Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Preparation of Modified Membranes
2.4. Membrane Characterization
2.4.1. Membrane Morphology
2.4.2. Membrane Surface
2.4.3. Pore Size and Pore Size Distribution
2.4.4. Porosity
2.4.5. Pure Water Permeability (PWP)
2.4.6. Membrane Wettability (Contact Angle Measurement)
2.4.7. Dye Removal Efficiency of the Prepared Membranes
3. Results and Discussion
3.1. Morphological Characteristics of the Prepared Membranes
3.2. Surface Characteristics of the Prepared Membranes
3.3. Water Wettability: Contact Angle Measurements
3.4. Porosity, Pore Size, and Pore Size Distribution of the Prepared Membranes
3.5. Water Flux and Water Permeability of the Prepared Membranes
3.6. Dye Removal Efficiency of the Prepared Membranes
3.7. Adsorption Kinetic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Hu, J.; Zhang, X.; Yuan, D.; Duan, G.; Li, Y. Robust and multifunctional natural polyphenolic composites for water remediation. Mater. Horiz. 2022, 9, 2496–2517. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ren, J.; Gong, J.; Qu, J.; Niu, R. Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chem. Eng. J. 2023, 454, 140383. [Google Scholar] [CrossRef]
- He, P.; Bai, H.; Fan, Z.; Hao, L.; Liu, N.; Chen, B.; Niu, R.; Gong, J. Controllable synthesis of N/Co-doped carbon from metal–organic frameworks for integrated solar vapor generation and advanced oxidation processes. J. Mater. Chem. A 2022, 10, 13378–13392. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Yang, F.; Bai, W.; Zhang, X.; Li, H.; Duan, G.; Xu, Y.; Li, Y. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. Mater. Horiz. 2023, 10, 268–276. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Han, M.-J.; Bhattacharyya, D. Morphology and transport study of phase inversion polysulfone membranes. Chem. Eng. Commun. 1994, 128, 197–209. [Google Scholar] [CrossRef]
- Murphy, T.M.; Offord, G.T.; Paul, D.R. Fundamentals of membrane gas separation. In Membrane Operations: Innovative Separations and Transformations; Drioli, E., Giorno, L., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 63–82. [Google Scholar]
- Jose, A.; Kappen, J.; Alagar, M. Polymeric membranes: Classification, preparation, structure physiochemical, and transport mechanisms. In Fundamental Biomaterials: Polymers; Thomas, S., Balakrishnan, P., Sreekala, M.S., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Duxford, UK, 2018; pp. 21–35. [Google Scholar]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: Fundamentals and classification of membranes. Case Stud. Chem. Env. Eng. 2021, 3, 100086. [Google Scholar] [CrossRef]
- Sagle, A.; Freeman, B. Fundamentals of Membranes for Water Treatment. In The Future of Desalination in Texas; Report Number 363; Texas Water Development Board: Austin, TX, USA, 2004; Volume 2, pp. 137–154. [Google Scholar]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S.-N.; Jang, A.; Jang, M.; Park, C.M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere 2022, 286, 131916. [Google Scholar] [CrossRef]
- Vinh-Thang, H.; Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013, 113, 4980–5028. [Google Scholar] [CrossRef]
- Perera, D.H.N.; Nataraj, S.K.; Thomson, N.M.; Sepe, A.; Hüttner, S.; Steiner, U.; Qiblawey, H.; Sivaniah, E. Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties. J. Membr. Sci. 2014, 453, 212–220. [Google Scholar] [CrossRef]
- Ebrahim, S.; Morsy, A.; Kenawy, E.; Abdel-Fattah, T.; Kandil, S. Reverse osmosis membranes for water desalination based on cellulose acetate extracted from Egyptian rice straw. Desalination Water Treat. 2016, 57, 20738–20748. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ghaseminezhad, S.M.; Barikani, M.; Salehirad, M. Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Compos. B Eng. 2019, 161, 320–327. [Google Scholar] [CrossRef]
- Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 2011, 375, 88–95. [Google Scholar] [CrossRef]
- Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505. [Google Scholar] [CrossRef]
- El-Dein, L.A.N.; El-Gendi, A.; Ismail, N.; Abed, K.A.; Ahmed, A.I. Evaluation of Cellulose Acetate Membrane with Carbon Nanotubes Additives. J. Ind. Eng. Chem. 2015, 26, 259–264. [Google Scholar] [CrossRef]
- El Badawi, N.; Ramadan, A.R.; Esawi, A.M.K.; El-Morsi, M. Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications. Desalination 2014, 344, 79–85. [Google Scholar] [CrossRef]
- Shaban, M.; AbdAllah, H.; Said, L.; Hamdy, H.S.; Khalek, A.A. Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chem. Eng. Res. Des. 2015, 95, 307–316. [Google Scholar] [CrossRef]
- Safarpour, M.; Khataee, A.; Vatanpour, V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J. Membr. Sci. 2015, 489, 43–54. [Google Scholar] [CrossRef]
- Hegab, H.M.; Zou, L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484, 95–106. [Google Scholar] [CrossRef]
- Tan, X.M.; Rodrigue, D. A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers 2019, 11, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Peydayesh, M.; Bagheri, M.; Mohammadi, T.; Bakhtiari, O. Fabrication optimization of polyethersulfone (PES)/polyvinylpyrrolidone (PVP) nanofiltration membranes using Box–Behnken response surface method. RSC Adv. 2017, 7, 24995–25008. [Google Scholar] [CrossRef] [Green Version]
- Cadore, Í.R.; Ambrosi, A.; Medeiros Cardozo, N.S.; Tessaro, I.C. Poly(ethylene terephthalate) phase inversion membranes: Thermodynamics and effects of a poor solvent on the membrane characteristics. Polym. Eng. Sci. 2022, 62, 1847–1858. [Google Scholar] [CrossRef]
- Russo, F.; Castro-Muñoz, R.; Galiano, F.; Figoli, A. Unprecedented preparation of porous Matrimid® 5218 membranes. J. Memb. Sci. 2019, 585, 166–174. [Google Scholar] [CrossRef]
- Figoli, A.; Simone, S.; Drioli, E. Polymeric Membranes. In Membrane Fabrication; Hilal, N., Ismail, A.F., Wright, C., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015; Chapter 1; pp. 3–44. [Google Scholar]
- Gilani, A.G.; Ghorbanpour, T.; Salmanpour, M. Additive effect on the dimer formation of thiazine dyes. J. Mol. Liq. 2013, 177, 273–282. [Google Scholar] [CrossRef]
- Wang, X.L.; Sun, R.; Zhu, W.J.; Sha, X.L.; Ge, J.F. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions. J. Fluoresc. 2017, 27, 819–827. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD. Photochem. Photobiol. 2018, 94, 290–327. [Google Scholar] [CrossRef] [Green Version]
- Buwalda, R.T.; Engberts, J.B.F.N. Aggregation of Dicationic Surfactants with Methyl Orange in Aqueous Solution. Langmuir 2001, 17, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
- Figoli, A.; Marino, T.; Galiano, F. Polymeric membranes in biorefinery. In Membrane Technologies for Biorefining, 1st ed.; Figoli, A., Cassano, A., Basile, A., Eds.; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 2; pp. 29–59. [Google Scholar]
- Zhang, Y.; Tong, X.; Zhang, B.; Zhang, C.; Zhang, H.; Chen, Y. Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). J. Membr. Sci. 2018, 548, 32–41. [Google Scholar] [CrossRef]
- Razzaghi, M.H.; Tavakolmoghadam, M.; Rekabdar, F.; Oveisi, F. Investigation of the effect of coagulation bath composition on PVDF/CA membrane by evaluating critical flux and antifouling properties in lab-scale submerged MBR. Water Environ. J. 2018, 32, 366–376. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Z.; Liang, Y.; Yao, J. Study on the control of pore sizes of membranes using chemical methods Part II. Optimization factors for preparation of membranes. Desalination 2008, 225, 123–138. [Google Scholar] [CrossRef]
- Alahabadi, A.; Moussavi, G. Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: Parametric experiments and kinetics, equilibrium and thermodynamic modelling. J. Mol. Liq. 2017, 242, 40–52. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
Roughness (nm) | |||||
---|---|---|---|---|---|
Thickness (µm) | Basic Procedure | In situ Addition of Salt | SAB | SURF | SURF-SAB |
200 | 8 ± 2 | 7 ± 2 | 5 ± 1 | - | - |
500 | 10 ± 2 | 7 ± 1 | 5 ± 1 | 5 ± 2 | 7 ± 2 |
1000 | 7 ± 2 | 9 ± 2 | 4 ± 2 | - | - |
Sample | Water Permeability (L/m2h bar) |
---|---|
200 | 47 ± 1 |
500 | 62 ± 1 |
1000 | 539 ± 2 |
200-SAB * | - ** |
500-SAB * | - ** |
1000-SAB | 251 ± 1 |
500-SURF | 87 ± 2 |
500-SURF-SAB | 23 ± 1 |
500 | 500-SAB | 500-SURF | 500-SURF-SAB | |
---|---|---|---|---|
Water permeability (L/m2·h·bar) * | 62 ± 1 | - | 87 ± 2 | 23 ± 1 |
Porosity (%) | 80 ± 1 | 66 ± 1 | 78 ± 1 | 76 ± 1 |
Main pore diameter (µm) | 0.040 ± 0.001 | 0.029 ± 0.002 | 0.063 ± 0.003 | 0.017 ± 0.01 |
Kinetic Model | Pseudo-First Order | Pseudo-Second Order | |||||
---|---|---|---|---|---|---|---|
Sample/Dye | Qe(exp) (mmol/g) × 10−7 | Qe(cal)
(mmol/g) × 10−7 | K1 (min−1) × 10−3 | R2 | K2 (g/mmol min) × 10−3 | Qe (cal)(mmol/g) × 10−7 | R2 |
500/AZ | 9.30 | 9.3 ± 0.1 | 5.16 ± 0.03 | 0.982 | 6.21 ± 0.04 | 11.10 ± 0.04 | 0.991 |
500/MO | 1.12 | 0.89 ± 0.03 | 4.93 ± 0.08 | 0.864 | 9.4 ± 0.1 | 1.252 ± 0.006 | 0.986 |
500-SAB/AZ | 9.55 | 8.1 ± 0.2 | 6.67 ± 0.07 | 0.940 | 11.0 ± 0.1 | 10.76 ± 0.03 | 0.995 |
500-SAB/MO | 0.494 | 0.2 ± 0.1 | 3.0 ± 0.1 | 0.546 | 21 ± 1 | 0.486 ± 0.003 | 0.974 |
500-SURF/AZ | 9.71 | 5.3 ± 0.1 | 7.70 ± 0.05 | 0.953 | 28.0 ± 0.2 | 10.17 ± 0.02 | 0.9999 |
500-SURF/MO | 0.497 | 0.10 ± 0.02 | 270 ± 70 | 0.582 | 80 ± 30 | 0.483 ± 0.003 | 0.922 |
500-SURFSAB/AZ | 8.99 | 8.9 ± 0.2 | 6.52 ± 0.06 | 0.947 | 9.52 ± 0.04 | 10.25 ± 0.01 | 0.999 |
500-SURF-SAB/MO | 1.12 | 0.55 ± 0.02 | 4.14 ± 0.07 | 0.844 | 24.5 ± 0.6 | 1.140 ± 0.005 | 0.989 |
200/AZ | 6.11 | 7.7 ± 0.5 | 6.5 ± 0.2 | 0.741 | 11.10 ± 0.03 | 6.189 ± 0.004 | 0.9999 |
200/MO | 1.87 | 1.434 ± 0.008 | 0.98 ± 0.01 | 0.920 | 8.5 ± 0.2 | 1.298 ± 0.009 | 0.973 |
200-SAB/AZ | 7.23 | 4.4 ± 0.1 | 7.25 ± 0.07 | 0.949 | 21.1 ± 0.3 | 7.72 ± 0.01 | 0.998 |
200-SAB/MO | 0.885 | 0.60 ± 0.02 | 3.79 ± 0.05 | 0.769 | 11.4 ± 0.2 | 0.935 ± 0.005 | 0.985 |
1000/AZ | 6.56 | 8.0 ± 0.2 | 4.21 ± 0.05 | 0.902 | 2.3 ± 0.1 | 9.7 ± 0.1 | 0.892 |
1000/MO | 3.7 | 0.43 ± 0.03 | 3.0 ± 0.2 | 0.533 | # | # | # |
1000-SAB/AZ | 8.34 | 9.8 ± 0.2 | 4.68 ± 0.05 | 0.909 | 3.62 ± 0.1 | 10.96 ± 0.02 | 0.992 |
1000-SAB/MO | 1.02 | 0.73 ± 0.03 | 4.3 ± 0.9 | 0.780 | 11.2 ± 0.3 | 1.099 ± 0.004 | 0.990 |
Kinetic Model | |||||||
---|---|---|---|---|---|---|---|
Sample/Dye | C (mmol/g) × 10−7 | KI (mmol/g min1/2) × 10−8 | R2 | KII (mmol/g min1/2) × 10−8 | R2 | KIII (mmol/g min1/2) × 10−8 | R2 |
500/AZ | −1.07 ± 0.01 | 5.13 ± 0.01 | 0.999 | 5.13 ± 0.01 | 0.991 | 1.29 ± 0.01 | 0.984 |
500/MO | −1.69 ± 0.08 | 0.79 ± 0.01 | 0.974 | 0.38 ± 0.01 | 0.899 | 0.158 ± 0.001 | 0.803 |
500-SAB/AZ | −1.55 ± 0.01 | 7.31 ± 0.02 | 0.999 | 3.82 ± 0.02 | 0.989 | 0.85 ± 0.02 | 0.934 |
500-SAB/MO | −0.059 ± 0.009 | 0.45 ± 0.01 | 0.910 | 0.13 ± 0.01 | 0.460 | 0.044 ± 0.004 | 0.239 |
500-SURF/AZ | −1.01 ± 0.02 | 9.77 ± 0.05 | 0.998 | 4.39 ± 0.07 | 0.964 | 0.615 ± 0.009 | 0.911 |
500-SURF/MO | −0.051 ± 0.006 | 0.489 ± 0.008 | 0.955 | 0.09 ± 0.07 | 0.277 | 0.03 ± 0.01 | 0.167 |
500-SURFSAB/AZ | −0.93 ± 0.01 | 5.77 ± 0.01 | 0.999 | 3.10 ± 0.03 | 0.984 | 0.96 ± 0.01 | 0.957 |
500-SURFSAB/MO | −0.06 ± 0.01 | 1.08 ± 0.02 | 0.972 | 0.29 ± 0.02 | 0.689 | 0.145 ± 0.004 | 0.810 |
200/AZ | −0.63 ± 0.04 | 8.72 ± 0.09 | 0.993 | 2.11 ± 0.05 | 0.921 | 0.064 ± 0.002 | 0.629 |
200/MO | −0.003 ± 0.001 | 0.65 ± 0.01 | 0.969 | 4.0 ± 0.2 | 0.846 | 0.003 ± 0.001 | 0.854 |
200-SAB/AZ | −1.0 ± 0.3 | 6.59 ± 0.04 | 0.993 | 2.25 ± 0.03 | 0.972 | 0.333 ± 0.006 | 0.899 |
200-SAB/MO | −0.10 ± 0.02 | 0.38 ± 0.03 | 0.714 | 0.6 ± 0.1 | 0.476 | 0.211 ± 0.003 | 0.903 |
1000/Az | −0.90 ± 0.01 | 2.78 ± 0.01 | 0.994 | 2.290 ± 0.001 | 0.997 | # | # |
1000/MO | −0.09 ± 0.01 | 0.153 ± 0.04 | 0.839 | # | # | # | # |
1000SAB/AZ | −1.08 ± 0.01 | 3.96 ± 0.01 | 0.998 | 2.95 ± 0.001 | 0.995 | 1.86 ± 0.01 | 0.9999 |
1000SAB/MO | −0.002 ± 0.001 | 0.59 ± 0.01 | 0.953 | 0.26 ± 0.01 | 0.713 | 0.146 ± 0.007 | 0.575 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morsi, R.E.; Corticelli, F.; Morandi, V.; Gentili, D.; Cavallini, M.; Figoli, A.; Russo, F.; Galiano, F.; Aluigi, A.; Ventura, B. Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes. Water 2023, 15, 1061. https://doi.org/10.3390/w15061061
Morsi RE, Corticelli F, Morandi V, Gentili D, Cavallini M, Figoli A, Russo F, Galiano F, Aluigi A, Ventura B. Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes. Water. 2023; 15(6):1061. https://doi.org/10.3390/w15061061
Chicago/Turabian StyleMorsi, Rania E., Franco Corticelli, Vittorio Morandi, Denis Gentili, Massimiliano Cavallini, Alberto Figoli, Francesca Russo, Francesco Galiano, Annalisa Aluigi, and Barbara Ventura. 2023. "Influence of the Fabrication Conditions on the Physical Properties and Water Treatment Efficiency of Cellulose Acetate Porous Membranes" Water 15, no. 6: 1061. https://doi.org/10.3390/w15061061