Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Prototype Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alp AAkyüz, M.; Kucukali, S. Ecological impact scorecard of small hydropower plants in operation: An integrated approach. Renew. Energy 2020, 162, 1605–1617. [Google Scholar]
- HPE-Hydropower Europe Forum 2021. Research and Innovation Agenda (RIA). Available online: www.hydropower-europe.eu (accessed on 15 January 2023).
- Peter, A.; Schoelzel, N.; Wilmsmeier, L.; Albayrak, I.; Bravo-Córdoba, F.J.; García-Vega, A.; Fuentes-Pérez, J.F.; Valbuena-Castro, J.; Carazo-Cea, O.; Escudero-Ortega, C.; et al. The Attractiveness of Fishways and Bypass Facilities. In Novel Developments for Sustainable Hydropower; Rutschmann, P., Kampa, E., Wolter, C., Albayrak, I., David, L., Stoltz, U., Schletterer, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 61–81. [Google Scholar] [CrossRef]
- Gysi, M.H. Combination of mitigation strategies & challenges for decisionmaking in Switzerland. In Proceedings of the FIThydro Stakeholder Workshop Alpine Region, Augsburg, Germany, 10–11 September 2018. [Google Scholar]
- Gessner, J. If we build it, will they use it? Fish passage facilitation at man-made obstacles. In Proceedings of the Fish Passages and Migrations Workshop, Istanbul, Turkey, 9–11 September 2016; p. 19. [Google Scholar]
- Wanningen, H. Swimways of the world: Optimizing the policy cycle to open up rivers for migratory fishes. In Proceedings of the Fish Passages and Migrations Workshop, Istanbul, Turkey, 9–11 September 2016; p. 18. [Google Scholar]
- Kucukali, S.; Hassinger, R. Flow and Turbulence Structure in a Vertical Slot–Brush Fish Pass. In Recent Trends in Environmental Hydraulics; Springer: Berlin, Germany, 2020; pp. 137–146. [Google Scholar]
- Rajaratnam, N.; Van der Vinne, G.; Katopodis, C. Hydraulics of vertical slot fishways. J. Hydraul. Eng. 1986, 112, 909–927. [Google Scholar] [CrossRef]
- Rajaratman, N.; Katopodis, C.; Solanki, S. New designs for vertical slot fishways. Can. J. Civ. Eng. 1992, 19, 402–414. [Google Scholar] [CrossRef]
- Tarrade, L.; Texier, A.; David, L.; Larinier, M. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 2008, 609, 177–188. [Google Scholar] [CrossRef]
- Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [Google Scholar] [CrossRef]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [Google Scholar] [CrossRef]
- Liu, M.; Rajaratnam, N.; Zhu, D.Z. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132, 765–777. [Google Scholar] [CrossRef]
- Bermúdez, M.; Puertas, J.; Cea, L.; Pena, L.; Balairón, L. Influence of pool geometry on the biological efficiency of vertical slot fishways. Ecol. Eng. 2010, 36, 1355–1364. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Mlačnik, J.; Četina, M. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Quaresma, A.L.; Romão, F.; Branco, P.; Ferreira, M.T.; Pinheiro, A.N. Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics. Ecol. Eng. 2018, 122, 197–206. [Google Scholar] [CrossRef]
- Hassinger, R. Steigerung der energieumwandlung in schlitzpässen mit borstenelemen-ten. In Report on Laboratory Tests on a 1:1 Scale; Kassel University: Kassel, Germany, 2007. (In German) [Google Scholar]
- Puertas, J.; Cea, L.; Bermudez, M.; Pena, L.; Rodriguez, A.; Rabunal, J.R.; Balairon, L.; Lara, A.; Aramburu, E. Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecol. Eng. 2012, 48, 51–60. [Google Scholar] [CrossRef]
- Mallen-Cooper, M. Fish passage in Australia: Universal lessons. In Proceedings of the Fish Passage 2015 Conference, Groningen, The Netherlands, 22–24 June 2015. [Google Scholar]
- Coe, T. Swimming abilities of Mekong fish species. In Proceedings of the Fish Passage 2016 Conference, Amherst, MA, USA, 22 June 2016. [Google Scholar]
- Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge. Ecol. Eng. 2014, 73, 335–344. [Google Scholar] [CrossRef]
- Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [Google Scholar] [CrossRef]
- DWA (German Association for Water, Wastewater and Waste). Merkblatt DWA-M 509: Fischaufstiegsanlagen und Fischpassierbare Bauwerke—Gestaltung, Bemessung, Qualitätssicherung; Deutsche Vereinigung für Wasserwirtschaft: Hennef, Germany, 2014. (In German) [Google Scholar]
- Alp, A.; Akyüz, A.; Özcan, M. Efficiency and suitability of fish passages in River Ceyhan, Turkey. In Proceedings of the Fish Passage 2015 Conference, Groningen, The Netherlands, 22–24 June 2015. [Google Scholar]
- Kucukali, S.; Hassinger, R. Flow and turbulence structure in a baffle–brush fish pass. PI Civ. Eng.-Water Manag. 2018, 171, 6–17. [Google Scholar] [CrossRef]
- Piquet, J. Turbulent Flows. Models and Physics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbell (Luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Enders, E.C.; Castro-Santos, T.; Lacey, R.W.J. The effects of horizontally and vertically oriented baffles on flow structure and ascent performance of upstream-migrating fish. J. Ecohydraulics 2017, 2, 38–52. [Google Scholar] [CrossRef]
- Heimerl, S.; Hagmeyer, M.; Echteler, C. Numerical flow simulation of pool-type fishways: New ways with well-known tools. Hydrobiologia 2008, 609, 189–196. [Google Scholar] [CrossRef]
- Beck, C.; Albayrak, I.; Meister, J.; Boes, R.M. Hydraulic performance of fish guidance structures with curved bars: Part 1: Head loss assessment. J. Hydraul. Res. 2020, 58, 807–818. [Google Scholar] [CrossRef]
- Albayrak, I.; Boes, R.M. Fish Guidance Structure with Wide Bar Spacing: Mechanical Behavioural Barrier. In Novel Developments for Sustainable Hydropower; Rutschmann, P., Kampa, E., Wolter, C., Albayrak, I., David, L., Stoltz, U., Schletterer, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 99–104. [Google Scholar] [CrossRef]
- Haro, A.; Odeh, M.; Noreika, J.; Castro-Santos, T. Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. Trans. Am. Fish. Soc. 1998, 127, 118–127. [Google Scholar] [CrossRef]
- Enders, E.C.; Gessel, M.H.; Anderson, J.J.; Williams, J.G. Effects of decelarating and accelerating flows on juvenile salmonid behavior. Trans. Am. Fish. Soc. 2012, 141, 357–364. [Google Scholar] [CrossRef]
- Kucukali, S. An experimental investigation of flow resistance and turbulent flow in brush fish pass. PI Civ. Eng.-Water Manag. 2019, 172, 241–256. [Google Scholar] [CrossRef]
- Kucukali, S.; Hassinger, R. Hydraulic model test results of baffle–brush fish pass. PI Civ. Eng.-Water Manag. 2015, 168, 189–194. [Google Scholar] [CrossRef]
- Kucukali, S.; Verep, B.; Alp, A.; Turan, D.; Mutlu, T.; Kaya, C.; Yildirim, Y.; Toreyin, B.U.; Ozelçi, D. Flow structure and fish passage performance of a brush-type fish way: A field study in the Iyidere River, Turkey. Mar. Freshw. Res. 2019, 70, 1619–1632. [Google Scholar] [CrossRef]
- Kucukali, S.; Verep, B.; Albayrak, I. Hydrodynamic Characteristics of Diagonal Brush Fish Pass: Prototype Measurements. Water 2023, 15, 88. [Google Scholar] [CrossRef]
- Kedrovic, M.; Krdrovic, J. Upgrading the fish pass at the Nitra scheme, Slovakia. Int. J. Hydropower Dams 2019, 5, 97–99. [Google Scholar]
- Kucukali, S.; Alp, A.; Akyuz, A. Enhancing the Performance of Vertical Slot Fish Pass by Using Brush Elements: A Pilot Project for Çataloluk SHP. TUBITAK Project Final Report; Projet No: 117M151; Ankara, Turkey, Unpublished Work 2019. Available online: https://search.trdizin.gov.tr/tr/proje/ara (accessed on 14 March 2023). (In Turkish)
dp (m) | 0.59 | 0.73 | 0.97 | 1.19 |
Q (m3/s) | 0.145 | 0.183 | 0.261 | 0.329 |
Rej | 6.6 × 105 | 8.3 × 105 | 1.2 × 106 | 1.5 × 106 |
Frj | 0.46 | 0.43 | 0.40 | 0.37 |
<Vres> (m/s) | 0.40 | 0.45 | 0.48 | 0.49 |
<TKE> (m2/s2) | 0.04 | 0.05 | 0.05 | 0.06 |
(Vres)max (m/s) | 1.40 | 1.53 | 1.76 | 1.57 |
(TKE)max (m2/s2) | 0.14 | 0.22 | 0.33 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucukali, S.; Alp, A.; Albayrak, I. Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water 2023, 15, 1155. https://doi.org/10.3390/w15061155
Kucukali S, Alp A, Albayrak I. Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water. 2023; 15(6):1155. https://doi.org/10.3390/w15061155
Chicago/Turabian StyleKucukali, Serhat, Ahmet Alp, and Ismail Albayrak. 2023. "Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance" Water 15, no. 6: 1155. https://doi.org/10.3390/w15061155
APA StyleKucukali, S., Alp, A., & Albayrak, I. (2023). Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water, 15(6), 1155. https://doi.org/10.3390/w15061155