Aquavoltaics Feasibility Assessment: Synergies of Solar PV Power Generation and Aquaculture Production
Abstract
:1. Introduction
2. Methodology
2.1. Site Description
2.2. Analysis
2.3. Climatic Conditions
2.4. Solar Aquaculture Canopy
Aeration System Design
2.5. SWOT Analysis
3. Results and Discussion
3.1. Analysis of Solar Radiation
3.2. Energy Consumption Profile of the Shrimp Farm
3.3. Configuration of Photovoltaic (PV) Panel for the Shrimp Farm
3.4. Simulation Results for Aquavoltaic System
3.5. SWOT Analysis of Aquavoltaics
3.5.1. Strengths
3.5.2. Weaknesses
3.5.3. Opportunities
3.5.4. Threats
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devabhaktuni, V.; Alam, M.; Shekara Sreenadh Reddy Depuru, S.; Green, R.C., II; Nims, D.; Near, C. Solar energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2013, 19, 555–564. [Google Scholar] [CrossRef]
- Bulkeley, H.; Broto, V.C.; Maassen, A. Governing Urban Low Carbon Transitions. In Cities and Low Carbon Transitions; Routledge: Abingdon, UK, 2010; pp. 45–57. [Google Scholar]
- Newman, P.W.G.; Kenworthy, J.R. Cities and Automobile Dependence: An International Sourcebook; Gower Publishing: Brookfield, WI, USA, 1989. [Google Scholar]
- Sijmons, D. Landscape and Energy, Designing Transition; Nai010: Rotterdam, The Netherlands, 2014. [Google Scholar]
- IEA World Energy Outlook; IEA: Paris, France, 2020; p. 214.
- Zhou, Y.; Verkou, M.; Zeman, M.; Ziar, H.; Isabella, O. A Comprehensive Workflow for High Resolution 3D Solar Photovoltaic Potential Mapping in Dense Urban Environment: A Case Study on Campus of Delft Universityof Technology. Phys. Status Solidi- Rapid Res. Lett. 2022, 6, 2100478. [Google Scholar]
- REN21 Secretariat Renewables. Global Status Report; REN21: Paris, France, 2021. [Google Scholar]
- Lobaccaro, G.; Carlucci, S.; Croce, S.; Paparella, R.; Finocchiaro, L. Boosting Solar Accessibility and Potential of Urban Districts in the Nordic Climate: A Case Study in Trondheim. Sol. Energy 2017, 149, 347–369. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Lisowska, M.M.; Saretta, E.; Bonomo, P.; Frontini, F. A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554. [Google Scholar] [CrossRef] [Green Version]
- Lobaccaro, G.; Croce, S.; Vettorato, D.; Carlucci, S. A Holistic Approach to Assess the Exploitation of Renewable Energy Sources for Design Interventions in the Early Design Phases. Energy Build. 2018, 175, 235–256. [Google Scholar] [CrossRef]
- Mazziotti, L.; Cancelliere, P.; Paduano, G.; Setti, P.; Sassi, S. Fire Risk Related to the Use of PV Systems in Building Facades. MATEC Web Conf. 2016, 46, 05001. [Google Scholar] [CrossRef] [Green Version]
- Probst, M.M.; Roecker, C. Criteria for Architectural Integration of Active Solar Systems IEA Task 41, Subtask A. Energy Procedia 2012, 30, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Florio, P.; Peronato, G.; Perera, A.T.D.; Di Blasi, A.; Poon, K.H.; Kämpf, J.H. Designing and Assessing Solar Energy Neighborhoods from Visual Impact. Sustain. Cities Soc. 2021, 71, 102959. [Google Scholar] [CrossRef]
- Lingfors, D.; Johansson, T.; Widén, J.; Broström, T. Target-Based Visibility Assessment on Building Envelopes: Applications to PV and Cultural-Heritage Values. Energy Build. 2019, 204, 109483. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, Y.; Ahmed Solangi, Y.; Zameer, H.; Ali Shah, S.A. Off-Grid Solar PV Power Generation System in Sindh, Pakistan: A Techno-Economic Feasibility Analysis. Processes 2019, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.; Pringle, R.M.; Handler, J.M. Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar]
- Pascaris, A.S.; Schelly, C.; Rouleau, M.; Pearce, J.M. Do agrivoltaics improve public support for solar? A survey on perceptions, preferences, and priorities. Green Technol. Resil. Sustain. 2022, 2, 8. [Google Scholar] [CrossRef]
- Bunting, S.W.; Little, D.C. Urban aquaculture for Resilient Food Systems. In Cities and Agriculture: Developing Resilient Urban Food Systems; de Zeeuw, H., Drechsel, P., Eds.; Routledge: Abingdon, UK, 2015; pp. 312–335. ISBN 978-1-317-50662-1. [Google Scholar]
- Liao, I.C.; Chao, N.H. Brief-history, Problems, and Prospects of Aquaculture on the Both-sides of the Taiwan Strait. In Proceedings of the 6th Cross-Strait Conference on Fish Physiology and Aquaculture, Guangzhou, China, 23–25 November 2012; pp. 1–4. [Google Scholar]
- Tanveer, M.; Mayilsamy, S. A conceptual approach for development of solar powered aeration system in aquaculture farms. Int. J. Environ. Sci. Technol. 2016, 5, 2921–2925. [Google Scholar]
- Ghoniem, A.A. Design optimization of photovoltaic powered water pumping system. Energy Convers. Manag. 2006, 47, 1449–1463. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [Google Scholar] [CrossRef]
- Applebaum, J.; Mozes, D.; Steiner, A.; Segal, I.; Barak, M.; Reuss, M.; Roth, P. Progress in Photovoltaics: Research and application. Photovoltaics 2001, 9, 275–301. [Google Scholar]
- Prasetyaningsari, I.; Setiawan, A.; Setiawan, A.A. Design optimization of solar powered aeration system for fish pond in Sleman Regency, Yogyakarta by HOMER software. Energy Procedia 2013, 32, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, H.; Ma, Z.; Zhang, Y.; Tian, C.; Cheng, G. Design and application of a solar mobile pond aquaculture water quality-regulation machine based in Bream Pond aquaculture. PLoS ONE 2016, 11, e0146637. [Google Scholar] [CrossRef] [PubMed]
- Goetzberger, A.; Zastrow. A. On the coexistence of solar-energy conversion and plant cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Marrou, H.; Wéry, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Fast, A.W.; Boyd, C.E. Water Circulation, Aeration and Other Management Practices, Chapter 22. In Marine Shrimp Culture; Fast, A.W., Lester, L.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 457–495. [Google Scholar]
- Romaire, R.P.; Boyd, C.E. The effect of solar radiation on the dynamics of dissolved oxygen in channel catfish ponds. Trans. Am. Fish. Soc. 1979, 107, 473–478. [Google Scholar] [CrossRef]
- Hailu, G.; Fung, A.S. Optimum tilt angle and orientation of photovoltaic thermal system for application in Greater Toronto area, Canada. Sustainability 2019, 11, 6443. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, J.; Li, S.; Luo, J.; Jiang, X. Research on optimum tilt angle of photovoltaic module based on regional clustering of influencing factors of power generation. Int. J. Energy Res. 2021, 45, 11002–11017. [Google Scholar] [CrossRef]
- Imani, M.; Lo, S.L.; Fakour, H.; Kuo, C.Y.; Mobasser, S. Conceptual framework for disaster management in coastal cities using climate change resilience and coping ability. Atmosphere 2022, 13, 16. [Google Scholar] [CrossRef]
- Ko, L.; Wang, J.C.; Chen, C.Y.; Tsai, H.Y. Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renew. Energy 2015, 76, 582–595. [Google Scholar] [CrossRef]
- Huang, W.L. Distributed Power Technology Application; Ministry of Economic Affairs energy report; Bureau of Energy: Taipei City, Taiwan, 2002; p. 31. [Google Scholar]
- Peterson, E.L. Prawn farm energy audits and five star ratings. Aquac. Asia 2002, 7, 4. [Google Scholar]
- Boyd, C.E.; Tucker, C.; McNevin, A.; Bostick, K.; Clay, J. Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Peterson, E.L. Energy-Efficiency Manual for Aquaculture Pond Aeration; The University of Queensland: Brisbane, Australia, 2003. [Google Scholar]
- Tien, N.N.; Matsuhashi, R.; Chau, V.T.T.B. A Sustainable Energy Model for Shrimp Farms in the Mekong Delta. Energy Procedia 2019, 157, 926–938. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Anifantis, A.S.; Blanco, I.; Scarascia Mugnozza, G. Electrolyzer performance analysis of an integrated hydrogen power system for greenhouse heating. A case study. Sustainability 2016, 8, 629. [Google Scholar] [CrossRef] [Green Version]
- Pickton, D.W.; Wright, S. What’s SWOT in strategic analysis? Strateg. Chang. 1998, 7, 101–109. [Google Scholar] [CrossRef]
- Paliwal, R. EIA practice in India and its evaluation using SWOT analysis. Environ. Impact Assess. Rev. 2006, 26, 492–510. [Google Scholar] [CrossRef]
- Terrados, J.; Almonacid, G.; Hontoria, L. Regional energy planning through SWOT analysis and strategic planning tools. Impact on renewables development. Renew. Sustain. Energy Rev. 2007, 11, 1275–1287. [Google Scholar] [CrossRef]
- Chen, W.M.; Kim, H.; Yamaguchi, H. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- Lupu, A.G.; Dumencu, A.; Atanasiu, M.V.; Panaite, C.E.; Dumitraşcu, G.H.; Popescu, A. SWOT analysis of the renewable energy sources in Romania—case study: Solar energy. In Proceedings of the 7th International Conference on Advanced Concepts in Mechanical Engineering (ACME 2016), Iasi, Romania, 9–10 June 2016; Volume 147, p. 012138. [Google Scholar]
- Salimi, M.; Hosseinpour, M.N.; Borhani, T. Analysis of Solar Energy Development Strategies for a Successful Energy Transition in the UAE. Processes 2022, 10, 1338. [Google Scholar] [CrossRef]
- Mavragani, A.; Ochoa, G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill 2019, 5, e13439. [Google Scholar] [CrossRef] [Green Version]
- Rovetta, A. Reliability of Google Trends: Analysis of the Limits and Potential of Web Infoveillance During COVID-19 Pandemic and for Future Research. Front. Res. Metr. Anal. 2021, 6, 670226. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, X.; Yu, Y.; Huang, H.; Li, F.; Xiang, J. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei. PLoS ONE 2014, 9, e106201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffie, J.A.; Beckman, W.A. Design of Photovoltaic Systems, in Solar Engineering of Thermal Processes, 4th ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 745–773. [Google Scholar]
- Wang, Q.; Wei, H.H.; Xu, Q. A Solid Oxide Fuel Cell (SOFC)-Based Biogas-from-Waste Generation System for Residential Buildings in China: A Feasibility Study. Sustainability 2018, 10, 2395. [Google Scholar] [CrossRef] [Green Version]
- Trends Help. 2022. Available online: https://support.google.com/trends/?hl=en&ref_topic=13762&visit_id=1-636639138191095232-1954776931&rd=3. (accessed on 10 June 2022).
- Jellison, S.S.; Bibens, M.; Checketts, J.; Vassar, M. Using Google Trends to assess global public interest in osteoarthritis. Rheumatol. Int. 2018, 38, 2133–2136. [Google Scholar] [CrossRef]
- Feigenbaum, E.A.; Hou, J.Y. Overcoming Taiwan’s Energy Trilemma; Carnegie Endowment for International Peace: Washington, DC, USA, 2020; p. 20036. [Google Scholar]
- Kwok, M.L. What Would A Potential Conflict Between China And Taiwan Mean for Global Decarbonisation? Earth Org. 2022. Available online: https://earth.org/china-and-taiwan-decarbonisation/ (accessed on 2 November 2022).
- Yue, C.D.; Huang, G.R. An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis. Energy Policy 2011, 39, 7988–8002. [Google Scholar] [CrossRef]
- Hermann, C.; Dahlke, F.; Focken, U.; MTrommsdorff, M. Chapter 6—Solar Energy Advancements in Agriculture and Food Production Systems. In Aquavoltaics: Dual Use of Natural and Artificial Water Bodies for Aquaculture and Solar Power Generation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 211–236. [Google Scholar]
- Chen, C.N.; Yang, C.T. The Investability of PV Systems under Descending Feed-In Tariffs: Taiwan Case. Energies 2021, 14, 2728. [Google Scholar] [CrossRef]
- Yu, H.H.; Chang, K.H.; Hsu, H.W.; Cuckler, R. A Monte Carlo simulation-based decision support system for reliability analysis of Taiwan’s power system: Framework and empirical study. Energy 2019, 178, 252–262. [Google Scholar] [CrossRef]
- Magazine, P.V. Will Taiwan Meet its 20 GW Solar Goal by 2025? 2018. Available online: https://www.pv-magazine.com/2018/09/07/will-taiwan-meet-its-20-gw-solar-goal-by2025/ (accessed on 15 May 2022).
- Executive Yuan, Four-year Wind Power Promotion Plan. 2019. Available online: https://english.ey.gov.tw/News3/9E5540D592A5FECD/d603a1bf-9963-4e53-a92b-e6520a3d93ff (accessed on 15 May 2022).
- Fulbright, N.R. Contracts for Difference: Round 2 Results. 2017. Available online: https://www.nortonrosefulbright.com/en/knowledge/publications/12262a64/contracts-for-difference-round-2-results (accessed on 18 May 2022).
- Faizullah, M.M.; Abishag, M.M.; Santhoshkumar, S. The Potential for Renewable Energy Sources for Aquaculture. Vigyan Varta 2022, 3, 37–40. [Google Scholar]
- Kamalapur, G.D.; Udaykumar, R.Y. Rural Electrification in India and Feasibility of Photovoltaic Solar Home Systems. Int. J. Electr. Power Energy Syst. 2011, 33, 594–599. [Google Scholar] [CrossRef]
- Sharma, A.A. Comprehensive Study of Solar Power in India and World. Renew. Sustain. Energy Rev. 2011, 15, 1767–1776. [Google Scholar] [CrossRef]
- Urpelainen, J. Energy Poverty and Perceptions of Solar Power in Marginalized Communities: Survey Evidence from Uttar Pradesh, India. Renewal 2016, 85, 534–539. [Google Scholar] [CrossRef]
- UDN. The Price of Land in Yuyuan Rises Dramatically, Retrieved 4 January 2021. Available online: https://udn.com/news/story/121906/5142432 (accessed on 25 January 2021).
- Manju, S.; Sagar, N. Progressing towards the Development of Sustainable Energy: A Critical Review on the Current Status, Applications, Developmental Barriers and Prospects of Solar Photovoltaic Systems in India. Renew. Sustain. Energy Rev. 2017, 70, 298–313. [Google Scholar] [CrossRef]
- Hsiung, K.H. Policy and Legal Issues of the Environmental and Social Inspection in Fishery-Solar Energy. IOP Conf. Ser. Earth Environ. Sci. 2022, 1009, 012009. [Google Scholar] [CrossRef]
- Sovacool, B.K. Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Res. Soc. Sci. 2021, 73, 101916. [Google Scholar] [CrossRef]
- Krewitt, W.; Nitsch, J.; Reinhardt, G. Renewable energies: Between climate protection and nature conservation? Int. J. Glob. Energy Issues 2005, 23, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Brunette, C.L.; Byrne, J.; Williams, C.K. Resolving conflicts between renewable energy and wildlife by promoting a paradigm shift from commodity to commons based policy. J. Int. Wildl. Law Policy 2013, 16, 375–397. [Google Scholar] [CrossRef]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščaj, B.; Walzer, C. Renewable energies and ecosystem service impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Chen, H.S.; Kuo, H.Y. Green Energy and Water Resource Management: A Case Study of Fishery and Solar Power Symbiosis in Taiwan. Water 2022, 14, 1299. [Google Scholar] [CrossRef]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; El-Din, M.G. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef]
- Chen, H.H.; Lee, A.H.I. Comprehensive overview of renewable energy development in Taiwan. Renew. Sustain. Energy Rev. 2014, 37, 215–228. [Google Scholar] [CrossRef]
- Couture, T.D.; Jacobs, D.; Rickerson, W.; Healey, V. The Next Generation of Renewable Electricity Policy: How Rapid Change is Breaking down Conventional Policy Categories; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015; NREL/TP-7A40-63149. [Google Scholar]
- Griffiths, S. Energy diplomacy in a time of energy transition. Energy Strategy Rev. 2019, 26, 100386. [Google Scholar] [CrossRef]
- Leal-Arcas, R.; Grasso, C.; Ríos, J.A. Energy Security, Trade and the EU; Edward Elgar Publishing: Cheltenham, UK, 2016; p. 488. ISBN 10-1785366734. [Google Scholar]
- Kresnawan, M.R.; Wijaya, T.N. Energy Diplomacy: A Vital Piece to Boost Renewable Energy Investment. Asean Center for Energy. 2021. Available online: https://aseanenergy.org/energy-diplomacy-a-vital-piece-to-boost-renewable-energy-investment/ (accessed on 12 August 2022).
- International Energy Agency (IEA). Special Report on Solar PV Global Supply Chains. 2022. Available online: https://www.iea.org/reports/solar-pv-global-supply-chains/executive-summary (accessed on 23 October 2022).
- Lu, Z.; Zhu, L.; Lau, C.K.M.; Isah, A.B.; Zhu, X. The Role of Economic Policy Uncertainty in Renewable Energy-Growth Nexus: Evidence From the Rossi-Wang Causality Test. Front. Energy Res. 2021, 9, 750652. [Google Scholar] [CrossRef]
- Elder, J.; Serletis, A. Oil Price Uncertainty. J. Money Credit. Bank. 2010, 42, 1137–1159. [Google Scholar] [CrossRef]
- Goffetti, G.; Montini, M.; Volpe, F.; Gigliotti, M.; Pulselli, F.M.; Sannino, G.; Marchettini, N. Disaggregating the SWOT Analysis of Marine Renewable Energies. Front. Energy Res. 2018, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Gasparatos, A.; Doll, C.N.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a green economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Mostegl, N.M.; Probstl-Haider, U.; Haider, W. Spatial energy planning in Germany: Between high ambitions and communal hesitations, Landsc. Urban Plan. 2017, 167, 451–462. [Google Scholar] [CrossRef]
- Wang, H.W.; Dodd, A.; Ko, Y. Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan. Renew. Energy 2022, 197, 879–892. [Google Scholar] [CrossRef]
- Pursner, S. Let’s Get Hei-Pi: A Review of Black-faced Spoonbill Conservation Efforts in Taiwan—Part 2. Taiwan Wild Bird Federation. 2021. Available online: https://www.bird.org.tw/publish/1202 (accessed on 2 February 2022).
- Ministry of Economic Affairs. Renewable Energy Development Act. 2019. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0130032 (accessed on 5 December 2021).
- Solaun, K.; Cerda, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Asian Development Bank (ADB). Climate Risk and Adaptation in the Electric Power Sector; Asian Development Bank: Manila, Philippines, 2012; ISBN 978-92-9092-730-3. [Google Scholar]
- Hess, D.J. The politics of niche-regime conflicts: Distributed solar energy in the United States. Environ. Innov. Soc. Transit. 2016, 19, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.M.; Erkan, I.; Rahman, M. SWOT analysis applications: An integrative literature review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
Parameter | Value | Ref. |
---|---|---|
Surface area of the fish farm (m2) | 3450 | [This study] |
Water depth (m) | 2.0 | [This study] |
Salinity (ppt) | 15 | [This study] |
Average water temperature (°C) | 25 | [This study] |
Average shrimp weight (g) | 35 | [This study] |
Stocking density (shrimp/m2) | 200 | [This study] |
Water respiration rate (mgL−1h−1) | 0.4 | [29] |
Sediment respiration rate (mgL−1h−1) | 0.43 | [29] |
Chlorophyll-a concentration (mg/L) | 0.15 | [30] |
Parameter | Value |
---|---|
Standard test condition efficiency (%) | 19 |
Temperature coefficient of open circuit (%/°C) | −0.30 |
Voltage at point of maximum power (V) | 38.87 |
Standard test condition temperature (°C) | 25 |
Nominal operation cell temperature (°C) | 45 ± 2 |
Area of the module (m2) | 2.56 |
Maximum power (WP) | 305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imani, M.; Fakour, H.; Lo, S.-L.; Yuan, M.-H.; Chen, C.-K.; Mobasser, S.; Muangthai, I. Aquavoltaics Feasibility Assessment: Synergies of Solar PV Power Generation and Aquaculture Production. Water 2023, 15, 987. https://doi.org/10.3390/w15050987
Imani M, Fakour H, Lo S-L, Yuan M-H, Chen C-K, Mobasser S, Muangthai I. Aquavoltaics Feasibility Assessment: Synergies of Solar PV Power Generation and Aquaculture Production. Water. 2023; 15(5):987. https://doi.org/10.3390/w15050987
Chicago/Turabian StyleImani, Moslem, Hoda Fakour, Shang-Lien Lo, Mei-Hua Yuan, Chih-Kuei Chen, Shariat Mobasser, and Isara Muangthai. 2023. "Aquavoltaics Feasibility Assessment: Synergies of Solar PV Power Generation and Aquaculture Production" Water 15, no. 5: 987. https://doi.org/10.3390/w15050987