Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Photocatalyst
2.2.1. Preparation of g-C3N4
2.2.2. Preparation of LaMnO3
2.2.3. Preparation of LaMnO3/g-C3N4
2.3. Characterization of Catalyst
2.4. Performance Tests of Photocatalysts
2.5. Mechanism of Photocatalytic Degradation
3. Results and Discussion
3.1. Characterization of Photocatalysts
3.2. Photocatalytic Performance for TC Degradation
3.3. Possible Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boxall, A.B.; Kolpin, D.W.; Halling-Sørensen, B.; Tolls, J. Peer reviewed: Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 2003, 37, 286A–294A. [Google Scholar] [CrossRef]
- Samal, S.K.; Das, B.K.; Pal, B. Isolation, biochemical characterization, antibiotic susceptibility study of Aeromonas hydrophila isolated from freshwater fish. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 259–267. [Google Scholar]
- Bergeron, S.; Boopathy, R.; Nathaniel, R.; Corbin, A.; Lafleur, G. Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int. Biodeterior. Biodegrad. 2015, 102, 370–374. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Li, L.; Xu, Z.; Chen, W. Adsorption of tetracycline to nano-NiO: The effect of co-existing Cu(ii) ions and environmental implications. Environ. Sci. Process. Impacts 2014, 16, 1462. [Google Scholar] [CrossRef]
- Jang, H.M.; Yoo, S.; Choi, Y.K.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018, 259, 24. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Z.; Deng, C.; Zhu, M.; Wang, D.; Li, K.; Deng, Y.; Jiang, M. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal. J. Hazard. Mater. 2016, 320, 495–503. [Google Scholar] [CrossRef]
- Zuccato, E.; Castiglioni, S.; Bagnati, R.; Melis, M.; Fanelli, R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J. Hazard. Mater. 2010, 179, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ji, M.; Li, X.; Song, H.; Wang, G.; Qi, C.; Li, A. Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin. Bioresour. Technol. 2019, 293, 122068. [Google Scholar] [CrossRef]
- Smillie, C.S.; Smith, M.B.; Friedman, J.; Cordero, O.X.; David, L.A.; Alm, E.J. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011, 480, 241–244. [Google Scholar] [CrossRef]
- Lee, C.; Keenan, C.R.; Sedlak, D.L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, T.; Mao, J.; Wu, X. Comparative study of sulfamethazine degradation in visible light induced photo-Fenton and photo-Fenton-like systems. J. Environ. Chem. Eng. 2015, 3, 2393–2400. [Google Scholar] [CrossRef]
- Özcan, A.; Özcan, A.A.; Demirci, Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chem. Eng. J. 2016, 304, 518–526. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2008, 38, 253–278. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Heo, Y.J.; Lee, J.W.; Lee, J.H.; Bajgai, J.; Lee, K.J. Photocatalytic hydrogen evolution via water splitting: A short review. Catalysts 2018, 8, 655. [Google Scholar] [CrossRef]
- Aslam, M.; Qamar, M.T.; Soomro, M.T.; Ismail, I.M.I.; Salah, N.; Almeelbi, T.; Gondal, M.A.; Hameed, A. The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Appl. Catal. B 2016, 180, 391–402. [Google Scholar] [CrossRef]
- Tzeng, J.H.; Weng, C.H.; Wang, C.C.; Ho, M.S.; Yen, L.T.; Chen, J.Y.; Gaybullaev, G.; Poonpakdee, C.; Lin, Y.T. A solution of identifying biophysical properties and 3D cellular structure of visible-light-driven photocatalytic inactivated Staphylococcus aureus. Chem. Eng. J. 2021, 421, 127880. [Google Scholar] [CrossRef]
- Tzeng, J.H.; Weng, C.H.; Chang, C.J.; Yen, L.T.; Luna, M.D.G.; Huang, J.W.; Lin, Y.T. N-Schorl TiO2 nanocomposite for visible-light photocatalysis deactivation yeast exemplified by Candida albicans. Chem. Eng. J. 2022, 435, 134294. [Google Scholar] [CrossRef]
- Pi, L.; Jiang, R.; Zhou, W.; Zhu, H.; Xiao, W.; Wang, D.; Mao, X. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Appl. Surf. Sci. 2015, 358, 231–239. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Wen, W.; Xue, L.; Yan, Y. Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J. Alloys Compd. 2010, 491, 560–564. [Google Scholar] [CrossRef]
- Dias, D.J.A.; Andrade, M.A.S., Jr.; Santos, H.L.S.; Morelli, P.D.M.R.; Mascaro, P.D.L.H. Lanthanum-based perovskites for catalytic oxygen evolution reaction. ChemElectroChem 2020, 7, 3173–3192. [Google Scholar] [CrossRef]
- Jie, H.; Jie, M.; Liu, Y.; Hao, H.; Jiao, T. One-pot synthesis of Ag-modified LaMnO3–graphene hybrid photocatalysts and application in the photocatalytic discoloration of an azo-dye. RSC Adv. 2015, 5, 54028–54036. [Google Scholar]
- He, Z.G.; An, T.C.; Shi, H.X.; Chen, J.Y.; Li, G.Y. Visible-light-enhanced photothermocatalytic activity of ABO(3)-type perovskites for the decontamination of gaseous styrene. Appl. Catal. B Environ. 2017, 209, 146–154. [Google Scholar]
- Wu, T.Y.; Li, X.; Wen, C.H.; Ding, F.; Tan, F.L.; Duan, R.Y. Highly efficient LaMO3 (M = Co, Fe) perovskites catalyzed Fenton’s reaction for degradation of direct blue 86. Environ. Res. 2023, 227, 115756. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Rodriguez, L.; Huerta-Flores, A.M.; Mora-Hernandez, J.M.; Torres- Martínez, L.M. Photocatalytic evolution of H2 over visible-light active LaMO3 (M: Co, Mn, Fe) perovskite materials: Roles of oxygenated species in catalytic performance. J. Phys. Chem. Solids 2020, 136, 109189. [Google Scholar] [CrossRef]
- Shirazi, P.; Rahbar, M.; Behpour, M.; Ashrafi, M. La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts. New J. Chem. 2019, 44, 231–238. [Google Scholar] [CrossRef]
- Chen, X.X.; Li, R.L.; Pan, X.Y.; Huang, X.T.; Yi, Z.G. Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chem. Eng. J. 2017, 320, 644–652. [Google Scholar] [CrossRef]
- Wang, R.X.; Zhu, P.F.; Liu, M.; Xu, J.; Duan, M.; Luo, D. Synthesis and characterization of magnetic ZnFe2O4/Bi0-Bi2MoO6 with Z-scheme heterojunction for antibiotics degradation under visible light. Sep. Purif. Technol. 2021, 277, 119339. [Google Scholar] [CrossRef]
- Liu, C.H.; Dai, H.L.; Tan, C.Q.; Pan, Q.Y.; Hu, F.P.; Peng, X.M. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 2022, 310, 121326. [Google Scholar] [CrossRef]
- Wang, J.D.; Wang, M.; Kang, J.; Tang, Y.W.; Liu, J.Y.; Li, S.Y.; Xu, Z.Q.; Tang, P.P. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism. Sep. Purif. Technol. 2022, 296, 121440. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, Y.X.; Li, L.L.; Sun, H.R.; Samsul Amin, M.D.; Guo, F.; Wen, H.B.; Shi, W.L. Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline. J. Alloys Compd. 2022, 895, 162667. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.T.; Zhang, C.; Huang, D.L.; Zeng, G.M.; Xiao, R.; Lai, C.; Zhou, C.Y.; Guo, H. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight. Chem. Eng. J. 2018, 349, 808–821. [Google Scholar] [CrossRef]
- Chai, B.; Liu, C.; Yan, J.T.; Ren, Z.D.; Wang, Z.J. In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl. Surf. Sci. 2018, 448, 1–8. [Google Scholar] [CrossRef]
- Xu, Q.L.; Zhu, B.C.; Jiang, C.J.; Cheng, B.; Yu, J.G. Constructing 2D/2D Fe2O3/g-C3N4 direct z-Scheme photocatalysts with enhanced H2 generation performance. Sol. Rrl 2018, 2, 1800006. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ning, X.; Zhan, L.; Ma, L.; Xu, X.; Li, S.; Sun, S. Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4. Sep. Purif. Technol. 2018, 201, 309–317. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ning, X.; Zhan, L.; Chen, J.; Li, Z. Constructing a direct Z-scheme La2NiO4/g-C3N4 hybrid photocatalyst with boosted visible light photocatalytic activity. Sep. Purif. Technol. 2018, 201, 327–335. [Google Scholar] [CrossRef]
- Jin, L.; Zhou, X.; Ning, X.; Zhan, L.; Kong, M.; Tan, K.; Li, J.; Lin, Z. Boosting visible light photocatalytic performance of g-C3N4 nanosheets by combining with LaFeO3 nanoparticles. Mater. Res. Bull. 2018, 102, 353–361. [Google Scholar] [CrossRef]
- Elsiddig, Z.A.; Wang, D.; Xu, H.; Zhang, W.; Zhang, T.; Zhang, P.; Tian, W.; Sun, Z.; Chen, J. Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. J. Alloys Compd. 2018, 740, 148–155. [Google Scholar] [CrossRef]
- Elsiddig, Z.A.; Xu, H.; Wang, D.; Zhang, W.; Guo, X.; Zhang, Y.; Sun, Z.; Chen, J. Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrode. Electrochim. Acta 2017, 253, 422–429. [Google Scholar] [CrossRef]
- Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P.K. A hierarchical z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108. [Google Scholar] [CrossRef]
- Zhu, M.S.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.L.; Wang, X.C.; Majima, T. Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242. [Google Scholar] [CrossRef]
- Shi, X.W.; Fujitsuka, M.; Kim, S.; Majima, T. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3N4/MoS2 Hybrid. Small 2018, 14, 1703277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, W.; Zhong, L.; Liu, D.; Cao, X.; Cui, F. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl. Catal. B Environ. 2018, 220, 290–302. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Q.; Ji, M.; Zhu, H.; Hou, H.; Yang, Q.; Jiang, C.; Wang, J.; Tian, L.; Chen, J.; et al. Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J. Alloys Compd. 2017, 723, 1121–1131. [Google Scholar] [CrossRef]
- Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678. [Google Scholar] [CrossRef]
- Shen, R.; Xie, J.; Zhang, H.; Zhang, A.; Chen, X.; Li, X. Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-Free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustain. Chem. Eng. 2018, 6, 816–826. [Google Scholar] [CrossRef]
- Lin, M.; Chen, H.; Zhang, Z.; Wang, X. Engineering interface structures for heterojunction photocatalysts. Phys. Chem. Chem. Phys. 2023, 25, 4388–4407. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, X.; Ma, F.; Wang, L.; Duan, X.; Wang, S. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol. 2018, 52, 8649–8658. [Google Scholar] [CrossRef]
- Yuan, X.; Duan, S.; Wu, G.; Sun, L.; Cao, G.; Li, D.; Xu, H.; Li, Q.; Xia, D. Enhanced catalytic ozonation performance of highly stabilized mesoporous ZnO doped g-C3N4 composite for efficient water decontamination. Appl. Catal. A 2018, 551, 129–138. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.; Liu, Y.; Tan, Y.Z.; Yuan, X.; Chew, J.W. Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 2018, 347, 412–422. [Google Scholar] [CrossRef]
- Deng, X.Z.; Song, C.; Tong, Y.L.; Yuan, G.; Gao, F.; Liu, D.Q.; Zhang, S.T. Enhanced photocatalytic efficiency of C3N4/BiFeO3 heterojunctions: The synergistic effects of band alignment and ferroelectricity. Phys. Chem. Chem. Phys. 2018, 20, 3648–3657. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, S.; Sun, J.; Meng, X.; Luo, J.; Zhou, D.; Crittenden, J. Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes. Environ. Sci. Technol. 2018, 52, 7380–7389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.Y.; Xu, P.; Lai, C.; Zhang, C.; Zeng, G.M.; Huang, D.L.; Cheng, M.; Hu, L.; Xiong, W.P.; Wen, X.F.; et al. Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven dradation of aqueous sulfamethazine and hydrogen evolution. Chem. Eng. J. 2019, 359, 186–196. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, X.; Zhang, H.; Cheng, Q.; Cheng, X. Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B. Sep. Purif. Technol. 2019, 210, 125–134. [Google Scholar] [CrossRef]
- Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Luo, J.; Chen, J.F.; Guo, R.T.; Qiu, Y.L.; Li, W.; Zhou, X.S.; Ning, X.M.; Zhan, L. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Sep. Purif. Technol. 2019, 211, 882–894. [Google Scholar] [CrossRef]
- Suyana, P.; Ganguly, P.; Nair, B.N.; Mohamed, A.P.; Warrier, K.; Hareesh, U. Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ. Sci. Nano 2017, 4, 212–221. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ma, L.; Xu, X. Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2016, 390, 357–367. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Pore Diameter (nm) | Pore Volume (cm3/g) |
---|---|---|---|
CN | 22.4137 | 22.2745 | 0.1248 |
LMO | 24.1944 | 20.8686 | 0.1262 |
LMO/CN-10 | 20.882 | 23.1663 | 0.1862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Dong, J.; Hu, M.; Cheng, G.; Lv, J. Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation. Water 2023, 15, 1627. https://doi.org/10.3390/w15081627
Lu M, Dong J, Hu M, Cheng G, Lv J. Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation. Water. 2023; 15(8):1627. https://doi.org/10.3390/w15081627
Chicago/Turabian StyleLu, Ming, Jiaqi Dong, Mingzhu Hu, Guofeng Cheng, and Juan Lv. 2023. "Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation" Water 15, no. 8: 1627. https://doi.org/10.3390/w15081627
APA StyleLu, M., Dong, J., Hu, M., Cheng, G., & Lv, J. (2023). Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation. Water, 15(8), 1627. https://doi.org/10.3390/w15081627