The Hydraulic Connection Analysis of Dongying Geothermal Fluid Using Hydrochemical Information and Isotope Data in Tianjin Coastal Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Data Processing and Analysis
3. Results and Discussion
3.1. Hydrochemical Characteristics
3.2. The Analysis of Main Chemical Composition
3.3. The Analysis of the Hydrogen and Oxygen Isotope Data
3.4. The Analysis of the Radionuclide Isotope Data
4. Conclusions
- (1)
- The main chemical composition, the hydrogen and oxygen isotope data and the age values of geothermal fluid are significantly different between the Dongying geothermal reservoir and the upper and lower geothermal reservoirs.
- (2)
- The hydraulic conductivity in the Cangdong fracture and the Dongying formation geothermal reservoirs in this area is weak; there is only a certain hydraulic conductivity along the Haihe fracture at the intersection of the Haihe fracture and the Cangdong fracture.
- (3)
- There is no obvious hydraulic connection between the Dongying formation geothermal reservoir and the overlying and underlying geothermal reservoirs of the Tianjin coastal regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, H.Y.; Zhu, J.L. Study of the optimal geothermal exploitation and reinjection inreservoir in Binhai Dongying geothermal reservoir. Acta Energ. Sol. Sin. 2009, 12, 1678–1682, (In Chinese with English abstract). [Google Scholar]
- Liu, J.L.; Jin, B.Z.; Li, Y.Y.; Wang, J.; Yue, L.; Wang, X. Geothermal occurrence analysis of Dongying formation in Tanggu of Tianjin. Glob. Geol. 2014, 6, 163–169. [Google Scholar]
- Chen, M.X. Geothermal Resources in Northern China; Science Press: Beijing, China, 1988; pp. 153–154. (In Chinese) [Google Scholar]
- Yang, Y.J.; Zhang, Z.L.; Liu, J.L. Geothermal resource potential and exploitation countermeasure analysis of the Dongying Formation in Tanggu area. Geol. Surv. Res. 2010, 33, 216–220, (In Chinese with English abstract). [Google Scholar]
- Zhao, S.M.; Gao, B.Z.; Li, X.M.; Li, H.J.; Hu, Y. Haracter and water-temperature conductivity of the Cangdong fault (Tianjin segment). Geol. Surv. Res. 2007, 2, 121–127. [Google Scholar]
- Tianjin Bureau of Geology & Mineral Resources. Tianjin Geology Note; Geological Publishing House: Beijing, China, 1992; pp. 242–275. (In Chinese) [Google Scholar]
- Li, M.L.; Li, C.H.; Zhang, B.M. Feasibility Analysis Geological of Prospection on Geothermal Field of Geostatic Style in Tanggu Area; Tianjin Geothermal Exploration and Development-Designing Institute: Tianjin, China, 2002; pp. 6–11. (In Chinese) [Google Scholar]
- Jin, B.Z.; Sun, B.C.; Lin, L. Dongying Geothermal Resources Survey in Tanggu area of Tianjin; Tianjin Geothermal Exploration and Development-Designing Institute: Tianjin, China, 2009; pp. 11–33. (In Chinese) [Google Scholar]
- Gao, Z.W.; Xu, J.; Song, C.Q.; Sun, J.B. Structural characters of the Cangdong fault in north China. Seismol. Geol. 2000, 22, 395–404. [Google Scholar]
- Xu, M.J.; Zhu, W.B.; Hu, D.Z.; Wang, Q.; Ma, R.-S. A Study on evolution features of Cangdong fault zone by using geophysical data. Geol. J. China Univ. 1997, 3, 51–61. [Google Scholar]
- Chen, R.J.; Yang, Y.X.; Liu, Y. Study on reservoir of Dongying Formation in Banqiao depression. Sci. Technol. Consult. Her. 2007, 26, 5–6, (In Chinese with English abstract). [Google Scholar]
- Chen, R.J.; Li, Y.Y.; Jia, Z. Recoverable analysis of geothermal resources in Dongying formation of Banqiao de-pression through TR21-hole pumping test. J. Jilin Univ. Earth Sci. Ed. 2010, 40, 56–72, (In Chinese with English abstract). [Google Scholar]
- Liu, E.T.; Yue, Y.F.; Huang, C.Y. The characteristics and mechanism of the subsidence of the Dongying formation in Qikou depression. Geotecton. Et Metallog. 2010, 4, 563–572, (In Chinese with English abstract). [Google Scholar]
- Buatois, L.A.; Mangano, M.G.; Wu, X.; Zhang, G. Trace fossils from Jurassic Lacustrine turbidites of the Anyao formation (central China) and their environmental and evolutionary significance. Ichnos 1996, 4, 287–303. [Google Scholar] [CrossRef]
- Buatois, L.A.; Mangano, M.G. The palaeoenviromental and palaeoecological significanca of the Lacutrine Mermia ichnofacies:an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos 1995, 4, 151–161. [Google Scholar] [CrossRef]
- Chang, W.H.; Zhao, Y.G.; Lu, S. Features of sedimentary microfacies and electrofacies of meandering river deposits. Nat. Gas Ind. 2010, 2, 48–51, (In Chinese with English abstract). [Google Scholar]
- Hou, Y.G.; He, S.; Wang, B.J.; Ni, J.E.; Liao, Y.T. Constraints by tectonic slope-break zones on sequences and depositional systems in the Banqiao Sag. Acta Pet. Sin. 2010, 31, 754–761, (In Chinese with English abstract). [Google Scholar]
- Liao, Y.T.; Wang, H.; Wang, J.H. The Paleogene Dongying formation incentral area of Huanghua depression:depositional characteristics and prediction of favorable exploration area. J. Palaeogeo Graphy 2009, 11, 561–572, (In Chinese with English abstract). [Google Scholar]
- Bai, Y.F.; Wang, Z.S.; Wei, A.J. Time and space distribution characteristics and material resource system of heavy minerals in Dongying formation of Huanghua depression. Pet. Geol. Oilfield Dev. Daqing 2008, 27, 39–42, (In Chinese with English abstract). [Google Scholar]
- Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in north India. Expo. Health 2016, 8, 3–18. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, M.; Li, J.; Zhang, X.; Guo, W.; Wang, Y. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet geothermal province, China. Geochem. Explor. 2017, 172, 109–119. [Google Scholar] [CrossRef]
- Petroleum Geology Committee of Dagang Oilfield. The Volume IV of Chinese Petroleum Geology; Petroleum Industry Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Simsek, C.; Elci, A.; Gunduz, O.; Erdogan, B. Hydrogeological and hydrogeochemical characterization of a karstic mountain region. Eviron. Geol. 2008, 2, 291–308. [Google Scholar] [CrossRef]
- Edet, A.; Worden, R. Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Environ. Monit. Assess. 2009, 157, 243–258. [Google Scholar] [CrossRef]
- Chen, F.; Yao, L.; Mei, G.; Shang, Y.; Xiong, F.; Ding, Z. Groundwater quality and potential human health risk assessment for drinking and irrigation purposes: A case study in the semiarid region of north China. Water 2021, 13, 783. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater quality delineation based on fuzzy comprehensive assessment method (FCAM): A case study. Arab. J. Geosci. 2020, 13, 1256. [Google Scholar] [CrossRef]
- USEPA. User’s Guide: Human Health Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2008.
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Mayo, A.L.; Loucks, M.D. Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. Hydrology 1995, 172, 31–59. [Google Scholar] [CrossRef]
- Luo, X.R.; Yang, J.H.; Wang, Z.F. The over pressuring mechanisms in aquifers and pressure prediction in basins. Geol. Rev. 2000, 1, 22–31, (In Chinese with English abstract). [Google Scholar]
- Wu, Z.C.; Liu, J.S.; Han, H.T.; Dong, X.; Ouyang, Y. Geological and geochemical characteristics and metallogenic model of the Wenquan molybdenum deposit. Chin. J. Geochem. 2011, 3, 391–397. [Google Scholar] [CrossRef]
- Guo, Q.; Pang, Z.; Wang, Y.; Tian, J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Rautio, A.; Korkka-Niemi, K. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeol 2015, 23, 687–705. [Google Scholar] [CrossRef]
- Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico. Appl. Geochem. 2005, 1, 23–39. [Google Scholar] [CrossRef]
- Sun, C.; Tian, L.; Shanahan, T.M.; Partin, J.W.; Gao, Y.; Piatrunia, N.; Banner, J. Isotopic variability in tropical cyclone precipitation is controlled by Rayleigh distillation and cloud microphysics. Commun. Earth Environ. 2022, 3, 50. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Tian, L.; Zhao, H.; Bai, G. Variations of Stable Isotopes in Daily Precipitation in a Monsoon Region. Water 2022, 14, 2891. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau. Sci. China Earth Sci. 2022, 65, 1972–1984. [Google Scholar] [CrossRef]
Lithology Section | Buried Depth/m | Thickness/m |
---|---|---|
Dongying I segment | 1896–2044 | 148 |
Dongying II segment | 2044–2214 | 170 |
Dongying III segment | 2044–2214 | 148.98 |
The Well Number (Geothemal Reservoirs) | Converted to 40-Degree Water Column Height/m | Converted to Reservoir Temperature Water Column Height/m |
---|---|---|
DL-16 (O) in the west plate | −86 | −49.1 |
DL-19 (Jxw) in the west plate | −97.6 | −49.3 |
TR21 (Ed) in the east plate | −36 | +5.49 |
TG-11 (Ng) in the east plate | −40 | −13.93 |
Component | Concentration /mgL−1 | Component | Concentration /mgL−1 | Component | Concentration /mgL−1 | |||
---|---|---|---|---|---|---|---|---|
TR21 | TG-33 | TR21 | TG-33 | TR21 | TG-33 | |||
Na+ | 977.3 | 1188.0 | SO42− | 10 | 39.2 | S2− | - | 0.61 |
K+ | 7.2 | 15.2 | HCO3− | 845.1 | 839.0 | Soluble SiO2 | 53.0 | 57.5 |
Ca2+ | 6.8 | 9.1 | CO32− | 12 | 24.0 | Dissociation CO2 | 0.0 | 0.0 |
Mg2+ | 0.6 | 1.0 | Cl− | 1081.2 | 1293.9 | CODcr | 7.41 | 9.74 |
NH4+ | 2.77 | 3.65 | I− | 2.00 | 1.75 | HBO2− | 14.64 | 14.90 |
Fe2+ | 1.2 | 0.26 | PO43− | 0.04 | 0.08 | pH | 8.38 | 8.64 |
Fe3+ | 0.08 | <0.02 | HBO2− | 14.63 | 14.90 | Total acidity | 0.0 | 0.0 |
Mn2+ | 0.02 | 0.01 | NO2− | 0.005 | 0.007 | Total alkalinity | 713.1 | 728.2 |
Al3+ | 0.014 | 0.01 | F− | 5.0 | 3.96 | Total hardness | 19.5 | 26.5 |
Zn2+ | <0.02 | Br− | 1.2 | 4.5 | A substance of solid shape | 2570.6 | 3047.4 | |
Cu2+ | <0.02 | NO3− | 5.9 | 9.47 | TDS | 2993.2 | 3466.9 |
Component | Concentration /mgL−1 | Component | Concentration /mgL−1 | Component | Concentration /mgL−1 | |||
---|---|---|---|---|---|---|---|---|
TR21 | TG-33 | TR21 | TG-33 | TR21 | TG-33 | |||
Hg+ | <0.0001 | <0.0001 | Cd2+ | <0.001 | <0.001 | Se | <0.001 | <0.001 |
TCr | 0.007 | 0.006 | Sr | 0.68 | 1.02 | Li | 0.118 | 0.201 |
Cr6+ | <0.004 | <0.004 | Ba | 0.417 | 0.564 | CN− | <0.001 | <0.001 |
As3+ | 0.003 | 0.012 | Ni | <0.01 | <0.01 | H2SiO3 | 53.0 | 74.8 |
Pb2+ | <0.01 | <0.01 | Ag | <0.05 | <0.01 | phenolic | 0.027 | 0.4 |
Geothermal Reservoir | Construction Location | The Well Number | TDS /mgL−1 | Na+ /mgL−1 | Ca2+ /mgL−1 | Cl− /mgL−1 | HCO3− /mgL−1 |
---|---|---|---|---|---|---|---|
Nm | Huanghua depression | TG-13 | 919.7 | 250.7 | 3.6 | 33.7 | 546.1 |
TG-08 | 994 | 270.2 | 4.5 | 70.9 | 555.3 | ||
Cangxian bulge | DL-07 | 1525.5 | 471.2 | 9.3 | 315.5 | 463.8 | |
JN-01 | 1712.9 | 552 | 12.8 | 407.7 | 402.7 | ||
Ng | Huanghua depression | TG-29 | 1759.2 | 549.4 | 12 | 374 | 518.7 |
TG-01 | 1851.3 | 564.2 | 8.8 | 418.3 | 540 | ||
TG-18 | 1684.7 | 514.1 | 11.1 | 340.3 | 543.1 | ||
TG-23 | 1630.9 | 501.1 | 11.1 | 351 | 472.9 | ||
Cangxian bulge | DL-10 | 1752.2 | 502.4 | 28.5 | 374 | 543.1 | |
DL-25 | 1765.3 | 460.9 | 38.8 | 388.2 | 472.9 | ||
Ed | Huanghua depression | TR21 | 2993.2 | 977.3 | 6.8 | 1081.2 | 845.1 |
TG-33 | 3466.9 | 1188 | 9.1 | 1293.9 | 839 | ||
O | Cangxian bulge | DL-16 | 1829.6 | 474.7 | 45.4 | 391.7 | 500.4 |
DL-35 | 1752.7 | 466.3 | 40 | 386.4 | 497.3 | ||
JN-02 | 1737.9 | 500 | 29.3 | 418.3 | 482.1 |
Component | Average Value of Dongying Geothermal Fluid/mgL−1 | Average Value of Seawater/mgL−1 |
---|---|---|
Na+ | 1072.25 | 10648 |
Ca2+ | 8.1 | 420 |
Mg2+ | 0.95 | 1317 |
Cl− | 1147.7 | 19324 |
SO42− | 23.05 | 2688 |
HCO3− | 834.45 | 150 |
I− | 1.375 | 0.06 |
F− | 4.23 | 1.4 |
Br− | 2.95 | 65 |
TDS | 3164.7 | 35000 |
rNa/rCl | 1.45 | 0.85 |
Cl/Br | 501.45 | 292 |
Geothermal Reservoir | Construction Location | The Well Number | δ18O (‰) | δD (‰) |
---|---|---|---|---|
Nm | Huanghua depression | TG-13 | −9.6 | −71 |
Cangxian bulge | JN-06 | −8.07 | −60.43 | |
Ng | Huanghua depression | TG-28 | −9.4 | −71 |
TG-23 | −9.1 | −72 | ||
Cangxian bulge | JN-03 | −9.36 | −61.19 | |
Ed | Huanghua depression | TR21 | −7.4 | −56 |
O | Cangxian bulge | DL-16 | −8.7 | −72 |
JN-02 | −9.8 | −81 |
Geothermal Reservoir | Construction Location | Statistics of Well Amount (Holes) | Minimum Age /ka | Maximum Age /ka | Average Age /ka |
---|---|---|---|---|---|
Nm | Cangxian bulge | 11 | 19.5 ± 0.24 | 31.33 ± 1.15 | 23.21 |
Huanghua depression | 2 | 21.55 ± 0.46 | 27.40 ± 0.46 | 24.48 | |
Ng | Cangxian bulge | 5 | 16.91 ± 0.20 | 24.10 ± 1.40 | 21.49 |
Huanghua depression | 4 | 24.01 ± 0.53 | 25.56 ± 0.40 | 24.80 | |
Ed | Huanghua depression | 2 | 31.549 ± 0.58 | 31.549 ± 0.58 | 31.55 |
O | Cangxian bulge | 4 | 15.421 ± 0.542 | 29.451 ± 1.552 | 21.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Han, S.; Yang, F.; Yue, D. The Hydraulic Connection Analysis of Dongying Geothermal Fluid Using Hydrochemical Information and Isotope Data in Tianjin Coastal Regions. Water 2023, 15, 1235. https://doi.org/10.3390/w15061235
Liu J, Han S, Yang F, Yue D. The Hydraulic Connection Analysis of Dongying Geothermal Fluid Using Hydrochemical Information and Isotope Data in Tianjin Coastal Regions. Water. 2023; 15(6):1235. https://doi.org/10.3390/w15061235
Chicago/Turabian StyleLiu, Jiulong, Shuangbao Han, Fengtian Yang, and Dongdong Yue. 2023. "The Hydraulic Connection Analysis of Dongying Geothermal Fluid Using Hydrochemical Information and Isotope Data in Tianjin Coastal Regions" Water 15, no. 6: 1235. https://doi.org/10.3390/w15061235