Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.3. Data Analysis and Methodology
2.3.1. Calculating Changes in the Soil Nitrogen Content
2.3.2. Tracing the Point and No-Point Pollution Sources
2.3.3. Calculation of the Average Population Density and Nitrogen Fertilizer Application over Multiple Years
3. Results
3.1. Spatial and Temporal Distribution of Nitrate
3.1.1. Spatial and Temporal Distribution and Variation of Nitrate during Flooding Seasons
3.1.2. Spatial and Temporal Distribution and Variation of the Nitrate during the Non-Flooding Seasons
3.2. The Land-Use Change and Nitrate Nitrogen Deposition on Nitrogen Pollution in Chinese Water Systems
3.2.1. The Land-Use Change and Urbanization from 2000 to 2020
3.2.2. Population Density and Agricultural Nitrogen Application
3.2.3. N-NO3− Dry and Wet Deposition from 2006 to 2015
4. Discussion
4.1. The Nitrate Pollution Sources in the Nine Water Basins
4.2. The Risk of Nitrate Pollution in the Groundwater and Surface Water during the Flooding and Non-Flooding Seasons
4.3. Water Quality and Pollution Control Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harding, J.S.; Benfield, E.F.; Bolstad, P.V.; Helfman, G.S.; Jones, E.B., 3rd. Stream biodiversity: The ghost of land use past. Proc. Natl. Acad. Sci. USA 1998, 95, 14843–14847. [Google Scholar] [CrossRef] [PubMed]
- Turunen, J.; Markkula, J.; Rajakallio, M.; Aroviita, J. Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams. Sci. Total Environ. 2019, 649, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.Y.; Ding, J.J.; Li, Y.Z.; Li, Q.Z.; Mao, L.L.; Xu, C.Y.; Zheng, Q.; Zhuang, S. Tracing nitrate sources in the groundwater of an intensive agricultural region. Agric. Water Manag. 2021, 250, 106826. [Google Scholar] [CrossRef]
- Xue, D.M.; De Baets, B.; Van Cleemput, O.; Hennessy, C.; Berglund, M.; Boeckx, P. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environ. Pollut. 2012, 161, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Masuda, H.; Koba, K.; Zeng, H.A. Nitrogen isotope study on nitrate-contaminated groundwater in the Sichuan Basin, China. Water Air Soil Pollut. 2007, 178, 145–156. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, Y.; Jia, S.N.; Li, W.W.; Zamanian, K.; Han, J.A.; Huang, F.; Zhao, X.N. Microbial Properties Depending on Fertilization Regime in Agricultural Soils with Different Texture and Climate Conditions: A Meta-Analysis. Agronomy 2023, 13, 764. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2022. In Food and Agriculture Organization of the United Nations FAO; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Cui, S.H.; Shi, Y.L.; Groffman, P.M.; Schlesinger, W.H.; Zhu, Y.G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl. Acad. Sci. USA 2013, 110, 2052–2057. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.C.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef]
- Blevins, D.W.; Wilkison, D.H.; Niesen, S.L. Pre- and post-impoundment nitrogen in the lower Missouri River. Hydrol. Process. 2014, 28, 2535–2549. [Google Scholar] [CrossRef]
- Ogrinc, N.; Tamse, S.; Zavadlav, S.; Vrzel, J.; Jin, L.X. Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Sci. Total Environ. 2019, 646, 1588–1600. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, Y.Y.; Gu, B.J. Urban rivers as hotspots of regional nitrogen pollution. Environ. Pollut. 2015, 205, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Hu, G.H.; Chen, Y.M.; Li, X.; Xu, X.C.; Li, S.Y.; Pei, F.S.; Wang, S.J. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Qi, Y.; Li, H.Y.; Wang, X.; Yin, Q.W. Assessing the response of non-point source nitrogen pollution to land use change based on SWAT model. Ecol. Indic. 2024, 158, 111391. [Google Scholar] [CrossRef]
- Liu, H.F.; Pan, W.Y.; Tian, X.P.; Zhu, R.Q.; Fan, A.P.; Jiao, Z.; Xu, Z.H. Temporal and Spatial Distribution of Nitrate Content in Shallow Groundwater in Well Irrigation Area. Jinan Daxue Xuebao Ziran Kexueban 2024, 38, 132–139. [Google Scholar] [CrossRef]
- Yu, G.R.; Jia, Y.L.; He, N.P.; Zhu, J.X.; Chen, Z.; Wang, Q.F.; Piao, S.L.; Liu, X.J.; He, H.L.; Guo, X.B.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, X.; Carley, R.J.; Perkins, C. Effects of geographical location and land use on atmospheric deposition of nitrogen in the State of Connecticut. Environ. Pollut. 2003, 124, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Joyce, E.E.; Walters, W.W.; Le Roy, E.; Clark, S.C.; Schiebel, H.; Hastings, M.G. Highly concentrated atmospheric inorganic nitrogen deposition in an urban, coastal region in the US. Environ. Res. Commun. 2020, 2, 11. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, W.; Zhu, X.M.; Gilliam, F.S.; Chen, H.; Lu, X.K.; Mo, J.M. Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition. Environ. Sci. Pollut. Res. 2015, 22, 6526–6534. [Google Scholar] [CrossRef]
- Lv, J.L.; Buerkert, A.; Benedict, K.B.; Liu, G.J.; Lv, C.Y.; Liu, X.J. Comparison of nitrogen deposition across different land use types in agro-pastoral catchments of western China and Mongolia. Atmos. Environ. 2019, 199, 313–322. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.M.; Ma, Y.B.; Wang, E.L.; Liang, Q.; Jia, Y.H.; Li, T.S.; Wang, G.C. Crop Productivity and Nitrogen Balance as Influenced by Nitrogen Deposition and Fertilizer Application in North China. Sustainability 2019, 11, 1347. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Lu, X.K.; Zhong, B.Q.; Guo, Y.X.; Lu, X.; Zhao, Y.H.; He, W.; Wang, S.H.; Zhang, X.Y.; et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 2022, 119, e2121998119. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.K.; Badarinath, K.V.S. Soil surface nitrogen losses from agriculture in India: A regional inventory within agroecological zones (2000–2001). Int. J. Sustain. Dev. World Ecol. 2006, 13, 173–182. [Google Scholar] [CrossRef]
- Wang, H.B.; Yang, F.M.; Shi, G.M.; Tian, M.; Zhang, L.M.; Zhang, L.Y.; Fu, C.A. Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China. Environ. Pollut. 2016, 219, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Sheeder, S.A.; Lynch, J.A.; Grimm, J. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed. J. Environ. Qual. 2002, 31, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Whitall, D.; Hendrickson, B.; Paerl, H. Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina. Environ. Int. 2003, 29, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Mgelwa, A.S.; Hu, Y.L.; Ngaba, M.Y. Patterns of nitrogen concentrations and their controls in two southern China urban river ecosystems. Glob. Ecol. Conserv. 2020, 23, e01112. [Google Scholar] [CrossRef]
- Guo, X.M.; Zhang, Q.M.; Zhao, T.Q.; Jin, C. Fluxes, characteristics and influence on the aquatic environment of inorganic nitrogen deposition in the Danjiangkou reservoir. Ecotoxicol. Environ. Saf. 2022, 241, 113814. [Google Scholar] [CrossRef] [PubMed]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.W.; Swaney, D.P.; Boyer, E.W.; Marino, R.; Jaworski, N.; Goodale, C. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry 2006, 79, 163–186. [Google Scholar] [CrossRef]
- Ren, Y.F.; Xu, Z.W.; Zhang, X.Y.; Wang, X.K.; Sun, X.M.; Ballantine, D.J.; Wang, S.Z. Nitrogen pollution and source identification of urban ecosystem surface water in Beijing. Front. Environ. Sci. Eng. 2014, 8, 106–116. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Wang, X.K.; Sun, F.X.; Sun, J.C.; Liu, J.T.; Ouyang, Z.Y. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ15N and δ18O values and an isotope mixing model. Environ. Sci. Pollut. Res. 2015, 22, 20226–20233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, F.D.; Zhang, Q.Y.; Li, J.; Liu, Q. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci. Total Environ. 2014, 490, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.T.J.; Townsend, A.R.; Cleveland, C.C.; Glibert, P.M.; Howarth, R.W.; McKenzie, V.J.; Rejmankova, E.; Ward, M.H. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol. Appl. 2010, 20, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Zhai, Y.Z.; Lei, Y.; Li, J.; Teng, Y.G.; Lu, H.; Xia, X.L.; Yue, W.F.; Yang, J. Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China. Ecotoxicol. Environ. Saf. 2021, 208, 10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Zhang, Y.T.; Wu, J.H.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 12. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Xu, Z.; Liang, Y.; Shi, J.; Zhao, X. Climate impact greater on vegetation NPP but human enhance benefits after the Grain for Green Program in Loess Plateau. Ecol. Indic. 2023, 157, 111201. [Google Scholar] [CrossRef]
- Li, K.; Liu, E.F.; Zhang, E.L.; Li, Y.L.; Shen, J.; Liuc, X.Q. Historical variations of atmospheric trace metal pollution in Southwest China: Reconstruction from a 150-year lacustrine sediment record in the Erhai Lake. J. Geochem. Explor. 2017, 172, 62–70. [Google Scholar] [CrossRef]
- Yuan, X.F.; Jian, J.S.; Jiang, G. Spatiotemporal Variation of Precipitation Regime in China from 1961 to 2014 from the Standardized Precipitation Index. ISPRS Int. J. Geo-Inf. 2016, 5, 194. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Chen, X.; Xu, C.Y.; Yuan, L.F.; Yong, B.; Yan, S.F. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. J. Hydrol. 2011, 409, 81–93. [Google Scholar] [CrossRef]
- Jia, S.N.; Yuan, D.; Li, W.W.; He, W.; Raza, S.; Kuzyakov, Y.; Zamanian, K.; Zhao, X.N. Soil Chemical Properties Depending on Fertilization and Management in China: A Meta-Analysis. Agronomy 2022, 12, 2501. [Google Scholar] [CrossRef]
- Jia, Y.; Yu, G.; Gao, Y.; He, N.; Wang, Q.; Jiao, C.; Zuo, Y. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Sci. Rep. 2016, 6, 19810. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Q.; Zhu, J.; Chen, Z.; He, N.; Yu, G. A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996–2015). China Sci. Data 2019, 4, 21. [Google Scholar] [CrossRef]
- He, J. Creative Industry Districts: An Analysis of Dynamics, Networks and Implications on Creative Clusters in Shanghai. In Creative Industry Districts; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cheng, J.; Dai, S.; Ye, X. Spatiotemporal heterogeneity of industrial pollution in China. China Econ. Rev. 2016, 40, 179–191. [Google Scholar] [CrossRef]
- Ren, J.; Ma, Y. Studies on the spatiotemporal dynamics of industrial pollution in Northeast China. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2018, 38, 2108–2118. [Google Scholar] [CrossRef]
- Wang, S.J.; Lu, A.G.; Dang, S.H.; Chen, F.L. Ammonium nitrogen concentration in the Weihe River, central China during 2005–2015. Environ. Earth Sci. 2016, 75, 512. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Han, C.; Hu, W. Distribution of Nitrogen and Phosphorus in Lake Chaohu Sediments and Pollution Evaluation. Huan Jing Ke Xue 2020, 42, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Speed, C.; Bennie, J.; Swift, R.; Wallace, P. Identifying the significant factors that influence temporal and spatial trends in nitrate concentrations in the Dorset and Hampshire Basin Chalk aquifer of Southern England. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 377–392. [Google Scholar] [CrossRef]
- Koh, E.H.; Kaown, D.; Mayer, B.; Kang, B.R.; Moon, H.S.; Lee, K.K. Hydrogeochemistry and Isotopic Tracing of Nitrate Contamination of Two Aquifer Systems on Jeju Island, Korea. J. Environ. Qual. 2012, 41, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef]
- Li, Z.L.; Zeng, Z.Q.; Tian, D.S.; Wang, J.S.; Fu, Z.; Zhang, F.Y.; Zhang, R.Y.; Chen, W.N.; Luo, Y.Q.; Niu, S.L. Global patterns and controlling factors of soil nitrification rate. Glob. Chang. Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef]
- Chen, X.K.; Liu, X.B.; Li, B.G.; Peng, W.Q.; Dong, F.; Huang, A.P.; Wang, W.J.; Cao, F. Water quality assessment and spatial-temporal variation analysis in Erhai lake, southwest China. Open Geosci. 2021, 13, 1643–1655. [Google Scholar] [CrossRef]
- Basu, N.B.; Van Meter, K.J.; Byrnes, D.K.; Van Cappellen, P.; Brouwer, R.; Jacobsen, B.H.; Jarsjö, J.; Rudolph, D.L.; Cunha, M.C.; Nelson, N.; et al. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 2022, 15, 97–105. [Google Scholar] [CrossRef]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Sci. Total Environ. 2018, 624, 1513–1522. [Google Scholar] [CrossRef]
- Vasbieva, M.T. Effect of Long-Term Application of Organic and Mineral Fertilizers on the Organic Carbon Content and Nitrogen Regime of Soddy-Podzolic Soil. Eurasian Soil Sci. 2019, 52, 1422–1428. [Google Scholar] [CrossRef]
- Lu, L.; Han, W.Y.; Zhang, J.B.; Wu, Y.C.; Wang, B.Z.; Lin, X.G.; Zhu, J.G.; Cai, Z.C.; Jia, Z.J. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J. 2012, 6, 1978–1984. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef]
- Jones, C.S.; Drake, C.W.; Hruby, C.E.; Schilling, K.E.; Wolter, C.F. Livestock manure driving stream nitrate. Ambio 2019, 48, 1143–1153. [Google Scholar] [CrossRef]
- Yang, Z.H.; Hu, Y.; Zhang, S.; Raza, S.; Wei, X.R.; Zhao, X.N. The Thresholds and Management of Irrigation and Fertilization Earning Yields and Water Use Efficiency in Maize, Wheat, and Rice in China: A Meta-Analysis (1990–2020). Agronomy 2022, 12, 709. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Sattolo, T.M.S.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Yu, Q.G.; Ma, J.W.; Zou, P.; Lin, H.; Sun, W.C.; Yin, J.Z.; Fu, J.R. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils. Environ. Sci. Pollut. Res. 2015, 22, 472–481. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Song, J.X.; Li, P.; Wang, Y.S.; Zhang, X.M.; Li, Z.B.; Bi, Z.L.; Zhang, X.; Qin, Y.L.; et al. Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustain. Cities Soc. 2019, 50, 9. [Google Scholar] [CrossRef]
- Wang, S.H.; Ma, Y.K.; Zhang, X.Y.; Yu, Y.; Zhou, X.H.; Shen, Z.Y. Nitrogen transport and sources in urban stormwater with different rainfall characteristics. Sci. Total Environ. 2022, 837, 11. [Google Scholar] [CrossRef]
- Winiwarter, W.; Klimont, Z. The role of N-gases (N2O, NOx, NH3) in cost-effective strategies to reduce greenhouse gas emissions and air pollution in Europe. Curr. Opin. Environ. Sustain. 2011, 3, 438–445. [Google Scholar] [CrossRef]
Basins | Population Density (person km−2) | T Nitrogen Fertilization Rate (kg ha−1 yr−1) |
---|---|---|
A | 436 | 175.57 |
B | 288 | 85.10 |
C | 59 | 25.85 |
D | 106 | 34.46 |
E | 185 | 43.54 |
F | 240 | 44.09 |
G | 276 | 45.33 |
H | 19 | 6.08 |
I | 6 | 2.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Shi, J.; Xue, L.; Li, W.; Zamanian, K.; Han, J.; Chen, S. Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020. Water 2024, 16, 1396. https://doi.org/10.3390/w16101396
Zhao X, Shi J, Xue L, Li W, Zamanian K, Han J, Chen S. Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020. Water. 2024; 16(10):1396. https://doi.org/10.3390/w16101396
Chicago/Turabian StyleZhao, Xiaoning, Jiawei Shi, Lihua Xue, Wenwen Li, Kazem Zamanian, Jiangang Han, and Shuang Chen. 2024. "Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020" Water 16, no. 10: 1396. https://doi.org/10.3390/w16101396
APA StyleZhao, X., Shi, J., Xue, L., Li, W., Zamanian, K., Han, J., & Chen, S. (2024). Water Point and Non-Point Nitrogen Pollution Due to Land-Use Change and Nitrate Deposition in China from 2000 to 2020. Water, 16(10), 1396. https://doi.org/10.3390/w16101396