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Abstract: With the extensive use and improper treatment of antibiotics, antibiotic pollution in
aquaculture wastewater has become increasingly severe. Tetracycline antibiotics have become one of
the most commonly used fishery antibiotics. In this study, a Z-scheme heterostructure LaMnO3/g-
C3N4 was constructed by the sol–gel method as a photocatalyst to degrade tetracycline, and the
influence of anions on the degradation effect was investigated. The LaMnO3/g-C3N4 hybrid was
successfully constructed by scanning electron microscope, Fourier transform infrared spectrum,
and X-ray diffraction. The results of degradation experiments demonstrated that the maximum
tetracycline degradation efficiency of LaMnO3/g-C3N4-10 (LMO/CN-10) was 80%, the removal rate
of TC decreased from 71% to 48% when the concentration of chloride ions increased from 0 mM to
10 mM, and the removal rate of TC decreased from 75% to 28% when the concentration of carbonate
ions increased from 0 mM to 10 mM. This enhanced photocatalytic activity was attributed to the
formation of a Z-scheme structure that promoted the separation of photoinduced electron holes while
maintaining its own strong redox ability. Finally, the photocatalytic mechanism was designed based
on the free radical trapping experiment, electrochemical impedance, and photoluminescence spectra,
providing an opportunity for the construction of a new photocatalyst for the treatment of aquaculture
tailwater in the future.

Keywords: photocatalysis; LaMnO3/g-C3N4; visible light; z-scheme mechanism

1. Introduction

The excellent ecological environment of aquaculture waters is the premise to maintain
the sustainable development of aquaculture. In recent years, domestic breeding density
keeps increasing to raise production and income, resulting in the accumulation of residual
bait and excrement in water and the continuous deterioration of the aquaculture environ-
ment. Antibiotics have been widely used in aquaculture to prevent and treat fish diseases [1].
However, antibiotic pollution in aquaculture wastewater has become increasingly severe
with the massive use and improper treatment of antibiotics, and it is urgent to tackle this
problem [2]. Tetracycline antibiotics (TC) have become one of the commonly used fishery
antibiotics owing to their low price and broad-spectrum antibacterial properties. High
tetracycline content in aquacultural tailwater influences the growth and development of
fish and indirectly affects human health [3]. Additionally, tetracycline remains in the soil
along with aquaculture tailwater, resulting in the loss of soil fertility [4]. Therefore, methods
for treatment of tetracycline in aquaculture tailwater are urgently needed. At present, the
main treatment methods for TC wastewater comprise physical [5–7], biological [7–9], and
chemical methods [10–13].
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Photocatalysis technology has been applied in many fields, such as environmental,
catalysis, and energy due to the advantages of having high efficiency and offering en-
vironmental protection, being clean and pollution-free, with sustainable utilization [14].
Photocatalytic hydrogen production is the process of converting solar energy into hydro-
gen energy through semiconductor materials to realize the collection and utilization of
hydrogen [15]. There are many applications, such as decontamination of organic pollu-
tants, inactivation of toxic bacteria, and carbon dioxide reduction. Aslam prepared a CeO2
photocatalyst to degrade phenol pollutants [16]. The analysis of the degradation process
and degradation products demonstrated that the photocatalyst played a significant role in
the degradation process and did not cause secondary pollution to the environment. Tzeng
studied the mechanism of bacterial damage under a visible-light-driven photo-inactivation
system [17] and demonstrated that the as-synthesized nitrogen-schorl co-modified TiO2
(N-Schorl-TiO2) photocatalytic nanocomposite is highly effective in deactivating pathogenic
C. albicans under visible-light irradiation [18]. However, photocatalysis technology has en-
countered drawbacks, such as issues with the stability of the catalysts, separation difficulties
of catalysts themselves, and a low removal efficiency.

In recent years, the synthesis of carbon materials and semiconductor photocatalysts
has gradually become a research hotspot of modified photocatalysts. Carbon materials
mainly consist of biochar, graphene, and carbon nanotubes [19]. Graphene carbon nitride
(g-C3N4) is a highly efficient photocatalyst that reacts under visible light. Furthermore,
g-C3N4, as a non-metallic polymer material, has become one of the recent research hotspots
in the field of photocatalysis.

Perovskite is a class of crystalline ceramic oxides with the molecular formula ABO3,
where A and B represent the rare earth element or alkali metal element ion and the transi-
tion metal element ion, respectively [20]. It occupies the cubic densely packed octahedral
body center with six oxygen complexes. Lanthanide perovskite-type oxides are an essential
branch of perovskite oxides. The rare earth element lanthanum (La) occupies a site of per-
ovskite and has the characteristics of stability and easy coordination. B-site is a transition
metal cation, comprising Fe, Co, Ni, Cr, Ti, Mn, and Al [21]. Lanthanide perovskite oxides
have been further investigated in the field of photocatalysis. Hu successfully prepared Ag-
modified LaMnO3-graphene composite photocatalytic materials by the sol–gel method [22].
Chen prepared a series of ABO3 perovskites (A = La, Ce, Sm). The photocatalytic degra-
dation of volatile styrene by different perovskites was studied [23]. Perovskite-structured
catalysts LaMO3 (M = Co, Fe) were successfully synthesized, and an attempted was made
to catalyze hydrogen peroxide (H2O2) for the degradation of Direct Blue 86 (DB86) [24].
Ibarra-Rodriguez prepared LaMO3 (M = Co, Ni and Fe) doped photocatalysts by sol–gel
and solid phase reaction methods and found that LaMO3 series perovskite oxides prepared
by the sol–gel method had a greater specific surface area and photocatalytic hydrogen pro-
duction efficiency [25]. La2MnTiO6, a double perovskite photocatalytic material prepared
by Shirazi using the sol–gel method, exhibited high cyclic stability in the process of acid blue
degradation by visible light [26]. Previous reports demonstrated that the construction of
heterojunction is an advisable approach to designing high-efficient photocatalysts. Among
the heterojunction photocatalysts, the Z-scheme photocatalytic system has outstanding
ability to inhibit the recombination of photogenerated electron-hole pairs [27]. A novel
Z-scheme heterojunction magnetic ZnFe2O4/ Bi0-Bi2MoO6 photocatalyst synthesized by
Wang to tetracycline degradation and the results showed the maximum degradation rate for
TC via 30%-ZnFe2O4/Bi0-Bi2MoO6 reached 86.32% after 60 min reaction [28]. According
to previous studies, many of these Z-scheme heterogeneous catalysts have been synthe-
sized for tetracycline degradation, such as Fe-g-C3N4/Bi2WO6 [29], g-C3N4/FeWO4 [30],
crystalline carbon ni-tride/δ-Bi2O3 [31], and BiOI/Ag@AgI [32].

In summary, LaMnO3 and g-C3N4 themselves have certain photocatalytic properties,
and g-C3N4 loading in perovskite can effectively improve its photocatalytic properties
according to the previous literature reports. Therefore, in this study, CN was loaded to
improve the limited photocatalytic performance of LaMnO3. The synthesized composite
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LaMnO3/g-C3N4 was used to degrade tetracycline in aquaculture tailwater, and the effect
of anion concentration in actual tailwater on degradation performance was studied. Finally,
the photocatalytic degradation mechanism was also studied. The results provide some
basic research for the future construction of a new photocatalytic system in environmental
remediation and energy protection.

2. Materials and Methods
2.1. Materials

Lanthanum nitrate (La(NO3)3•6H2O), manganese nitrate (Mn(NO3)2•4H2O), citric
acid monohydrate, melamine, tetracycline, Sodium carbonate (Na2CO3), Sodium chlo-
ride (NaCl), p-benzoquinone (BQ), tert-butanol (TBA), triethanolamine (TEOH), and 2,
2, 6, 6-tetramethyl-4-piperidone (TEMP) were purchased from Sinopharm Group Chem-
ical Reagents Co., LTD. None of the reagents were further purified. Distilled water was
employed in all experiments.

2.2. Preparation of Photocatalyst
2.2.1. Preparation of g-C3N4

Melamine was kept in a crucible and heated to 550 ◦C in a muffle furnace for 4 h in a
semi-closed system at a heating rate of 10 ◦C min−1 under air conditions. The product was
washed several times with distilled water and absolute ethanol, dried at 80 ◦C for 12 h, and
named CN.

2.2.2. Preparation of LaMnO3

LaMnO3 nanoparticles were prepared by the sol–gel method. Specifically, 10 mmol of
Mn(NO3)2·4H2O, La(NO3)2·6H2O, and 20 mmol of citric acid monohydrate were weighed
and dissolved in 50 mL of deionized water, respectively. Thus, the molar ratio of hair metal
ions to citric acid in the solution was 1:1. The solution was heated in a water bath at 80 ◦C
for 2 h until it became a dry gel precursor. Afterward, the gel was dried in an oven at 110 ◦C
for 8 h, and the dried precursor was ground into powder and put into an alumina crucible.
Under air conditions, the dried precursor was calcined in a muffle furnace at 700 ◦C at a
heating rate of 20 ◦C/min for 4 h, and the sample was taken out after being cooled to room
temperature. After being washed with anhydrous ethanol and deionized water several
times, the LaMnO3 sample was finally oven dried at 80 ◦C for 12 h, and named LMO.

2.2.3. Preparation of LaMnO3/g-C3N4

Additionally, 0.57 g of LaMnO3 sample and 0.03 g of g-C3N4 sample were dispersed
into 30 mL of deionized water, and the mixture was subjected to ultrasound. The fre-
quency of ultrasonic cleaning machine (SB-800 DTD) is 99 kHz, and the time was 15 min.
Then, the LaMnO3 suspension was slowly added to g-C3N4 suspension and stirred for
5 h under magnetic agitation. The resulting suspension was heated at 110 ◦C until the
water in the suspension was removed. The obtained solid product was dried at 110 ◦C
for 6 h, and the dried sample was calcined at constant temperature for 1 h in a muffle
furnace at the heating rate of 20 ◦C/min to 400 ◦C. The product was LaMnO3/g-C3N4
(5 wt%), denoted as LMO/CN-5. The samples were named LMO/CN-10, LMO/CN-15,
and LMO/CN-20, respectively, following the mass fraction of g-C3N4 in the total mass of
the prepared complex.

2.3. Characterization of Catalyst

The morphology and element distribution of the catalyst were determined by a field
emission scanning electron microscope (SEM) (ZEISS Gemini 300) and an energy disper-
sive spectrometer (EDS) (ZEISS Gemini 300). Transmission electron microscopy (TEM)
(jeol2100f) was employed to detect the crystal structure microregion of the sample. The
particle size, shape, and particle size distribution of the sample were visually detected. The
phase composition and crystal structure of the samples were analyzed by an X-ray diffrac-
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tometer (XRD) (Rigaku Ultimate IV Japan). Cu Kα radiation was adopted at 40 kV, 40 mA,
2θ = 20–80 degree, and the scanning rate was 10◦ min−1. X-ray photoelectron spectroscopy
(XPS) (Thermo Scientific K-Alpha) was utilized to analyze the valence state and the relative
content of each element on the surface. Furthermore, the absorption performance of solid
materials was explored using solid diffuse reflection spectroscopy (UV–vis DRS) (Shimazu
UV-3600i Plus). A Hitachi UV-3010 spectrophotometer was operated with an acquisition
speed of 40 nm·min−1 and a wavelength range of 200–800 nm. All the samples were
measured with BaSO4 as the reference. The Fourier transform infrared (FT-IR) (Thermo
Scientific Nicolet iS20) spectrum was a Nicolet 6700 spectrometer, and the KBr particle
range was 4000–400 cm−1. The photoluminescence (PL) (Edinburgh FLS1000) spectra
of the samples were obtained by a Varian Cary Eclipse spectrometer with an excitation
wavelength of 325 nm. The specific surface area, pore volume, and pore size distribution
of the catalyst were determined by the low-temperature liquid N2 deadsorption method.
The specific surface area of the catalyst was calculated using the Brunauer–Emmett–Teller
(BET) (Mike 2460) method. Additionally, the pore volume and pore size distribution in the
catalyst were calculated by the Barrett–Joyner–Halenda (BJH) (Mike 2460) method.

2.4. Performance Tests of Photocatalysts

A 300 W xenon arc lamp was adopted as the visible light source, and a 400 nm cut-
off filter was used in this study. In the photocatalytic measurement, a suspension of the
photocatalyst and TC solution was placed in a 25 mL cylindrical adaptation reactor with a
water recycling facility. Before irradiation, the reaction suspension was ultrasonic for 15 min
and stirred in a dark environment for 30 min to guarantee the equilibrium of adsorption
and desorption. In the photocatalytic test, a 3 mL suspension was taken at a given time
interval and then centrifuged at 1000 rpm for 10 min to remove the photocatalyst. The
concentration of the remaining TC was measured by an ultraviolet spectrophotometer at
368 nm. The photocatalytic reaction device is displayed in Figure 1.
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Figure 1. The photocatalytic reaction device.

The degradation rate of TC was calculated by

X(%) =
C0 −Ct

C0
× 100 (1)

where C0 (mg/L) and Ct (mg/L) denote the initial concentration of TC and residual
concentration of TC at time t, respectively.
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2.5. Mechanism of Photocatalytic Degradation

Free radical capture experiments were conducted on the active species produced
during the photocatalytic experiment to determine the photocatalytic degradation mecha-
nism. In this experiment, BXU034 photochemical reaction instrument was employed for
photochemical experiment. TBA, TEOH, BQ, and TEMP were utilized as the trapping for
photogenerated holes (h+), hydroxyl radical (OH), superoxide radical (O−2 ), and singlet oxy-
gen (1O2) in the photocatalytic reaction, respectively. Before the photocatalytic experiment,
10 mg of LMO/CN-10 catalyst was added into 25 mL quartz test tubes; 1 mmol TEOH, 1
mmol TBA, 1 mmol BQ and 1 mmol TEMP were added into the test tubes, respectively.
The degradation of TC was compared by taking samples at an interval of 20 min.

3. Results and Discussion
3.1. Characterization of Photocatalysts

As illustrated in Figure 2a, the surface of the original CN presents an irregular lamellar
structure with many folds. Figure 2b exhibits the graininess of pure LMO irregular and
agglomerated nanoparticles. After LMO and CN were combined, CN was randomly
attached to the surface of LMO. The SEM image is presented in Figure 2c. The tight binding
of LMO and CN facilitates the formation of heterojunctions that contribute to interfacial
charge transfer and separation and thus superior photocatalytic activity. Additionally, EDS
image further indicated that LMO/CN was composed of elements La, Mn, O, C, and N
(Figure 2g). All these phenomena suggest that a uniform and tight coupling between LMO
nanoparticles and CN nanoparticles is successfully constructed. In other words, a binary
heterojunction hybrid is constructed. Such heterojunction makes the contact area between
LMO and CN nanosheets large, effectively promoting the transfer of interfacial charge
during the photocatalytic reaction. Figure 2d–f imply that LMO/CN-10 maintains a porous
structure, and CN nanosheets are attached to LMO particles. Figure 2f demonstrates that
the synthesized catalyst maintains clear lattice fringes, consistent with SEM results.

XRD can be used to analyze the crystal structure and image composition of the catalyst
prepared. The XRD of CN, LMO, and LMO/CN-x (x = 5, 10, 15, 20) is illustrated in Figure 2h.
Figure 2h reflects that a significant diffraction peak can be observed at 2θ = 27.51◦ in the
prepared pure CN, which corresponds to that of CN (JCPDS#87-1526) [33]. The original
perovskite LMO exhibited seven distinct characteristic peaks at 2θ = 23.5◦, 32.4◦, 42.1◦,
47.8◦, 58.9◦, 68.7◦, and 78.1◦, corresponding to (012), (110), (202), (024), (214), (208), and (128)
crystal planes of rhomboidal perovskite structure LMO (JCPDS#89-8775) [33], respectively.
This unveils that the prepared perovskite catalyst is the crystalline form of cubic LMO with
good junction crystallinity, and the compound CN does not change the structure of the
original LMO.

As observed in Figure S1a, the N2 absorption and desorption curve of catalyst
LCM/CN-10 conforms to type IV isotherm of the H3 hysteresis loop. In other words,
the perovskite catalyst has two pore sizes: mesoporous and microporous [34]. This conclu-
sion can also be drawn from the aperture distribution in Figure S1b. Besides, the specific
surface area, pore size, and pore volume of the catalyst can be calculated, as listed in Table 1.
The pore size of LMO/CN-10 is 23.1663 nm, suggesting the presence of mesoporous pores.
LMO/CN-10 presented a lower specific surface area compared to pure LMO. This can be
explained as follows. The active sites of the catalyst were lessened since CN was loaded on
the surface of the LMO and blocked part of the pores possibly. However, LMO/CN-10 has
a larger pore volume, which is conducive to oxidation. Thus, the degradation of pollutants
by the catalyst is not solely dependent on the size of the catalyst surface area, but the
internal structure. The low specific surface area implies that the reaction of the catalyst is
independent of the mass transfer rate.
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Figure 2. SEM images (Mag = 5.0 k×) of CN (a), LMO (b), LMO/CN-10 (c), TEM images
(Mag = 100,000×) of CN (d), LMO (e), LMO/CN-10 (f), EDS image of LMO/CN-10 (g) and XRD
pattern of all samples (h).

Table 1. Specific surface area, pore sizes, and pore volumes of CN, LMO, and LMO/CN-10.

Catalyst SBET (m2/g) Pore Diameter (nm) Pore Volume (cm3/g)

CN 22.4137 22.2745 0.1248

LMO 24.1944 20.8686 0.1262

LMO/CN-10 20.882 23.1663 0.1862

The photocatalytic materials prepared were characterized by XPS to illustrate the
interface interaction between LMO and CN and clarify the valence state and chemical
composition of the elements of LMO and CN. The characterization results are illuminated
in Figure 3. Figure 3a uncovers that elements La, Mn, O, and C exist in LMO, and elements
La, Mn, O, C, and N exist in LMO/CN-20. This reflects that CN has been present on the
LMO. According to the La 3d XPS spectrum of LMO (Figure 3b), La 3d can fit the four
peaks of 834.0 eV, 837.7 eV, 850.7 eV, and 854.5 eV, which belong to the characteristic peaks
of 3d5/2 and 3d3/2 of La, respectively. Hence, the chemical state of La is +3 [35–37]. As
observed in the Mn 2p XPS spectra of LMO (Figure 3e), significant characteristic peaks
appear at 642.1 eV and 653.6 eV and are attributed to Mn 2p3/2 and Mn 2p1/2, respectively,
consistent with the previously reported literature [38,39]. In the XPS spectrum of O1s in
Figure 3d, three characteristic peaks of 529.3 eV, 530.9 eV, and 532.5 eV are observed, of
which, 529.3 eV comes from lattice oxygen (Mn-O) and the other two are mainly from
hydroxyl. Furthermore, the characteristic peaks moved toward the direction of lower bond
energy from the La 3d, Mn 2p, and O1s spectra of LMO and LMO/CN-20. This would be
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the increased electron concentration and enhanced electron shielding effect induced by the
heterogeneous structure formed by LMO and CN, which was consistent with the previous
reports [40,41].
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Figure 3. XPS spectra of LMO and LMO/CN-20 (a), LMO La 3d (b), Mn 2p (c), O1s (d); La 3d (e), Mn
2p (f), O1s (g) of LMO/CN-20.

FT-IR is an effective method for the qualitative identification of substances. In this
experiment, the prepared composite materials were characterized by FT-IR. The charac-
terization results are provided in Figure 4a. The infrared spectrum of pure CN reveals
noticeable absorption peaks at 1248 cm−1, 1335 cm−1, 1414 cm−1, and 1635 cm−1, which
may be caused by the stretching of aromatic type C=N and heterocyclic C-N, which is
consistent with the literature reports [42–44]. Moreover, the characteristic peak at 811 cm−1

is provoked by the tri-s-triazine characteristic respiratory pattern. Concerning pure LMO,
there is a strong absorption peak at 618 cm−1, which could be related to the stretching
vibration of the Mn-O bond. The infrared spectrum of the LMO/CN composite catalyst
demonstrates the corresponding bands in LMO and CN, implying that the composite
catalyst of LMO and CN is successfully synthesized, consistent with the results of previ-
ous analyses.

The UV–vis DRS was characterized to further understand the effect of the photore-
sponse domain of the composite catalyst on the degradation reaction. The characterization
results are illustrated in Figure 4b. It can be observed that the absorption edge of pure LMO
is about 460 nm, corresponding to the bandgap excitation of LMO [45,46]. The catalysts had
strong UV absorption, and a red shift occurred in the composite catalysts. Besides, the pho-
tocatalytic performance of all the composites is enhanced compared with pure LMO, which
may be the composite effect of LMO and CN. This action would lead to the separation of
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the photogenerated carrier and hence improve its photocatalytic performance. With the
increasing CN, the absorption intensity of LMO/CN gradually increases, indicating that a
load of CN significantly reinforces the visible light absorption capacity of LMO, contribut-
ing to more photogenerated electron holes and finally improved photocatalytic activity.
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Figure 4. FT-IR spectra of CN, LMO, LMO/CN-x (x = 5, 10, 15, 20) (a) and UV–vis DRS spectra of
LMO, LMO/CN-x (x = 5, 10, 15, 20) (b).

Generally, the activity of photocatalysts is closely associated with the separation and
transport capacity of photoexcited carriers [47]. Therefore, the LMO/CN composites were
characterized by PL and EIS to further understand the separation and recombination of
photoluminescence electron holes on LMO/CN composites. The characterization results
are presented in Figure 5. Figure 5a shows the PL spectra of pure LMO and LMO/CN
composites. Theoretically, the higher the intensity of PL, the faster the photogenerated
carrier recombination rate, and the worse its photocatalytic efficiency [42]. As revealed
in Figure 6a, pure LMO has the highest PL strength, and the PL strength of composite
catalyst decreases with the load of CN. This verifies that the introduction of CN can
significantly reduce the recombination of photogenic hole pairs. Additionally, LMO/CN-10
has the lowest PL intensity, unveiling that the heterogeneous structure of the catalyst
effectively promotes charge separation and inhibits the recombination of electron–hole
pairs. Thus, it has excellent photocatalytic activity. However, more CN load is not always
better considering that the PL strength of LMO/CN-20 composites is immediately higher
than that of other composites when the CN load reaches 20%. This suggests that excess CN
loading may also contribute to the recombination of photogenic electron holes.
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Figure 6. The TC degradation efficiency of CN, LMO, LMO/ CN-X (x = 5, 10, 15, 20) (a), the effect of
Cl− on TC degradation efficiency (b), and CO2−

3 on TC degradation efficiency (c).

Figure 5b provides the EIS of CN, LMO, and LMO/CN-10. The resistance value of
charge transfer is estimated according to the fitting of the Nyquist diagram and equivalent
circuit diagram. In this way, the electrode condition of resistance can be directly reflected
by the radius of the Nyquist semicircle [48]. The smaller the Nyquist semicircle radius,
the smaller the resistance value of the catalyst, and the higher the separation efficiency of
the photogenerated electron–hole pairs. As observed in Figure 5b, LMO has the largest
resistance value, followed by CN, and LMO/CN-10 has the smallest ring radius, which is
considerably lower than that of CN and LMO. These results reveal that LMO/CN-10 has
good electrical conductivity and fast electron transfer performance, which can improve the
photocatalytic performance of LMO/CN-10. Yuan reported that the combination of CN and
ZnO effectively improved the electron transfer performance of the reaction system owing to
the change in surface properties and pore structure of the catalyst after the combination [49].
This result is also consistent with PL analysis.

3.2. Photocatalytic Performance for TC Degradation

With TC as the target pollutant in this experiment, the degradation efficiency of dif-
ferent composites on TC was compared under visible light λ > 420 nm to investigate the
photocatalytic performance of LMO/CN composites. The photocatalytic degradation effi-
ciency of TC without catalyst, pure CN, pure LMO, and LMO/CN was managed under
the same experimental conditions. After the adsorption equilibrium was achieved in the
dark condition, the illumination experiment was performed, as illustrated in Figure 6a. The
degradation rate of TC hardly changed when no catalyst was added. In other words, the
photodegradation of TC itself can be ignored, TC’s molecular structure was relatively stable
under visible light irradiation, and the decrease of TC concentration was induced by photo-
catalysis. With the addition of catalyst, the degradation rates of CN, LMO, LMO/CN-5,
LMO/CN-10, LMO/CN-15, and LMO/CN-20 on TC were 20%, 30%, 37%, 70%, 65%, and
60%, respectively. The photocatalytic activity of the catalyst combined with CN and LMO
was higher than that of a single catalyst due to the synergistic action of CN and LMO
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to form heterojunctions between the interfaces of different components. This effectively
improved the formation of photogenerated holes and promoted the separation efficiency
of photogenerated carriers and holes. Among them, the photodegradation efficiency of
LMO/CN-10 was 2.3 and 3.5 times that of LMO and CN, indicating that the combination
of LMO and CN effectively improved the photocatalytic performance. However, the more
CN load was not the better. The photocatalytic performance of the LMO/CN-20 catalyst
was lower than that of LMO/CN-10 and LMO/CN-15 when the CN load reached 20.
This implied that proper CN loading was conducive to the formation of more efficient
heterostructures and the transfer and separation of charge carriers at the heterojunction.
Additionally, excessive CN may lessen the energy of the effective heterointerface in the
LMO/CN composite catalyst and act as the recombination center of photogenerated elec-
trons and holes, which was not favorable for charge transfer and separation and resulted
in poor photocatalytic performance, in line with previous literature [50,51]. In conclusion,
the construction of Z- scheme LMO/CN heterojunction significantly strengthened the
photocatalytic activity of LMO, while a load of CN was the key to obtaining the optimal
photocatalytic efficiency of the composites.

Cl− is one of the most common anions in actual water bodies. Generally, hydroxyl radi-
cals can oxidize halogen ions (such as Cl−) into less reactive chlorine groups or hypochlorite
potential and can react with organic materials to form insoluble chlorides [26]. CO2−

3 can be
used not only as a pH buffer to adjust solution pH but also as a scavenger to clear ·OH in
water. Therefore, it has a vital influence on TC degradation in photocatalytic systems. Since
the presence of anions in aquaculture water is inevitable, the effects of two anions,Cl−, and
CO2−

3 on TC degradation efficiency were explored in our study. The experimental results
are presented in Figure 6b,c. Figure 6b demonstrates that the TC removal rate decreases
with the increase in chloride ion concentration. The TC removal rate decreases from 71%
to 48% as the chloride ion concentration increases from 0 mM to 10 mM. This is because
chloride ions react with hydroxyl radicals in solution to generate reaction products with
lower catalytic activity, leading to overall catalytic activity reduction and TC removal rate
decrease. The reaction equation is [52]:

Cl−+OH→ ClOH− (2)

ClOH− + H+ → Cl·+ H2O (3)

Cl−+Cl· → Cl− (4)

2Cl−2 → 2Cl− + Cl2 (5)

Cl−2 + ·OH→ HOCl+Cl− (6)

Cl−2 + OH− → HOCl− + Cl− (7)

Cl·+ OH− → HOCl− (8)

Since TC mainly exists as neutral molecule, chloride ions will generate HOCl in water
after the addition of chloride ions according to the above equations and the TC solution
will be acidic, which may lead to decrease in the concentration of OH− in water. The
concentration of ·OH will also decrease, and this can finally lead to decrease of the TC
removal rate.

As suggested in Figure 6c, the removal rate of TC decreases significantly with the
increase in concentration of carbonate ions. The removal rate of TC decreases from 75% to
28% as the concentration of carbonate ions increases from 0 mM to 10 mM, owing to the
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reaction of carbonate with ·OH to form CO−3 · in the photocatalytic system. The carbonate
ions are hydrolyzed to form OH− after carbonate ions are added to the solution, which can
result in the increase of pH in water. With the increase of the dosage concentration, pH of
the solution gradually will be increased and the absorption of LMO/CN-10 is inhibited. The
photogenerated holes and OH− are more likely to form ·OH, which leads to the decrease of
the content of photogenerated holes in this system. Hydroxy radicals become the dominant
factor. Considering that the redox potential of CO−3 · (E0 = 1.78 V) is significantly lower
than that of ·OH (E0 = 2.5 V), the catalytic activity is weakened [51].

In addition to its photocatalytic performance, stability is also a key factor to be con-
sidered. Therefore, the experiment was repeated four times using LMO/CN-10 under the
same conditions. The photocatalyst was centrifugally collected from the reaction mixture
and then rinsed three times with deionized water and ethanol to remove excess TC solution
after each experiment. After washing, it was dried in the oven at 105 ◦C for 12 h, and then a
new round of TC solution was added to start the next cycle experiment. The experimental
results are rendered in Figure 7a. After four cycles, the photocatalytic degradation effi-
ciency of LMO/CN-10 remained at about 71%. The degradation efficiency may be lowered
because of the inevitable weight loss in the process of catalyst recovery. Figure 7b depicts
the XRD patterns of LMO/CN-10 before and after the cyclic experiment. Furthermore, the
XPS of LMO/CN-10 after four cycles (Figure 8) showed that the characteristic peaks of
La 3d, Mn 2p, and O1s were a little weaker than those before cycle, and the characteristic
peaks moved toward the direction of higher bond energy. The results showed that there
was no significant change in the chemical properties of the samples after circulation. The
results demonstrate no significant difference between the structure of LMO/CN-10 after
cycling and the original composite material. The cyclic experiment results suggest that the
LMO/CN-10 composite has good stability.
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Figure 7. Photocatalytic degradation experiment of TC by LMO/CN-10 (a), XRD pattern of LMO/CN-
10 before and after four cycles of reaction (b), and effects of adding different scavengers on TC
degradation by LMO/CN-10 (c).
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Figure 8. XPS of LMO/CN-10 before (a–c) and after (d–f) four cycles of TC degradation.

3.3. Possible Photocatalytic Mechanism

With the purpose of understanding the mechanism of photocatalysis, LMO/CN-10
composites were subjected to free radical trapping experiments to identify the active
oxidation species produced by photocatalysis. In this experiment, TEOH (1 mM), BQ
(1 mM), TBA (1 mM) and TEMP (1 mM) were used as scavengers for h+,·O−2 ,·OH and
1O2, respectively [53]. The results of the capture experiment are exhibited in Figure 7c. As
observed in the figure, the removal rate of TC decreases from 82% (Blank) to 30% (BQ),
78% (TEOH), 23% (TBA), and 80% (TEMP) after the addition of a trapping agent in the
reaction system. Thus,·O−2 and h+ are the main active species in the catalytic reaction. In
addition, the band structure of pure CN and LMO was analyzed in this study to better
understand the photocatalytic mechanism of LMO/CN composite catalysts. Generally, the
energy band of photocatalysis can be calculated by [54]:

αhυ =A(hυ − Eg
)n/2 (9)

where A, α, “υ”, Eg, and h represent a proportionality constant, absorption coefficient,
light frequency, band gap energy, and Planck constant, respectively. The value of n was
determined by the type of optical transition of semiconductors (n = 1 for direct transition
and n = 4 for indirect transition). Since both pure CN and LMO are direct transitions, n = 1.
According to the relationship between (αhυ)2 and photon energy (hυ), the band gap of
pure CN and LMO is 2.68 eV and 1.94 eV according to previous research, respectively [55].
Additionally, the edge potential of the conduction band (CB) and valence band (VB) of the
photocatalyst can be calculated by [56,57]:

EVB= X− Ee+0.5Eg (10)

ECB = EVB − Eg (11)

where ECB denotes the CB edge potential; EVB signifies the VB edge potential; X represents
the absolute electro-negativity of the semiconductor, which is the geometric mean of the
electronegativity of the constituent atoms; Ee stands for the energy of free electrons on the
hydrogen scale (about 4.5 eV); Eg is the band gap energy of the semiconductor. X of CN is
4.72 eV [58], the absolute electronegativity of Mn is 3.72 eV, the absolute electronegativity
of La is 3.10 eV, and the absolute electronegativity of O is 7.54 eV [59]. Thus, the calculated
X of LMO is 5.48 eV. According to the above formula, the ECB and EVB values of CN
are −1.12 eV and 1.56 eV, and the ECB and EVB values of LMO are 0.01 eV and 1.95 eV,
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respectively. Therefore, CN and LMO have suitable CB and VB, which can form Z-scheme
heterojunctions and lessen the recombination of optical carriers.

A direct Z-scheme mechanism was deduced based on the above experimental results
to enhance the photocatalytic activity of LMO/CN, as rendered in Figure 9. Under the
irradiation of visible light, electrons are excited to transition from VB to CB because of the
narrow band gap between LMO and CN, and photoinduced holes are formed on VB.
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Figure 9. Schematic illustration of the charge separation and transfer process of the LaMnO3/g-C3N4.

Excited electrons on LMO combine with electron holes formed on CN, resulting in
electron accumulation on CN and hole persistence on LMO. Consequently, the strong
reducibility of electrons in CB on CN and the strong oxidation of holes in VB on LMO are
maintained. The accumulated electron energy on CB of CN is captured by the dissolved
oxygen in the solution to produce ·O−2 . Considering that the CB potential on CN is lower
than that of O2/·O−2 , TC can be oxidized and degraded. Concurrently, photogenic holes
on LMO can directly oxidize and degrade TC. Therefore, the photocatalytic process is the
oxidation reaction between photoholes and superoxide radicals, and the photogenerated
carrier is separated in space.

4. Conclusions

In conclusion, Z-scheme heterojunction composites with different contents of
LaMnO3/g-C3N4 were successfully prepared by the sol–gel method. As revealed in experi-
ments, the degradation rate of TC by LMO/CN-10 under visible light irradiation reached
80%, which was 2.3 and 3.5 times that of a single LMO and CN. This was induced by
the formation of a Z-scheme heterostructure that combined the LMO with the CN, which
contributed to the accumulation of electrons on the CN and the persistence of holes on
the LMO. As a result, the strong reducing property of the electrons in CB on the CN was
preserved, as well as the strong oxidation property of the holes in VB on the LMO. Addi-
tionally, the TC removal rate decreased with the increase in chloride ion concentration. The
TC removal rate decreased from 71% to 48% as the chloride ion concentration increased
from 0 mM to 10 mM. The removal rate of TC decreased from 75% to 28% as the carbonate
concentration increased from 0 mM to 10 mM. Furthermore, it was verified that super-oxide
radicals and holes played key roles in the photocatalytic system by free radical trapping
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experiments. Moreover, the newly prepared photocatalytic material demonstrated good
stability and recyclability. It is expected to be an effective photocatalyst for environmental
water treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15081627/s1, Figure S1: Nitrogen adsorption-desorption curve (a)
and pore size distribution diagram (b) of LMO/CN-10.
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