, D.; Jamshidi, R. Temporary increases in suspended sediment yields following selective eucalypt forest harvesting. For. Ecol. Manag. 2012, 283, 96–105. [Google Scholar] [CrossRef]
- Sun, W.; Niu, X.; Wang, Y.; Yin, X.; Teng, H.; Gao, P.; Liu, A. Effects of forest age on soil erosion and nutrient loss in Dianchi watershed, China. Environ. Monit. Assess. 2023, 195, 340. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Onodera, S.; Saito, M.; Shimizu, Y. Assessment of nitrogen budget in detailed spatial pattern using high precision modeling approach with constructed accurate agricultural behavior. Sci. Total Environ. 2024, 912, 169631. [Google Scholar] [CrossRef]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; Thames, J.L. Hydrology and the Management of Watersheds; Iowa State University Press: Ames, IA, USA, 1991. [Google Scholar]
- Hancock, G.R.; Hugo, J.; Webb, A.A.; Turner, L. Sediment transport in steep forested catchments—An assessment of scale and disturbance. J. Hydrol. 2017, 547, 613–622. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Defersha, M.B.; Melesse, A.M. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena 2012, 90, 47–52. [Google Scholar] [CrossRef]
- Igwe, P.U.; Onuigbo, A.A.; Chinedu, O.C.; Ezeaku, I.I.; Muoneke, M.M. Soil erosion: A review of models and applications. Int. J. Adv. Eng. Res. Sci. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Pijl, A.; Reuter, L.E.H.; Quarella, E.; Vogel, T.A.; Tarolli, P. GIS-based soil erosion modeling under various steep-slope vineyard practices. Catena 2020, 193, 104604. [Google Scholar] [CrossRef]
- Ketema, A.; Dwarakish, G.S. Water erosion assessment methods: A review. ISH J. Hydraul. Eng. 2021, 27, 434–441. [Google Scholar] [CrossRef]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Schmidt, E.; Chinowsky, P.; Robinson, S.; Strzepek, K. Determinants and impact of sustainable land management (SLM) investments: A systems evaluation in the Blue Nile Basin, Ethiopia. Agric. Econ. 2017, 48, 613–627. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef] [PubMed]
- Musyoka, F.K.; Strauss, P.; Zhao, G.; Strohmeier, S.; Mutua, B.M.; Klik, A. Evaluating the impacts of sustainable land management practices on water quality in an agricultural catchment in Lower Austria using SWAT. Environ. Monit. Assess. 2023, 195, 512. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Onodera, S.; Saito, M. Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period. Environ. Res. Lett. 2022, 17, 014010. [Google Scholar] [CrossRef]
- Meaurio, M.; Zabaleta, A.; Srinivasan, R.; Sauvage, S.; Sánchez-Pérez, J.M.; Lechuga-Crespo, J.L.; Antiguedad, I. Long-term and event-scale sub-daily streamflow and sediment simulation in a small forested catchment. Hydrol. Sci. J. 2021, 66, 862–873. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Adorjani, A.; Mihalache, A.L.; Davidescu, A.A.; Davidescu, Ș.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Sáez, P.; Martínez-España, R.; Casalí, J.; Pérez-Sánchez, J.; Senent-Aparicio, J. A comparison of performance of SWAT and machine learning models for predicting sediment load in a forested Basin, Northern Spain. Catena 2022, 212, 105953. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Ishida, T. Assessment of long-term phosphorus budget changes influenced by anthropogenic factors in a coastal catchment of Osaka Bay. Sci. Total Environ. 2022, 843, 156833. [Google Scholar] [CrossRef] [PubMed]
- Serrao, E.A.O.; Silva, M.T.; Ferreira, T.R.; Ataide, L.C.P.; Santos, C.A.; Lima, A.M.M.; Silva, V.P.R.; Sousa, F.A.S.; Gomes, D.J.C. Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. Int. J. Sediment Res. 2022, 37, 54–69. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Bi, M.; Wang, X.; Lu, Y.; Fan, Z. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Appl. Geogr. 2018, 90, 200–213. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A review of SWAT studies in Southeast Asia: Applications, challenges and future directions. Water 2019, 11, 914. [Google Scholar] [CrossRef]
- Yoshida, K. Estimation of inundation area and depth distribution for the Takahashi River and Hijikawa River flooding associated with the heavy rain event of July 2018. Int. J. Remote Sens. 2018, 38, 422–425. (In Japanese) [Google Scholar]
- Amano, T.; Asai, K.; Shirozu, H.; Takabu, A.; Yamamoto, T. Influence of sediment discharge and driftwoods on Noro-gawa dam and river flooding during heavy rain in July 2018. J. Jpn. Soc. Civ. 2021, 9, 175–183. [Google Scholar] [CrossRef]
- Nihei, Y.; Shinohara, A.; Ohta, K.; Maeno, S.; Akoh, R.; Akamatsu, Y.; Komuro, T.; Kataoka, T.; Onomura, S.; Kaneko, R. Flooding along oda river due to the western Japan heavy rain in 2018. J. Disaster Res. 2019, 14, 874–885. [Google Scholar] [CrossRef]
- Shakti, P.C.; Kamimera, H.; Misumi, R. Inundation Analysis of the Oda River Basin in Japan during the Flood Event of 6-7 July 2018 Utilizing Local and Global Hydrographic Data. Water 2020, 12, 1005. [Google Scholar] [CrossRef]
- Nishimura, S.; Takeshita, Y.; Nishiyama, S.; Suzuki, S.; Shibata, T.; Shuku, T.; Komatsu, M.; Kim, B. Disaster report of 2018 July heavy rain for geo-structures and slopes in Okayama. Soils Found. 2020, 60, 300–314. [Google Scholar] [CrossRef]
- Nohara, D.; Takemon, Y.; Sumi, T. Real-time flood management and preparedness: Lessons from floods across the Western Japan in 2018. In Advances in Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 287–304. [Google Scholar] [CrossRef]
- Shakti, P.C.; Kamimera, H. Flooding in Oda river basin during torrential rainfall event in July 2018. Eng. J. 2019, 23, 477–485. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Shimizu, Y.; Iwata, T. Effects of forest growth in different vegetation communities on forest catchment water balance. Sci. Total Environ. 2022, 809, 151159. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output Documentation 2012; Texas Water Resources Institute Technical Report No. 439; Texas A&M University System: College Station, TX, USA, 2012. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool, Theoretical Documentation, Version 2000; TexasWater Resources Institute, Texas A&M University: College Station, TX, USA, 2002. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Okuda, N.; Okubo, T. Estimation of phosphorus transport influenced by climate change in a rice paddy catchment using SWAT. Int. J. Environ. Res. 2021, 15, 759–772. [Google Scholar] [CrossRef]
- Leta, O.T.; van Griensven, A.; Bauwens, W. Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment. J. Hydrol. Eng. 2017, 22, 05016036. [Google Scholar] [CrossRef]
- de Bressiani, D.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Bio. Eng. 2015, 8, 9–35. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Lee, T.; Srinivasan, R.; Arnold, J.G.; Srinivasan, R.; Member, A. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.D.; Verma, M.K. An assessment of ongoing developments in water resources management incorporating SWAT Model: Overview and perspectives. Nat. Environ. Pollut. Technol. 2022, 21, 1963–1970. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Ashine, E.T.; Tadesse Bedane, M. Most Sensitive Parameters of Soil and Water Assessment Tool (SWAT) Hydrological Model: A Review. AOMB 2022, 3, 000558. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, J.; Su, C.; Cui, Y.; Zhang, Q. The application of improved SWAT model to hydrological cycle study in karst area of south China. Sustainability 2019, 11, 5024. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Shimizu, Y. Long-term variations in water balance by increase in percent imperviousness of urban regions. J. Hydrol. 2021, 602, 126767. [Google Scholar] [CrossRef]
- Razafindrabe, B.H.N.; He, B.; Inoue, S.; Ezaki, T.; Shaw, R. The role of forest stand density in controlling soil erosion: Implications to sediment-related disasters in Japan. Environ. Monit. Assess. 2010, 160, 337–354. [Google Scholar] [CrossRef]
- Shinohara, Y.; Misumi, Y.; Kubota, T.; Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. Catena 2019, 172, 451–460. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, H.; Zhao, H.; Liu, L.; Ouyang, Z. Species compositional, structural and functional diversity exerts different effects on soil erosion caused by increased rainfall intensity in Chinese tropical forests. Plant Soil 2021, 465, 97–108. [Google Scholar] [CrossRef]
- Miyata, S.; Kosugi, K.; Gomi, T.; Mizuyama, T. Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water. Resour. Res. 2009, 45, W06402. [Google Scholar] [CrossRef]
- Parwada, C.; Van Tol, J. Soil properties influencing erodibility of soils in the Ntabelanga area, Eastern Cape Province, South Africa. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 67–76. [Google Scholar] [CrossRef]
Stations | Hiwa (Streamflow) | Yagata (Streamflow) | Sakazu (Streamflow) | Sakazu (Sediment) | ||||
---|---|---|---|---|---|---|---|---|
Index | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation |
NSE | 0.68 | 0.7 | 0.61 | 0.56 | 0.7 | 0.65 | 0.49 | 0.46 |
R2 | 0.75 | 0.73 | 0.66 | 0.66 | 0.73 | 0.68 | 0.5 | 0.46 |
PBIAS | 14.7 | 9.2 | 14.8 | 9 | −8 | −14.8 | 13.3 | −2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nang, Y.W.; Onodera, S.-i.; Wang, K.; Shimizu, Y.; Saito, M. Slope Gradient Effects on Sediment Yield of Different Land Cover and Soil Types. Water 2024, 16, 1419. https://doi.org/10.3390/w16101419
Nang YW, Onodera S-i, Wang K, Shimizu Y, Saito M. Slope Gradient Effects on Sediment Yield of Different Land Cover and Soil Types. Water. 2024; 16(10):1419. https://doi.org/10.3390/w16101419
Chicago/Turabian StyleNang, Yu War, Shin-ichi Onodera, Kunyang Wang, Yuta Shimizu, and Mitsuyo Saito. 2024. "Slope Gradient Effects on Sediment Yield of Different Land Cover and Soil Types" Water 16, no. 10: 1419. https://doi.org/10.3390/w16101419
APA StyleNang, Y. W., Onodera, S. -i., Wang, K., Shimizu, Y., & Saito, M. (2024). Slope Gradient Effects on Sediment Yield of Different Land Cover and Soil Types. Water, 16(10), 1419. https://doi.org/10.3390/w16101419