Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling
Abstract
:1. Introduction
2. Methodology
3. Flood Early Warning Systems
3.1. FEWSs Developed at Regional (River Basin) Level: From Basic to Advanced Systems
3.2. FEWSs Developed at the Country Level
3.3. FEWSs Developed on a Continental and Global Scale
3.4. FEWSs Focused on Flash Floods
4. Advancements in FEWSs
- Accurate historical and real-time meteorological and hydrologic measurements: to perform historical analyses that contribute to a better understanding of flood development, robust calibration, and validation of the implemented numerical models, as well as to enable the adequate establishment of the initial conditions for the forecasts.
- Semi-distributed hydrologic models: to transform the atmospheric forecasts into river flow forecasts throughout the basin under consideration.
- Distributed hydraulic models: to obtain flood maps in vulnerable areas associated with the forecasted river flows.
- Ensemble forecasts: different atmospheric forecasts should be considered to address the uncertainty inherent in predictions. Additionally, hydrological ensembles, constructed by applying different hydrological approaches, are also encouraged.
- Adequate dissemination, communication, education, and community preparedness to respond: to translate the technical aspects of the FEWS into effective flood mitigation.
5. Conclusions
- According to the technological implementation of these systems, most of the analyzed FEWSs are based on a similar scheme: starting from observed data and precipitation forecasts, hydrologic and hydraulic models are applied to model runoff processes and predict flooded areas in advance. It is important to note that some FEWSs do not include the hydraulic component, mainly due to the size of the area under consideration and the computational cost, and flood maps are not provided. In these cases, some of the reviewed FEWSs use static flood maps corresponding to different flow thresholds (return periods), which can be useful to approximate the area expected to be flooded by the forecasted river flows. This review also indicates that some of the FEWSs use approaches based on flood threshold exceedance to determine the flood possibility and its intensity, especially when there are no hydraulic models implemented. These indices are usually obtained from the analysis of historical river discharge information.
- The most advanced systems usually require a large amount of data to function properly, but some approaches also demonstrate that the systems can work properly even with limited input data, helping in flood mitigation.
- The prediction of floods based on the ensemble of precipitation forecasts appears to be the best approach, as it can provide very useful additional information related to the probability of the occurrence of an event, thus reducing the uncertainty inherent to the forecasts. In this sense, the use of different hydrological approaches (hydrological ensemble) can also contribute to limiting the uncertainty.
- This literature review is mainly focused on the technical aspects of the FEWSs. This emphasis is due to the fact that most existing FEWSs have specifically developed this part, as the components related to communication and preparedness are more challenging to address due to the requirements of involving other stakeholders to handle them adequately. This is certainly an important gap in most of the FEWSs since the communication of risk and corresponding response planning are key factors to reduce the negative effects of floods and ensure the effective real application of these systems. Therefore, more in-depth research in these fields is required, although it is important to remark that, increasingly, new FEWSs developments are paying more attention to these FEWSs components.
- The lack of detailed data is one of the main reasons why wide areas of the world lack this tool. However, this paper shows some examples of FEWSs developed in areas with a low level of data availability. While these systems usually offer less detailed predictions than more advanced FEWSs, they can properly forecast floods, thus helping in mitigating the negative effects of these events. It is encouraged to increase FEWSs coverage, especially in areas where these systems are scarce. In this sense, efforts to improve data availability are imperative, not only to facilitate the development of these systems in such areas but also to conduct rigorous calibration and validation of the models and approaches implemented, which is essential to enhance the accuracy and robustness of flood forecasts.
- According to this literature review, a complete FEWS maximizing flood mitigation must incorporate the following components: accurate historical and real-time meteorological and hydrologic measurements; ensemble forecasts; a semi-distributed hydrologic model to obtain river flow forecasts; a distributed hydraulic model to generate the corresponding flooded areas; and robust and effective dissemination, communication, education, and community response preparedness components.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnell, N.W.; Gosling, S.N. The Impacts of Climate Change on River Flood Risk at the Global Scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; et al. Anthropogenic Intensification of Short-Duration Rainfall Extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Aalbers, E.E.; Larsen, J.R.; Trancoso, R.; Woods, R.A. Recent Changes in Extreme Floods across Multiple Continents. Environ. Res. Lett. 2017, 12, 114035. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Koks, E.E.; van Ginkel, K.C.H.; van Marle, M.J.E.; Lemnitzer, A. Brief Communication: Critical Infrastructure Impacts of the 2021 Mid-July Western European Flood Event. Nat. Hazards Earth Syst. Sci. 2022, 22, 3831–3838. [Google Scholar] [CrossRef]
- Aponte, H.; Torrejón-Magallanes, J. Lluvias, Inundaciones y Su Impacto En La Población Peruana: ¿Hemos Aprendido La Lección? South Sustain. 2023, 4, e075. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Newsome, T.M.; Law, B.E.; Marques, L.; Lenton, T.M.; Xu, C.; Huq, S.; et al. The 2023 State of the Climate Report: Entering Uncharted Territory. BioScience 2023, 73, 841–850. [Google Scholar] [CrossRef]
- Jongman, B. Effective Adaptation to Rising Flood Risk. Nat. Commun. 2018, 9, 1986. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding Flood Regime Changes in Europe: A State-of-the-Art Assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Carsell, K.M.; Pingel, N.D.; Ford, D.T. Quantifying the Benefit of a Flood Warning System. Nat. Hazards Rev. 2004, 5, 131–140. [Google Scholar] [CrossRef]
- Perera, D.; Seidou, O.; Agnihotri, J.; Rasmy, M.; Smakhtin, V.; Coulibaly, P.; Mehmood, H. Flood Early Warning Systems: A Review of Benefits, Challenges and Prospects; UNU-INWEH Report Series; United Nations University Institute for Water, Environment and Health: Hamilton, ON, Canada, 2019; ISBN 978-92-808-6096-2. [Google Scholar]
- UNDRR Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction. United Nations General Assembly: New York, NY, USA, 2016.
- World Meteorological Organization (WMO). Manual on Flood Forecasting and Warning; World Meteorological Organization: Geneva, Switzerland, 2011; ISBN 978-92-63-11072-5. [Google Scholar]
- Center, A.D.R. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Cools, J.; Innocenti, D.; O’Brien, S. Lessons from Flood Early Warning Systems. Environ. Sci. Policy 2016, 58, 117–122. [Google Scholar] [CrossRef]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in Flood Losses in Europe over the Past 150 Years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Jongman, B.; Winsemius, H.C.; Aerts, J.C.J.H.; Coughlan De Perez, E.; Van Aalst, M.K.; Kron, W.; Ward, P.J. Declining Vulnerability to River Floods and the Global Benefits of Adaptation. Proc. Natl. Acad. Sci. USA 2015, 112, E2271–E2280. [Google Scholar] [CrossRef] [PubMed]
- Platf Promot Early Warn UNISDR. Global Survey of Early Warning Systems: An Assessment of Capacities, Gaps and Opportunities toward Building a Comprehensive Global Early Warning System for All Natural Hazards; Platf Promot Early Warn UNISDR—PPEW UN, 2006. [Google Scholar]
- Fernández-Nóvoa, D.; García-Feal, O.; González-Cao, J.; de Gonzalo, C.; Rodríguez-Suárez, J.A.; Ruiz del Portal, C.; Gómez-Gesteira, M. MIDAS: A New Integrated Flood Early Warning System for the Miño River. Water 2020, 12, 2319. [Google Scholar] [CrossRef]
- González-Cao, J.; García-Feal, O.; Fernández-Nóvoa, D.; Domínguez-Alonso, J.M.; Gómez-Gesteira, M. Towards an Automatic Early Warning System of Flood Hazards Based on Precipitation Forecast: The Case of the Miño River (NW Spain). Nat. Hazards Earth Syst. Sci. 2019, 19, 2583–2595. [Google Scholar] [CrossRef]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-Disaster Planning and Preparedness for Floods and Droughts: A Systematic Review. Int. J. Disaster Risk Reduct. 2019, 38, 101207. [Google Scholar] [CrossRef]
- Baudoin, M.-A.; Henly-Shepard, S.; Fernando, N.; Sitati, A.; Zommers, Z. Early Warning Systems and Livelihood Resilience: Exploring Opportunities for Community Participation; UNU-EHS Working Paper Series; UNU-EHS: Bonn, Germany, 2014. [Google Scholar]
- Haque, A.N. Application of Multi-Criteria Analysis on Climate Adaptation Assessment in the Context of Least Developed Countries. Multi Criteria Decis. Anal. 2016, 23, 210–224. [Google Scholar] [CrossRef]
- Brirhet, H.; Benaabidate, L. Comparison of Two Hydrological Models (Lumped and Distributed) over a Pilot Area of the Issen Watershed in the Souss Basin, Morocco. Eur. Sci. J. 2016, 12, 347. [Google Scholar] [CrossRef]
- Kampf, S.K.; Burges, S.J. A Framework for Classifying and Comparing Distributed Hillslope and Catchment Hydrologic Models. Water Resour. Res. 2007, 43, 2006WR005370. [Google Scholar] [CrossRef]
- Jain, S.K. Introduction to Hydrologic Modeling 2012. Available online: https://nihroorkee.gov.in/sites/default/files/uploadfiles/Intro-to-Hydmodeling-skj.pdf (accessed on 11 April 2024).
- Okiria, E.; Okazawa, H.; Noda, K.; Kobayashi, Y.; Suzuki, S.; Yamazaki, Y. A Comparative Evaluation of Lumped and Semi-Distributed Conceptual Hydrological Models: Does Model Complexity Enhance Hydrograph Prediction? Hydrology 2022, 9, 89. [Google Scholar] [CrossRef]
- Li, X.; Willems, P. A Hybrid Model for Fast and Probabilistic Urban Pluvial Flood Prediction. Water Resour. Res. 2020, 56, e2019WR025128. [Google Scholar] [CrossRef]
- Feldman, A.D. Hydrologic Modeling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Washington, DC, USA, 2000. [Google Scholar]
- Scharffenberg, B.; Bartles, M.; Brauer, T.; Fleming, M.; Karlovits, G. Hydrologic Modeling System (HEC-HMS). User’s Manual:Version 4.3; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2018. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Bergström, S.; Carlsson, B.; Gardelin, M.; Lindström, G.; Pettersson, A.; Rummukainen, M. Climate Change Impacts on Runoff in Sweden-Assessments by Global Climate Models, Dynamical Downscaling and Hydrological Modelling. Clim. Res. 2001, 16, 101–112. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood Hazard Mapping Methods: A Review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A.; Tackley, P.J. Computational Methods for Geodynamics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; ISBN 978-0-521-86767-2. [Google Scholar]
- Brunner, G.W. HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0.; US Army Corps of Engineers–Hydrologic Engineering Center: Davis, CA, USA, 2016; Volume 547. [Google Scholar]
- Krzhizhanovskaya, V.V.; Shirshov, G.S.; Melnikova, N.B.; Belleman, R.G.; Rusadi, F.I.; Broekhuijsen, B.J.; Gouldby, B.P.; Lhomme, J.; Balis, B.; Bubak, M.; et al. Flood Early Warning System: Design, Implementation and Computational Modules. Procedia Comput. Sci. 2011, 4, 106–115. [Google Scholar] [CrossRef]
- García-Feal, O.; González-Cao, J.; Gómez-Gesteira, M.; Cea, L.; Domínguez, J.M.; Formella, A. An Accelerated Tool for Flood Modelling Based on Iber. Water 2018, 10, 1459. [Google Scholar] [CrossRef]
- González-Cao, J.; Fernández-Nóvoa, D.; García-Feal, O.; Figueira, J.R.; Vaquero, J.M.; Trigo, R.M.; Gómez-Gesteira, M. Numerical Reconstruction of Historical Extreme Floods: The Guadiana Event of 1876. J. Hydrol. 2021, 599, 126292. [Google Scholar] [CrossRef]
- González-Cao, J.; Fernández-Nóvoa, D.; García-Feal, O.; Figueira, J.R.; Vaquero, J.M.; Trigo, R.M.; Gómez-Gesteira, M. The Rivillas Flood of 5–6 November 1997 (Badajoz, Spain) Revisited: An Approach Based on Iber+ Modelling. J. Hydrol. 2022, 610, 127883. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; González-Cao, J.; Figueira, J.R.; Catita, C.; García-Feal, O.; Gómez-Gesteira, M.; Trigo, R.M. Numerical Simulation of the Deadliest Flood Event of Portugal: Unravelling the Causes of the Disaster. Sci. Total Environ. 2023, 896, 165092. [Google Scholar] [CrossRef]
- Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D Numerical Models for Predicting River Flood Inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber: Herramienta de Simulación Numérica Del Flujo En Ríos. Rev. Int. Métod. Numér. Cálc. Diseño Ing. 2014, 30, 1–10. [Google Scholar] [CrossRef]
- García-Feal, O.; Cea, L.; González-Cao, J.; Domínguez, J.M.; Gómez-Gesteira, M. IberWQ: A GPU Accelerated Tool for 2D Water Quality Modeling in Rivers and Estuaries. Water 2020, 12, 413. [Google Scholar] [CrossRef]
- Bradbrook, K. JFLOW: A Multiscale Two-dimensional Dynamic Flood Model. Water Environ. J. 2006, 20, 79–86. [Google Scholar] [CrossRef]
- Dhi, M. MIKE 21 Flow Model, Hydrodynamic Module, Scientific Documentation 2017. Available online: https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/M21HD.pdf (accessed on 11 April 2024).
- Vacondio, R.; Dal Palù, A.; Ferrari, A.; Mignosa, P.; Aureli, F.; Dazzi, S. A Non-Uniform Efficient Grid Type for GPU-Parallel Shallow Water Equations Models. Environ. Model. Softw. 2017, 88, 119–137. [Google Scholar] [CrossRef]
- Sharifian, M.K.; Kesserwani, G.; Chowdhury, A.A.; Neal, J.; Bates, P. LISFLOOD-FP 8.1: New GPU-Accelerated Solvers for Faster Fluvial/Pluvial Flood Simulations. Geosci. Model Dev. 2023, 16, 2391–2413. [Google Scholar] [CrossRef]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M. An Early Warning System for Flash Floods in Hyper-Arid Egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- Fakhruddin, S.H.M.; Kawasaki, A.; Babel, M.S. Community Responses to Flood Early Warning System: Case Study in Kaijuri Union, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 14, 323–331. [Google Scholar] [CrossRef]
- Fraga, I.; Cea, L.; Puertas, J. MERLIN: A Flood Hazard Forecasting System for Coastal River Reaches. Nat. Hazards 2020, 100, 1171–1193. [Google Scholar] [CrossRef]
- Emerton, R.E.; Stephens, E.M.; Pappenberger, F.; Pagano, T.C.; Weerts, A.H.; Wood, A.W.; Salamon, P.; Brown, J.D.; Hjerdt, N.; Donnelly, C.; et al. Continental and Global Scale Flood Forecasting Systems. WIREs Water 2016, 3, 391–418. [Google Scholar] [CrossRef]
- Bureau of Meteorology, Australian Government National Arrangements for Flood Forecasting and Warning 2018. Available online: http://www.bom.gov.au/water/floods/document/National_Arrangements_V4.pdf (accessed on 11 April 2024).
- Pagano, T.C.; Elliott, J.F.; Anderson, B.G.; Perkins, J.K. Australian Bureau of Meteorology Flood Forecasting and Warning. In Flood Forecasting; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–40. ISBN 978-0-12-801884-2. [Google Scholar]
- Demargne, J.; Wu, L.; Regonda, S.K.; Brown, J.D.; Lee, H.; He, M.; Seo, D.-J.; Hartman, R.; Herr, H.D.; Fresch, M.; et al. The Science of NOAA’s Operational Hydrologic Ensemble Forecast Service. Bull. Am. Meteorol. Soc. 2014, 95, 79–98. [Google Scholar] [CrossRef]
- Adams, T.E.; Pagano, T.C. (Eds.) Flood Forecasting: A Global Perspective; Academic Press: London, UK, 2016; ISBN 978-0-12-801859-0. [Google Scholar]
- Fan, F.M.; Paiva, R.C.D.; Collischonn, W. Hydrological Forecasting Practices in Brazil. In Flood Forecasting; Elsevier: Amsterdam, The Netherlands, 2016; pp. 41–66. ISBN 978-0-12-801884-2. [Google Scholar]
- Nanditha, J.S.; Mishra, V. On the Need of Ensemble Flood Forecast in India. Water Secur. 2021, 12, 100086. [Google Scholar] [CrossRef]
- Thielen, J.; Bartholmes, J.; Ramos, M.-H.; de Roo, A. The European Flood Alert System—Part 1: Concept and Development. Hydrol. Earth Syst. Sci. 2009, 13, 125–140. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS—Global Ensemble Streamflow Forecasting and Flood Early Warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.-D. Flash Flood Forecasting, Warning and Risk Management: The HYDRATE Project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Gourley, J.J.; Flamig, Z.L.; Vergara, H.; Kirstetter, P.-E.; Clark, R.A.; Argyle, E.; Arthur, A.; Martinaitis, S.; Terti, G.; Erlingis, J.M.; et al. The FLASH Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United States. Bull. Am. Meteorol. Soc. 2017, 98, 361–372. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, Y.; Huang, Y.; Tian, F. An Approach to Quality Validation of Large-Scale Data from the Chinese Flash Flood Survey and Evaluation (CFFSE). Nat. Hazards 2017, 89, 693–704. [Google Scholar] [CrossRef]
- Liu, C.; Guo, L.; Ye, L.; Zhang, S.; Zhao, Y.; Song, T. A Review of Advances in China’s Flash Flood Early-Warning System. Nat. Hazards 2018, 92, 619–634. [Google Scholar] [CrossRef]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martínez-Peiró, M. Early Warning System for Detection of Urban Pluvial Flooding Hazard Levels in an Ungauged Basin. Nat. Hazards 2018, 92, 1237–1265. [Google Scholar] [CrossRef]
- Cama-Pinto, A.; Acosta-Coll, M.; Piñeres-Espitia, G.; Caicedo-Ortiz, J.; Zamora-Musa, R.; Sepulveda-Ojeda, J. Diseño de Una Red de Sensores Inalámbricos Para La Monitorización de Inundaciones Repentinas En La Ciudad de Barranquilla, Colombia. Ingeniare Rev. Chil. Ing. 2016, 24, 581–599. [Google Scholar] [CrossRef]
- Zwarts, L.; van Beukering, P.; Kone, B.; Wymenga, E. The Niger, a Lifeline; Effective Water Management in the Upper Niger Basin: Riza, The Netherlands, 2005. [Google Scholar]
- Zwarts, L. OPIDIN: Predicting the Flood in the Inner Niger Delta; A&W-Report; Altenburg & Wymenga Ecological Consultants: Feanwâlden, The Netherlands, 2013. [Google Scholar]
- Hopson, T.M.; Webster, P.J. A 1–10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe Floods of 2003–07. J. Hydrometeorol. 2010, 11, 618–641. [Google Scholar] [CrossRef]
- Rakovec, O.; Kumar, R.; Attinger, S.; Samaniego, L. Improving the Realism of Hydrologic Model Functioning through Multivariate Parameter Estimation: Improving the realism of hydrologic model functioning. Water Resour. Res. 2016, 52, 7779–7792. [Google Scholar] [CrossRef]
- Mockus, V. National Engineering Handbook; US Soil Conservation Service: Washington, DC, USA, 1964. [Google Scholar]
- Jaafar, H.H.; Ahmad, F.A.; El Beyrouthy, N. GCN250, New Global Gridded Curve Numbers for Hydrologic Modeling and Design. Sci. Data 2019, 6, 145. [Google Scholar] [CrossRef]
- Cea, L.; Fraga, I. Incorporating Antecedent Moisture Conditions and Intraevent Variability of Rainfall on Flood Frequency Analysis in Poorly Gauged Basins. Water Resour. Res. 2018, 54, 8774–8791. [Google Scholar] [CrossRef]
- Wang, D. A New Probability Density Function for Spatial Distribution of Soil Water Storage Capacity Leads to the SCS Curve Number Method. Hydrol. Earth Syst. Sci. 2018, 22, 6567–6578. [Google Scholar] [CrossRef]
- European Environment Agency (EEA) CORINE Land Cover European Union, Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu (accessed on 26 December 2023).
- Narasimhan, B.; Bhallamudi, S.M.; Mondal, A.; Ghosh, S.; Mujumdar, P. Chennai Floods 2015: A Rapid Assessment. Interdiscip. Cent. Water Res. Rep. 2016. Available online: http://www.icwar.iisc.ac.in/wp-content/uploads/2016/06/Chennai-Floods-Rapid-Assessment-Report.pdf (accessed on 11 April 2024).
- Smith, P.J.; Pappenberger, F.; Wetterhall, F.; Thielen Del Pozo, J.; Krzeminski, B.; Salamon, P.; Muraro, D.; Kalas, M.; Baugh, C. On the Operational Implementation of the European Flood Awareness System (EFAS). In Flood Forecasting; Elsevier: Amsterdam, The Netherlands, 2016; pp. 313–348. ISBN 978-0-12-801884-2. [Google Scholar]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational Early Warning Systems for Water-Related Hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based Distributed Model for River Basin Scale Water Balance and Flood Simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [Google Scholar] [CrossRef]
- Bartholmes, J.C.; Thielen, J.; Ramos, M.H.; Gentilini, S. The European Flood Alert System EFAS—Part 2: Statistical Skill Assessment of Probabilistic and Deterministic Operational Forecasts. Hydrol. Earth Syst. Sci. 2009, 13, 141–153. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Cloke, H.; Salamon, P.; Prudhomme, C. Daily Ensemble River Discharge Reforecasts and Real-Time Forecasts from the Operational Global Flood Awareness System. Hydrol. Earth Syst. Sci. 2023, 27, 1–19. [Google Scholar] [CrossRef]
- Blöschl, G. Flood Warning-on the Value of Local Information. Int. J. River Basin Manag. 2008, 6, 41–50. [Google Scholar] [CrossRef]
- Collier, C.G. Flash Flood Forecasting: What Are the Limits of Predictability? Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 3–23. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash Flood Warning Based on Rainfall Thresholds and Soil Moisture Conditions: An Assessment for Gauged and Ungauged Basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Dinale, R. Flash Flood Warning in Ungauged Basins by Use of the Flash Flood Guidance and Model-based Runoff Thresholds. Meteorol. Appl. 2009, 16, 65–75. [Google Scholar] [CrossRef]
- Faulkner, H.; Ball, D. Environmental Hazards and Risk Communication. Environ. Hazards 2007, 7, 71–78. [Google Scholar] [CrossRef]
- Li, Z.; Gao, S.; Chen, M.; Gourley, J.J.; Liu, C.; Prein, A.F.; Hong, Y. The Conterminous United States Are Projected to Become More Prone to Flash Floods in a High-End Emissions Scenario. Commun. Earth Environ. 2022, 3, 1–9. [Google Scholar] [CrossRef]
- Flamig, Z.L.; Vergara, H.; Gourley, J.J. The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: Description and Case Study. Geosci. Model Dev. 2020, 13, 4943–4958. [Google Scholar] [CrossRef]
- Martinaitis, S.M.; Gourley, J.J.; Flamig, Z.L.; Argyle, E.M.; Clark, R.A.; Arthur, A.; Smith, B.R.; Erlingis, J.M.; Perfater, S.; Albright, B. The HMT Multi-Radar Multi-Sensor Hydro Experiment. Bull. Am. Meteorol. Soc. 2017, 98, 347–359. [Google Scholar] [CrossRef]
- Jan, C.; Lee, M. A Debris-Flow Rainfall-Based Warning Model. J. Chin. Soil Water Conserv. 2004, 35, 275–285. [Google Scholar]
- Miao, Q.; Yang, D.; Yang, H.; Li, Z. Establishing a Rainfall Threshold for Flash Flood Warnings in China’s Mountainous Areas Based on a Distributed Hydrological Model. J. Hydrol. 2016, 541, 371–386. [Google Scholar] [CrossRef]
- Xin, Z.; Shi, K.; Wu, C.; Wang, L.; Ye, L. Applicability of Hydrological Models for Flash Flood Simulation in Small Catchments of Hilly Area in China. Open Geosci. 2019, 11, 1168–1181. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, Y.; Luan, Q.; Liu, H. Multi-Scenario Flash Flood Hazard Assessment Based on Rainfall–Runoff Modeling and Flood Inundation Modeling: A Case Study. Nat. Hazards 2021, 105, 967–981. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, R.; Yang, M.; Tu, T.; Ma, M.; Hong, Y.; Wang, X. Large-Scale Flash Flood Warning in China Using Deep Learning. J. Hydrol. 2022, 604, 127222. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; Ramos, A.M.; González-Cao, J.; García-Feal, O.; Catita, C.; Gómez-Gesteira, M.; Trigo, R.M. How to Mitigate Flood Events Similar to the 1979 Catastrophic Floods in the Lower Tagus. Nat. Hazards Earth Syst. Sci. 2024, 24, 609–630. [Google Scholar] [CrossRef]
- Kreibich, H.; Müller, M.; Schröter, K.; Thieken, A.H. New Insights into Flood Warning Reception and Emergency Response by Affected Parties. Nat. Hazards Earth Syst. Sci. 2017, 17, 2075–2092. [Google Scholar] [CrossRef]
- Kolen, B.; Van Gelder, P.H.A.J.M. Risk-Based Decision-Making for Evacuation in Case of Imminent Threat of Flooding. Water 2018, 10, 1429. [Google Scholar] [CrossRef]
- García-Feal, O.; González-Cao, J.; Fernández-Nóvoa, D.; Astray Dopazo, G.; Gómez-Gesteira, M. Comparison of Machine Learning Techniques for Reservoir Outflow Forecasting. Nat. Hazards Earth Syst. Sci. 2022, 22, 3859–3874. [Google Scholar] [CrossRef]
ID Number | Name | Scale | Location | Reference |
---|---|---|---|---|
1 | Regional | Red Sea Mountains (Egypt) | [49] | |
2 | Regional | Inner Niger Delta (Maly) | [16] | |
3 | Regional | Kaijuri Union (Bangladesh) | [50] | |
4 | MERLIN | Regional | Galicia Region (Spain) | [51] |
5 | MIDAS | Regional | Galicia Region (Spain) | [20] |
6 | Regional | Flanders Region (Belgium) | [16] | |
7 | National | Australia | [52,53,54] | |
8 | HEFS | National | USA | [52,55] |
9 | National | Brazil | [56,57] | |
10 | National | India | [58] | |
11 | EFAS | Continental | Europe | [59] |
12 | GloFAS | Global | Worldwide | [60] |
13 | HYDRATE | Continental | Europe | [61] |
14 | FLASH | National | USA | [62] |
15 | Regional | China | [63,64] | |
16 | Regional | Barranquilla (Colombia) | [65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Nóvoa, D.; González-Cao, J.; García-Feal, O. Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling. Water 2024, 16, 1408. https://doi.org/10.3390/w16101408
Fernández-Nóvoa D, González-Cao J, García-Feal O. Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling. Water. 2024; 16(10):1408. https://doi.org/10.3390/w16101408
Chicago/Turabian StyleFernández-Nóvoa, Diego, José González-Cao, and Orlando García-Feal. 2024. "Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling" Water 16, no. 10: 1408. https://doi.org/10.3390/w16101408
APA StyleFernández-Nóvoa, D., González-Cao, J., & García-Feal, O. (2024). Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling. Water, 16(10), 1408. https://doi.org/10.3390/w16101408