Identifying the Groundwater Sources of Huangtupo Landslide in the Three Gorges Reservoir Area of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples
2.3. Analyses
2.4. Definition of Reference Isotopic Values for Precipitation
2.4.1. LWML in Study Area
2.4.2. Altitude Effect of Precipitation in Study Area
2.5. Isotopic Equation for Mixed Water Samples
3. Results and Discussion
3.1. Groundwater Chemical Analyses and the Source of LGW
3.2. Groundwater Isotopic Analyses and the Source of LGW
3.2.1. Source of Karst Groundwater (KGW)
3.2.2. Source of Landslide Groundwater (LGW)
3.3. The Source Fraction and Significance of Local Precipitation
4. Conclusions
- Before the relocation of residents from the Huangtupo landslide, the groundwater in the landslide area contained high concentrations of nitrate ions, derived from the direct discharge of domestic sewage onto the slope surface by villagers. As a result, the groundwater of the landslide area was impacted by human sewage, which not only influenced the chemical composition of the groundwater but also had potential implications for slope stability.
- The primary hydrochemical types in the LGW area are HCO3·SO4-Ca and SO4·HCO3-Ca. The high concentration of sulfate ions in the landslide groundwater is likely derived from gypsum-cemented conglomerates at the top of the Jialingjiang Formation, and the landslide groundwater is recharged by karst water.
- Stable isotope tracing conducted after the relocation of residents from the Huangtupo landslide confirms that the landslide groundwater originates from a mixture of higher-elevation karst water and local precipitation. The development of conjugate joints in the Badong Formation provides a pathway for the deep migration of karst water. A conceptual flow model reveals the recharge pattern of the landslide groundwater.
- The landslide groundwater is a mixture of upslope karst water and landslide precipitation, with karst water being the primary source of recharge. This suggests that intercepting and redirecting the karst water supply from the rear should be the primary focus of any drainage management efforts on the landslide. The groundwater at the sliding rupture surface contains the highest proportion of local precipitation, suggesting that fractures and joints in the rupture zone are interconnected, which could be a critical factor in slope landslide development.
- This study lays the theoretical foundation for the stability analysis and drainage management of the Huangtupo landslide and offers valuable insights for investigating the numerous large-scale landslide deposits in the Three Gorges Reservoir area. It is recommended to conduct long-term monitoring and research to enhance our understanding of the landslide groundwater system further and refine the model, ultimately providing more precise evidence for landslide prevention and mitigation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Asch, T.W.J.; Buma, J.; Van Beek, L.P.H. A view on some hydrological triggering systems in landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Rutqvist, J.; Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 2003, 11, 7–40. [Google Scholar] [CrossRef]
- Bogaard, T.; Guglielmi, Y.; Marc, V.; Emblanch, C.; Bertrand, C.; Mudry, J. Hydrogeochemistry in landslide research: A review. Bulletin de la Société Géologique de France 2007, 178, 113–126. [Google Scholar] [CrossRef]
- Vallet, A.; Charlier, J.B.; Fabbri, O.; Bertrand, C.; Carry, N.; Mudry, J. Functioning and precipitation-displacement modelling of rainfall-induced deep-seated landslides subject to creep deformation. Landslides 2016, 13, 653–670. [Google Scholar] [CrossRef]
- Hua-xi, G.; Kun-long, Y. Study on spatial prediction and time forecast of landslide. Nat. Hazards 2014, 70, 1735–1748. [Google Scholar] [CrossRef]
- Bogaard, T.A.; Greco, R.; Olivares, L.; Picarelli, L. The Round Robin Test on Landslide Hydrological Modeling at IWL2013. Procedia Earth Planet. Sci. 2014, 9, 180–188. [Google Scholar] [CrossRef]
- Cappa, F.; Guglielmi, Y.; Soukatchoff, V.M.; Mudry, J.; Bertrand, C.; Charmoille, A. Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: Example of the La Clapière landslide (Southern Alps, France). J. Hydrol. 2004, 291, 67–90. [Google Scholar] [CrossRef]
- Wang, J.; Su, A.; Xiang, W.; Yeh, H.; Xiong, C.; Zou, Z.; Zhong, C.; Liu, Q. New data and interpretations of the shallow and deep deformation of Huangtupo No. 1 riverside sliding mass during seasonal rainfall and water level fluctuation. Landslides 2016, 13, 795–804. [Google Scholar] [CrossRef]
- Hua, S. Genetic Mechanism of Multi-Stages Sliding and Evolution Law of the Huangtupo Landslide in the Three Gorges Reservoir Area. Ph.D. Dissertation, China University of Geosciences, Wuhan, China, 2015. [Google Scholar]
- Tang, H.; Li, C.; Hu, X.; Su, A.; Wang, L.; Wu, Y.; Criss, R.; Xiong, C.; Li, Y. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides 2015, 12, 511–521. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, W.; Lu, N. Landsliding triggered by reservoir operation: A general conceptual model with a case study at Three Gorges Reservoir. Acta Geotech. 2014, 9, 771–788. [Google Scholar] [CrossRef]
- Deng, Q.L. Slope Tectonics: An Example Analysis of the New County-Seat Town Slope of Badong; China University of Geosciences Press: Wuhan, China, 2000. [Google Scholar]
- Dong, Y.; Liao, Z.; Wang, J.; Liu, Q.; Cui, L. Potential failure patterns of a large landslide complex in the Three Gorges Reservoir area. Bull. Eng. Geol. Environ. 2023, 82, 41. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Bertrand, C.; Compagnon, F.; Follacci, J.P.; Mudry, J. Acquisition of water chemistry in a mobile fissured basement massif: Its role in the hydrogeological knowledge of the La Clapière landslide (Mercantour massif, southern Alps, France). J. Hydrol. 2000, 229, 138–148. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Cappa, F.; Amitrano, D. High-definition analysis of fluid-induced seismicity related to the mesoscale hydromechanical properties of a fault zone. Geophys. Res. Lett. 2008, 35, L06306. [Google Scholar] [CrossRef]
- Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T.A.; Corsini, A. Origin and assessment of deep groundwater inflow in the Ca’Lita landslide using hydrochemistry and in situ monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4205–4221. [Google Scholar] [CrossRef]
- Cervi, F.; Corsini, A.; Doveri, M.; Mussi, M.; Ronchetti, F.; Tazioli, A. Characterizing the Recharge of Fractured Aquifers: A Case Study in a Flysch Rock Mass of the Northern Apennines (Italy). In Proceedings of the IAEG XII Congress: Engineering Geology for Society and Territory, Torino, Italy, 13–19 September 2014; pp. 563–567. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- McCarthy, K.A.; McFarland, W.D.; Wilkinson, J.M.; White, L.D. The dynamic relationship between ground water and the Columbia River: Using deuterium and oxygen-18 as tracers. J. Hydrol. 1992, 135, 1–12. [Google Scholar] [CrossRef]
- Peng, T.; Wang, C.; Lai, T.; Ho, F.S. Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan. Environ. Geol. 2007, 52, 1617–1629. [Google Scholar] [CrossRef]
- Peters, E.; Visser, A.; Esser, B.; Moran, J. Tracers Reveal Recharge Elevations, Groundwater Flow Paths and Travel Times on Mount Shasta, California. Water 2018, 10, 97. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; Qian, J.; Wang, Z.; Hou, X.; Fu, C.; Ma, J.; Zhang, C.; Li, J. Hydrogeochemical Characteristics and Evolution of Karst Groundwater in Heilongdong Spring Basin, Northern China. Water 2023, 15, 726. [Google Scholar] [CrossRef]
- Compagnon, F.; Guglielmi, Y.; Mudry, J.; Follacci, J.; Ivaldi, J. Approche chimique et isotopique de l’origine des eaux en transit dans un grand mouvement de terrain: Exemple du glissement de La Clapière (Alpes-Maritimes, France). Comptes Rendus De l’Académie Des Sci.-Ser. IIA-Earth Planet. Sci. 1997, 325, 565–570. [Google Scholar] [CrossRef]
- Peng, T.; Wang, C.; Hsu, S.; Wang, G.; Su, T.; Lee, J. Identification of groundwater sources of a local-scale creep slope: Using environmental stable isotopes as tracers. J. Hydrol. 2010, 381, 151–157. [Google Scholar] [CrossRef]
- Mebrahtu, T.K.; Banning, A.; Girmay, E.H.; Wohnlich, S. The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia. Hydrogeol. J. 2021, 29, 1239–1260. [Google Scholar] [CrossRef]
- Binet, S.; Jomard, H.; Lebourg, T.; Guglielmi, Y.; Tric, E.; Bertrand, C.; Mudry, J. Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers. Hydrol. Process. 2007, 21, 3463–3472. [Google Scholar] [CrossRef]
- Charlier, J.; Bertrand, C.; Binet, S.; Mudry, J.; Bouillier, N. Use of continuous measurements of dissolved organic matter fluorescence in groundwater to characterize fast infiltration through an unstable fractured hillslope (Valabres rockfall, French Alps). Hydrogeol. J. 2010, 18, 1963–1969. [Google Scholar] [CrossRef]
- Vallet, A.; Bertrand, C.; Mudry, J.; Bogaard, T.; Fabbri, O.; Baudement, C.; Régent, B. Contribution of time-related environmental tracing combined with tracer tests for characterization of a groundwater conceptual model: A case study at the Séchilienne landslide, western Alps (France). Hydrogeol. J. 2015, 23, 1761–1779. [Google Scholar] [CrossRef]
- Deng, Q.L.; Zhu, Z.Y.; Cui, Z.Q.; Wang, X.P. Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China. Eng. Geol. 2000, 58, 67–83. [Google Scholar] [CrossRef]
- Wu, S.; Shi, L.; Wang, R.; Tan, C.; Hu, D.; Mei, Y.; Xu, R. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River. Eng. Geol. 2001, 59, 51–58. [Google Scholar] [CrossRef]
- Di Maio, C.; Vassallo, R.; Vallario, M.; Pascale, S.; Sdao, F. Structure and kinematics of a landslide in a complex clayey formation of the Italian Southern Apennines. Eng. Geol. 2010, 116, 311–322. [Google Scholar] [CrossRef]
- Huang, F.; Luo, X.; Liu, W. Stability Analysis of Hydrodynamic Pressure Landslides with Different Permeability Coefficients Affected by Reservoir Water Level Fluctuations and Rainstorms. Water 2017, 9, 450. [Google Scholar] [CrossRef]
- Van der Spek, J.E.; Bogaard, T.A.; Bakker, M. Characterization of groundwater dynamics in landslides in varved clays. Hydrol. Earth Syst. Sci. 2013, 17, 2171–2183. [Google Scholar] [CrossRef]
- Jiang, J. Research on the Deformation Mechanism and Dynamic Response of Typical Landslides in Three Gorges Reservoir in Case of Frequent Microseisms. Ph.D. Dissertation, China University of Geosciences, Wuhan, China, 2012. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Hou, F.; Ni, B.; Adler, M. Study on Hydrogen and oxygen stable isotopes of atmospheric precipitation in China. Sci. Bull. 1983, 28, 801. [Google Scholar]
- Huang, H.; Luo, M.; Chen, Z.; Zhou, H.; Zhang, L. The spatial and temporal distribution of stable hydrogen and oxygen isotope of meteoric water in Xiangxi river basin. Hydrogeol. Eng. Geol. 2016, 43, 36–42. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, H.; Yu, F.; Liu, D. Oxygen isotopic composition of meteoric water in the eastern part of Xizang. Geochimica 1980, 01, 113–121. [Google Scholar] [CrossRef]
- Yu, J.; Yu, F.; Liu, D. The oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of China. Geochimica 1987, 1, 22–26. [Google Scholar] [CrossRef]
- Criss, R.; Fernandes, S.; Winston, W. Isotopic, Geochemical and Biological Tracing of the Source of an Impacted Karst Spring, Weldon Spring, Missouri. Environ. Forensics 2001, 2, 99–103. [Google Scholar] [CrossRef]
Samples | Precipitation | Groundwater | Surface Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | J9 | |
Elevation(m) | 276 | 1589 | 1500 | 1249 | 905 | 301 | 285 | 192 | 219 | 812 | 815 |
δD ‰ | −27.5 | −56.1 | −54.2 | −54.2 | −52 | −54.9 | −54.7 | −56.1 | −54.8 | −47.2 | −44.4 |
δ18O ‰ | −5.2 | −8.6 | −8.5 | −8.5 | −8.3 | −8.5 | −8.6 | −8.5 | −8.6 | −6.1 | −6 |
d‰ | 14.1 | 12.7 | 13.8 | 13.8 | 14.4 | 13.1 | 14.1 | 11.9 | 14 | 1.6 | 3.6 |
Samples | JC3 | JC7 | JC6 | JC8 | W26 | W25 | W03 | SZ1 | SZ2-1 | SZ2-2 | JC-BR |
---|---|---|---|---|---|---|---|---|---|---|---|
Z*/m | 142 | 143 | 162.8 | 195.6 | 190 | 190 | 180 | 185 | 185 | 185 | 180 |
Z/m | 183.5 | 176.3 | 209.8 | 263.6 | 250 | 235 | 230 | 225 | 275 | 275 | 263.5 |
δD ‰ | −53 | −54.4 | −53.4 | −50.1 | −52.1 | −53 | −54.4 | −49.1 | −46.2 | −44.7 | −49 |
δ18O ‰ | −8.1 | −8.2 | −8.2 | −8.2 | −7.9 | −8.3 | −8.3 | −7.5 | −7.3 | −7.2 | −7.5 |
d‰ | 11.8 | 11.2 | 12.2 | 13.1 | 13.5 | 13.4 | 12 | 10.9 | 12.2 | 12.9 | 11 |
Samples | Location | Description | Relative Mineral Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Montmorillonite | Chlorite | Illite | Kaolinite | |||
XRD1 | K5 + 21.7 m | clayey silt at main sliding zone | 28 | 2 | 22 | 18 | 8 | 22 | 0 |
XRD2 | K3 + 138 m | clayey silt at upper sliding zone | 23 | 4 | 32 | 13 | 6 | 22 | 0 |
XRD3 | JC8 − 112 m | strongly karstified muddy limestone | 11 | 6 | 43 | 1 | 6 | 27 | 6 |
XRD4 | JC6 − 35.3 m | soft interlayered clayey silt | 14 | 6 | 40 | 10 | 5 | 25 | 0 |
Samples | Relative Contributing Fraction | |
---|---|---|
JC3 | −8.1 | |
JC7 | −8.2 | |
JC6 | −8.2 | |
JC8 | −8.2 | |
W26 | −7.9 | |
W25 | −8.4 | |
W03 | −8.3 | |
SZ1 | −7.5 | |
SZ2-1 | −7.3 | |
SZ2-2 | -7.2 | |
JC-BR | -7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Xiang, W.; Wang, J.; Cui, D.; Liu, Q. Identifying the Groundwater Sources of Huangtupo Landslide in the Three Gorges Reservoir Area of China. Water 2023, 15, 1741. https://doi.org/10.3390/w15091741
Cao S, Xiang W, Wang J, Cui D, Liu Q. Identifying the Groundwater Sources of Huangtupo Landslide in the Three Gorges Reservoir Area of China. Water. 2023; 15(9):1741. https://doi.org/10.3390/w15091741
Chicago/Turabian StyleCao, Shen, Wei Xiang, Jinge Wang, Deshan Cui, and Qingbing Liu. 2023. "Identifying the Groundwater Sources of Huangtupo Landslide in the Three Gorges Reservoir Area of China" Water 15, no. 9: 1741. https://doi.org/10.3390/w15091741