Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet
Abstract
:1. Introduction
2. Overview of the Study Area
3. Materials and Methods
4. Results
4.1. Major Elements
- (1)
- Woka graben
- (2)
- Qiongduojiang graben
- (3)
- Northern Cuona graben
- (4)
- Southern Cuona graben
- (5)
- Geothermal water outside the grabens
- (6)
- Cold-spring water
- (7)
- River water
4.2. Isotopic Characteristics
- (1)
- Hydrogen and oxygen isotopes
- (2)
- Carbon isotopes
5. Discussion
5.1. Recharge Source and Elevation of Geothermal Water
5.2. Subsurface Retention Time and Occurrence Environmentra of Geothermal Water
5.3. Carbon Sources of Groundwater
5.4. Migration Pathways Indicated by Carbon Isotopes in Geothermal Water
6. Conclusions
- The study area was divided into four distinct geothermal water system zones, each exhibiting unique hydrogeochemical characteristics. Geothermal waters in the Woka graben are characterized by elevated concentrations of Na+ and SO42−, indicative of high-temperature systems. Similarly, geothermal waters in the southern portion of the Qiongduojiang graben resemble those of the Woka graben, with Na+ as the dominant cation. Conversely, geothermal waters in the northern Cuona graben exhibit the highest temperatures and total dissolved solids content, along with significantly elevated levels of Na+, K+, and Cl−, suggesting influence from deep magmatic activity.
- Isotopic analyses reveal that geothermal waters primarily originate from meteoric water at higher elevations. Analysis of recharge elevations indicates that the grabens predominantly receive meteoric water from the surrounding mountains. Furthermore, discernible differences in isotopic values between geothermal waters in the Woka and northern Cuona grabens suggest an extended subsurface retention time for the latter.
- Carbon isotopic analysis highlights diverse carbon sources. In the northern Cuona graben, carbon primarily originates from metamorphic carbon in carbonate rocks, whereas in other zones, carbon in geothermal waters is predominantly derived from mantle-derived CO2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.X.; Wang, J.Y.; Deng, X. Geothermal system type map and brief explanation in China. Geol. Sci. 1996, 2, 114–121. (In Chinese) [Google Scholar]
- Wang, G.L.; Zhang, W.; Liang, J.Y.; Lin, W. Evaluation of geothermal resource potential in China. Acta Geol. Sin. 2017, 38, 449–459. (In Chinese) [Google Scholar]
- Yang, B.; Li, W.; Xiong, J.; Yang, J.; Huang, R.; Xie, P. Health Risk Assessment of Heavy Metals in Soil of Lalu Wetland Based on Monte Carlo Simulation and ACPS-MLR. Water 2023, 15, 4223. [Google Scholar] [CrossRef]
- Pang, Z.H. Origin of High-Temperature Geothermal System in the Eastern Himalayan Structural Belt; Institute of Geology and Geophysics, Chinese Academy of Sciences: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Wang, G.L.; Liu, Y.G.; Zhu, X. Current Status and Development Trends of Geothermal Resources in China. J. Earth Sci. Front. 2020, 27, 1–9. [Google Scholar]
- Tong, W.; Zhang, Z.F.; Zhang, M.T.; Liao, Z.J.; You, M.Z.; Zhu, M.X.; Guo, J.Y.; Liu, S.B. Geothermal Belt of the Himalayas. J. Peking Univ. 1978, 1, 76–89. (In Chinese) [Google Scholar]
- Tang, Z.M.; Han, T.L. Preliminary Division and Structural Characteristics of the Qinghai-Tibet Plateau. Bull. Chin. Acad. Geol. Sci. 1990, 21, 121–126. [Google Scholar]
- White, D. Hydrology, Activity, and Heat Flow of the Steamboat Springs Thermal System, Washoe County, Nevada; Center for Integrated Data Analytics: Middleton, WI, USA, 1968; pp. 1–116.
- Gu, W.Z.; Pang, Z.H.; Wang, Q.J.; Song, X.F.; Ye, L.J.; Zhang, Z.G.; Lu, J.J.; Lu, B.H.; Zhai, S.M. Isotope Hydrology; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Li, H.; Liu, M.; Jiao, T.; Xiang, D.; Yan, X.; Tang, Z.; Yang, J. Using Clustering, Geochemical Modeling, and a Decision Tree for the Hydrogeochemical Characterization of Groundwater in an In Situ Leaching Uranium Deposit in Bayan-Uul, Northern China. Water 2023, 15, 4234. [Google Scholar] [CrossRef]
- Sultan, K.; Faraj, T.; Zaman, Q. Ferric Oxyhydroxylsulfate Precipitation Improves Water Quality in an Acid Mining Lake: A Hydrogeochemical Investigation. Water 2023, 15, 4273. [Google Scholar] [CrossRef]
- Ding, L.; Satybaev, M.; Cai, F.L.; Wang, H.Q.; Song, P.P.; Ji, W.Q.; Xu, Q.; Zhang, L.Y.; Qasim, M.; Baral, U. Timing, Closure Style, and Process of the Initial Collision between India and Eurasia. Chin. Sci. Earth Sci. 2017, 47, 293–309. [Google Scholar]
- Zhang, J.; Santosh, M.; Wang, X.; Guo, L.; Yang, X.; Zhang, B. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Res. 2012, 21, 939–960. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan Collisional Orogen: A Review and Introduction to the Special Issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Ren, K.; Pan, X.; Yuan, D.; Zeng, J.; Liang, J.; Peng, C. Nitrate sources and nitrogen dynamics in a karst aquifer with mixed nitrogen inputs (Southwest China): Revealed by multiple stable isotopic and hydro-chemical proxies. Water Res. 2022, 210, 118000. [Google Scholar] [CrossRef] [PubMed]
- Craig, H. Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 1961, 133, 1833–1834. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.H.; Hou, F.G.; Ni, B.L. Hydrogen and oxygen stable isotopes in precipitation in China. Chin. Sci. Bull. 1983, 13, 801–806. [Google Scholar]
- Ning, A.F.; Yin, G.; Liu, T.C. Distribution characteristics of atmospheric precipitation isotopes in the Lhasa River region. Acta Mineral. Sin. 2000, 20, 95–99. [Google Scholar]
- Zheng, S.H.; Zhang, Z.F.; Ni, B.L.; Hou, F.G.; Shen, M.Z. Hydrogen and oxygen stable isotope study of geothermal waters in Tibet. Acta Sci. Nat. Univ. Pekin. 1982, 1, 99–106. [Google Scholar]
- Liu, Z.; Tian, L.; Yao, T.; Gong, T.; Yin, C.; Yu, W. Temporal and spatial variations of δ18O in precipitation in the Yarlung Zangbo River basin. Acta Geogr. Sin. 2007, 62, 510–517. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.; Ornelas-Soto, N.; Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Genty, D.; Sirieix, C.; Michel, S.; Minster, B.; Régnier, E. Quantitative assessments of moisture sources and temperature governing rainfall δ18O from 20 years′ monitoring records in SW-France: Importance for isotopic-based climate reconstructions. J. Hydrol. 2021, 591, 125327. [Google Scholar] [CrossRef]
- Liu, Z. Study on the Formation Mechanism of Typical High-Temperature Geothermal Systems in the Nimu-Nagqu Geothermal Belt, Tibet; Chinese Academy of Geological Sciences: Beijing, China, 2014. [Google Scholar]
- Yin, G.; Ni, S.J.; Zhang, Q.C. Deuterium excess parameter and its hydrogeological significance—A case study of Jiuzhaigou and Yele in Sichuan. J. Chengdu Univ. Technol. 2001, 28, 251–254. [Google Scholar]
- Wang, S.Q. Hydrogeochemical Processes and Formation Mechanisms of High-Temperature Geothermal Systems in Tibet; China University of Geosciences: Beijing, China, 2017. [Google Scholar]
- Xiao, K.; Shen, L.C.; Wang, P. Hydrogen and oxygen isotopes of lakes and geothermal waters in the arid region of southern Tibet. Environ. Sci. 2014, 35, 2952–2958. [Google Scholar]
- Ren, K.; Pan, X.D.; Zeng, J.; Jiao, Y.J.; Peng, C.; Liang, J.P. Carbon isotope geochemical characteristics of groundwater under different land uses in karst areas and their ecological significance. Environ. Sci. 2019, 40, 4523–4531. (In Chinese) [Google Scholar]
- Shangguan, Z.G.; Gao, S.J. Carbon isotope seismogeochemical characteristics of hot springs in the Dianxi experimental field. Earthquake 1987, 6, 27–37. [Google Scholar]
- Liu, Z.H.; Yuan, D.X.; He, S.Y.; Zhang, M.L.; Zhang, J.G. Geochemical characteristics of the geothermal CO2-water-carbonate rock system and its CO2 sources—A case study of Huanglonggou Kangding in Sichuan and Xiagei in Yunnan. Sci. China 2000, 30, 209–214. [Google Scholar]
- Zhang, Y.H. Genesis and Exploitation of the Kangding-Moxi Segment of the Xianyu River Fault Geothermal System; Chengdu University of Technology: Chengdu, China, 2018. (In Chinese) [Google Scholar]
- Frondini, F.; Caliro, S.; Cardellini, C.; Chiodini, G.; Morgantini, N. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl. Geochem. 2009, 24, 860–875. [Google Scholar] [CrossRef]
- Shen, L.C.; Wu, K.Y.; Xiao, Q.; Yuang, D.X. CO2 degassing in the geothermal anomaly area of Tibet: A case study of Langju and Dagejia geothermal areas. Chin. Sci. Bull. 2011, 56, 2198–2208. [Google Scholar]
Location | Name | Sample Type | Elevation/m | Temperature/ °C |
---|---|---|---|---|
Woka graben | Kanai | Hot spring | 3933 | 51.96 |
Cuo Ba | Hot spring | 3988 | 36.25 | |
Woka | Hot spring | 3920 | 52.65 | |
Qiongduojiang graben | Sewu | Hot spring | 4400 | 43.21 |
Qiongduojiang | Hot spring | 4440 | 32.79 | |
Geothermal water outside the grabens | Zhegu | Hot spring | 4600 | 42.12 |
Northern Cuona graben | Riruo | Hot spring | 4440 | 81 |
Re Rong | Hot spring | 4248 | 66 | |
GuDui Q003 | Hot spring | 4388 | 85.1 | |
GuDui Q006 | Hot spring | 4388 | 85.7 | |
GuDui Q007 | Hot spring | 4388 | 85.3 | |
GuDui Q012 | Hot spring | 4388 | 85.3 | |
GuDui Q010 | Hot spring | 4388 | 84.9 | |
GuDui ZK251 | Borehole water | 4375 | 85.5 | |
Neizong Cuo | Hot spring | 5020 | 42.0 | |
Geimu | Hot spring | 4950 | 58.65 | |
Mulu | Hot spring | 4700 | 45.0 | |
Shuxin | Hot spring | 4320 | 45.21 | |
Qu Zhuo Mu | Hot spring | 4360 | 79.0 | |
Woka graben | Zengqiqu | Surface water | 4028 | 0.15 |
Woka graben | Cold spring 1 | Cold spring | 3954 | 3.58 |
Cold spring 2 | Cold spring | 3875 | 11.32 |
Location | Name | pH | TDS | Ca | Mg | Na | K | Cl | SO4 | HCO3 |
---|---|---|---|---|---|---|---|---|---|---|
Woka graben | Kanai | 8.25 | 323 | 5.24 | 0.03 | 110.90 | 1.90 | 31.0 | 42.5 | 147.00 |
Cuo Ba | 8.25 | 327 | 7.69 | 0.09 | 106.00 | 1.97 | 43.0 | 52.7 | 137.00 | |
Woka | 7.95 | 223 | 12.2 | 0.44 | 63.85 | 1.48 | 37.0 | 31.8 | 94.4 | |
Qiongduojiang graben | Sewu | 7.67 | 344 | 9.92 | 1.0 | 185.00 | 4.43 | 177.00 | 49.9 | 5.2 |
Qiongduojiang | 6.69 | 1739 | 219.70 | 31.62 | 452.70 | 70.75 | 189.00 | 735.00 | 135.00 | |
Geothermal water outside the grabens | Zhegu | 7.45 | 1169 | 11.4 | 1.57 | 267.00 | 11.5 | 183.00 | 3.9 | 14.3 |
Northern Cuona graben | Riruo | 7.17 | 1520 | 29.3 | 7.77 | 370.00 | 42.4 | 12.00 | 511.00 | 203.00 |
Re Rong | 7.44 | 1328 | 24.56 | 19.15 | 455.20 | 67.88 | 381.36 | 560.72 | 201.82 | |
GuDui Q003 | 8.67 | 1536 | 9.64 | 17.54 | 405.54 | 73.71 | 115.32 | 562.53 | 201.81 | |
GuDui Q006 | 8.37 | 1626 | 9.64 | 17.54 | 490.25 | 85.57 | 299.84 | 602.52 | 180.80 | |
GuDui Q007 | 7.57 | 1529 | 19.82 | 21.44 | 489.60 | 79.11 | 461.29 | 562.24 | 223.36 | |
GuDui Q012 | 8.37 | 1649 | 32.14 | 17.54 | 486.15 | 75.35 | 288.31 | 558.82 | 214.43 | |
GuDui Q010 | 7.46 | 1777 | 54.63 | 23.39 | 456.85 | 73.95 | 593.90 | 565.67 | 177.15 | |
GuDui ZK251 | 8.51 | 328 | 17.54 | 23.41 | 566.70 | 85.95 | 512.54 | 658.54 | 168.18 | |
Neizong Cuo | 7.21 | 169 | 39.53 | 7.17 | 150.60 | 16.7 | 9.0 | 1.0 | 108.00 | |
Geimu | 6.79 | 993 | 32.38 | 12.38 | 38.67 | 3.27 | 73.0 | 2.70 | 42.7 | |
Mulu | 6.63 | 695 | 160.00 | 27.29 | 246.00 | 25.91 | 287.00 | 272.00 | 118.00 | |
Shuxin | 6.34 | 1255 | 85.73 | 12.38 | 182.80 | 13.25 | 201.00 | 88.1 | 212.00 | |
Qu Zhuo Mu | 7.47 | 1169 | 177.60 | 16.46 | 205.30 | 33.06 | 128.00 | 315.00 | 444.00 | |
Woka graben | Zengqiqu | 9.65 | 42 | 12.3 | 1.61 | 4.98 | 1.09 | 37.0 | 1.10 | 2.60 |
Woka graben | Cold spring 1 | 7.73 | 365 | 58.17 | 12.78 | 64.08 | 3.77 | 110.0 | 57.60 | 114.0 |
Cold spring 2 | 7.35 | 173 | 32.74 | 8.19 | 37.02 | 0.59 | 82.0 | 11.10 | 42.3 |
Location | Thermal Spring | δD/‰ | δ18O/‰ | Elevation/m | Reference Value/‰ | d Value/‰ |
---|---|---|---|---|---|---|
Woka graben | Kanai | −156 | −19.9 | 3933 | −126 | 2.6 |
Cuo Ba | −151 | −19.5 | 3988 | −126 | 4.9 | |
Woka | −155 | −19.7 | 3920 | −126 | 2.9 | |
Qiongduojiang graben | Sewu | −155 | −20.0 | 4400 | −126 | 5.1 |
Qiongduojiang | −147 | −18.1 | 4440 | −126 | −2.1 | |
Geothermal water outside the grabens | Zhegu | −161 | −19.8 | 4600 | −126 | −2.9 |
Northern Cuona graben | Riruo | −143 | −16.4 | 4440 | −126 | −11.2 |
Re Rong | −145 | −17.7 | 4248 | −126 | −3.4 | |
GuDui Q003 | −143 | −16.4 | 4388 | −126 | −11.8 | |
GuDui Q006 | −140 | −15.5 | 4388 | −126 | −16.0 | |
GuDui Q007 | −143 | −16.3 | 4388 | −126 | −12.6 | |
GuDui Q012 | −143 | −15.8 | 4388 | −126 | −16.6 | |
GuDui Q010 | −142 | −15.8 | 4388 | −126 | −15.6 | |
GuDui ZK251 | −139 | −15.5 | 4375 | −126 | −15.0 | |
Neizong Cuo | −157 | −20.2 | 5020 | −126 | 4.4 | |
Geimu | −149 | −19.4 | 4950 | −126 | 5.6 | |
Mulu | −145 | −17.5 | 4700 | −126 | −5.7 | |
Shuxin | −150 | −19.0 | 4320 | −126 | 2.2 | |
Qu Zhuo Mu | −128 | −15.8 | 4360 | −126 | −1.9 | |
Zengqiqu | River Water | −146 | −18.8 | 4028 | −126 | 4.3 |
Cold-spring water | Cold spring 1 | −132 | −17.0 | 3954 | −126 | 4.4 |
Cold spring 2 | −142 | −17.8 | 3875 | −126 | 0.5 |
Number | Region Name | Recharge Elevation (m) | Surrounding Peaks |
---|---|---|---|
1 | Woka graben | 5100–5300 m, averaging 5200 m | 5200–5500 m |
2 | Qiongduojiang graben | 5300–5500 m | 5200–5700 m, with the highest peak at 6635 m (La Xiangbo Qingri Peak) |
3 | Northern Cuona graben | 4500–6200 m, averaging 5450 m | 4300~6400 m, with the highest peak at 6537 m (Kongbu Gangri Peak) |
4 | Extrathermal-Zhegu | 6000 m | 6635 m (La Xiangbo Qingri Peak) |
Location | Thermal Spring | SIC | SID | SIG | log(pCO2) | δ13C | Metamorphic Carbon Proportion | Mantle-Derived Carbon Proportion |
---|---|---|---|---|---|---|---|---|
Woka graben | Kanai | −0.67 | −3.27 | −2.41 | −3.61 | −6.1 | 13% | 87% |
Woka | −0.58 | −2.73 | −2.32 | −3.57 | −6.5 | 10% | 90% | |
Cuoba | −0.45 | −2.04 | −2.17 | −3.20 | −5.4 | 20% | 80% | |
Sangzhuling | 0.12 | −0.40 | −3.35 | −4.53 | / | / | ||
Qiongduojiang graben | Sewu | −0.28 | −1.20 | −3.59 | −2.32 | −7.3 | 2% | 98% |
Qiongduojiang | −0.24 | −0.97 | −1.28 | −1.43 | 0.5 | 76% | 24% | |
Northern Cuona graben | Riruo | −1.10 | −2.82 | −1.53 | −2.72 | 71% | 29% | |
Gudui Q004 | 0.41 | 0.84 | −1.79 | −1.54 | −1.0 | 62% | 38% | |
Gudui Q005 | 0.64 | 1.49 | −2.09 | −3.41 | / | / | / | |
Gudui Q006 | 0.79 | 1.86 | −2.23 | −2.57 | / | / | / | |
Gudui Q007 | 0.62 | 1.25 | −1.80 | −1.50 | / | / | / | |
Gudui H008 | 1.28 | 2.30 | −1.63 | −2.62 | / | / | / | |
Gudui Q010 | 0.69 | 1.34 | −1.65 | −1.54 | / | / | / | |
Gudui ZK251 | 0.00 | 0.00 | 0.00 | 0.00 | / | / | / | |
Neizongcuo | −1.48 | −3.36 | −1.75 | −3.16 | −1.5 | 58% | 42% | |
Geimu | −0.77 | −1.71 | −2.08 | −1.69 | 0.6 | 77% | 23% | |
Mulu | −0.03 | −0.48 | −1.35 | −1.09 | 2.5 | 95% | 5% | |
Shuxin | −0.72 | −1.93 | −1.27 | −0.94 | −1.3 | 60% | 40% | |
Quzhuomu | 0.85 | 0.69 | −0.59 | −2.06 | 0.6 | 77% | 23% | |
Southern Cuona graben | Cuona spring | 0.65 | 0.55 | −2.24 | −3.79 | / | / | / |
Cuona-drilling | 0.81 | 0.79 | −2.46 | −3.95 | / | / | / | |
Geothermal water outside the grabens | Zhegu | −0.45 | −1.42 | −3.13 | −2.09 | −4.0 | 33% | 67% |
River | Zengqi river | 0.47 | −0.05 | −3.60 | −5.31 | −7.4 | / | / |
Jiaboxiong river | −0.13 | −0.99 | −3.21 | −3.08 | / | / | / | |
Qiena river | −1.68 | −99.99 | −4.97 | −3.97 | / | / | / | |
Cuona river | −0.49 | −1.89 | −2.63 | −2.95 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Peng, J.; Liu, Y. Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet. Water 2024, 16, 1395. https://doi.org/10.3390/w16101395
Zhang W, Peng J, Liu Y. Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet. Water. 2024; 16(10):1395. https://doi.org/10.3390/w16101395
Chicago/Turabian StyleZhang, Wen, Jiansong Peng, and Yong Liu. 2024. "Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet" Water 16, no. 10: 1395. https://doi.org/10.3390/w16101395
APA StyleZhang, W., Peng, J., & Liu, Y. (2024). Hydrogeochemical Characteristics of the Geothermal System in the Woka-Cuona Rift Zone, Tibet. Water, 16(10), 1395. https://doi.org/10.3390/w16101395