Comparative Study on Carbon Emission of the Cyanobacteria Mud Disposal Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Auxin-Free Aerobic Fermentation Experiment
2.3. Data Analysis
- (1)
- Fuel consumption: the carbon emission produced by the consumption of diesel fuel when the ship collects cyanobacteria.
- (2)
- Electricity consumption: the carbon emission generated by electricity consumption when we were salvaging the cyanobacteria:
- (3)
- Drug consumption: the carbon emission from drug consumption.
- (1)
- Drug consumption: the carbon emission from drug consumption
- (2)
- Electricity consumption
3. Controlled Studies
3.1. Carbon Emission Calculation of Aerobic Fermentation Process with Auxiliary Materials
3.2. Calculation of Carbon Emission in the Process of Cyanobacteria Drying and Incineration
4. Results and Discussion
4.1. Total Carbon Emission Calculation Results
4.2. Comparison of Carbon Emission by Cyanobacteria Recycling
- (1)
- Comparison of aerobic fermentation without excipients and aerobic fermentation with excipients
- (2)
- Analysis of carbon emission in each link of cyanobacterial mud drying and incineration process
5. Conclusions and Challenges
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, H.W. Harmful Algae Blooms in Drinking Water: Removal of Cyanobacterial Cell Sand Toxins; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Best, J.H.; Eddy, F.B.; Codd, G.A. Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquat. Toxicol. 2003, 64, 419–426. [Google Scholar] [CrossRef]
- Whitton, B.A.; Potts, M. The Ecology of Cyanobacteria: Their Diversity in Time and Space; Springer Science & Business Media: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Meng, G.; Sun, Y.; Fu, W.; Guo, Z.; Xu, L. Microcystin-LR induces ceramide to regulate PP2A and destabilize cytoskeleton in HEK293 cells. Toxicology 2011, 290, 218–229. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Zhang, X.; Xie, P. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 2016, 301, 381–399. [Google Scholar] [CrossRef]
- Pacheco, F.S.; Roland, F.; Downing, J.A. Eutrophication reverses whole-lake carbon budgets. Inland Waters 2014, 4, 41–48. [Google Scholar] [CrossRef]
- Song, K.; Wen, Z.; Shang, Y.; Yang, H.; Lyu, L.; Liu, G.; Fang, C.; Du, J.; Zhao, Y. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. J. Environ. Manag. 2018, 217, 391–402. [Google Scholar] [CrossRef]
- Massicotte, P.; Asmala, E.; Stedmon, C.; Markager, S. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci. Total Environ. 2017, 609, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, T.W.; Todd-Brown, K.E.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoso, A.B.; Hamilton, D.P.; Schipper, L.A.; Ostrovsky, I.S.; Hendy, C.H. High contribution of methane in greenhouse gas emission from a eutrophic lake: A mass balance synthesis. N. Z. J. Mar. Freshw. Res. 2021, 55, 411–430. [Google Scholar] [CrossRef]
- Chaohu Lake Management Bureau of Anhui Province. The Health Status Report of Chaohu Lake (2020) [EB/OL]. 2021. Available online: http://chglj.hefei.gov.cn/chgsw/18182427.html (accessed on 1 October 2022).
- Svirčev, Z.; Chen, L.; Sántha, K.; Backović, D.D.; Šušak, S.; Vulin, A.; Malešević, T.P.; Codd, G.A.; Meriluoto, J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch. Toxicol. 2022, 96, 2829–2863. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, P.; Li, L.; Xu, J. First Identification of the Hepatotoxic Microcystins in the Serum of a Chronically Exposed Human Population Together with Indication of Hepatocellular Damage. Toxicol. Sci. 2009, 108, 81–89. [Google Scholar] [CrossRef]
- Hitzfeld, B.C.; Höger, S.J.; Dietrich, D.R. Cyanobacterial Toxins: Removal during Drinking Water Treatment, and Human Risk Assessment. Environ. Health Perspect. 2000, 108, 113–122. [Google Scholar] [PubMed] [Green Version]
- The People’s Government of Tianjin City. Wuxi Yearbook 2021; Publishing House of Local Records: Beijing, China, 2021; 374p. [Google Scholar]
- Jibiao, Z.; Zheng, Z.; Guo, Z.; Yang, G.; Tie, J.; Jiang, F. Review on microcystins treatment. Environ. Pollut. Control 2005, 27, 355–358. [Google Scholar]
- Wiegand, C.; Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 2005, 203, 201–218. [Google Scholar] [CrossRef]
- Dittmann, E.; Wiegand, C. Cyanobacterial toxins—Occurrence, biosynthesis and impact on human affairs. Mol. Nutr. Food Res. 2006, 50, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef] [PubMed]
- Hosetti, B.B.; Frost, S. A review of the sustainable value of effluents and sludges from sewage stabilization ponds. Ecol. Eng. 1995, 5, 421–431. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, X. Selection of Sludge Treatment and Disposal Scheme in a Municipal Sewage Treatment Plant. China Water Sew. 2013, 29, 13–15. [Google Scholar]
- Fu, R.; Yang, H.; Gan, M. Sludge Disposal in Chinese Urban Sewage Treatment Plant: Present Status and Future. Environ. Sci. Technol. 2004, 27, 108–110. [Google Scholar]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Zhou, C.; Duan, H.; Wang, G. Dynamic sulfur–iron cycle promoted phosphorus mobilization in sediments driven by the algae decomposition. Ecotoxicology 2021, 30, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Intergovernmental Panel on Climate Change Working Group III, Fourth Assessment Report (2007). Climate Change 2007: Mitigation of Climate Change [EB/OL]. Available online: https://www.ipcc.ch/report/ar4/syr/ (accessed on 23 July 2010).
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 384–436. [Google Scholar] [CrossRef]
- Guideline on Best Available Technologies of Pollution Prevention and Control for Treatment and Disposal of Sludge from Municipal Sewage Treatment Plant (on Trial); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2010.
- Ren, Y.; Cui, C.; Liu, F.; Zhan, X.; Zhou, L. Study on Composting of Cyanobacteria Amended with Different N Loss Inhibitor. Environ. Sci. 2012, 33, 1760–1766. [Google Scholar]
- Guo, K.; Gao, B.; Yue, Q. Research status and prospect of the comprehensive utilization of paper mill sludge. J. Civ. Environ. Eng. 2021, 43, 118–131. [Google Scholar]
- Hu, P.; Hou, F.; Fan, Y.; Liu, C.; Chen, L.; Lu, X.; Zhou, X. Aerobic Fermentation Process of Deep Dewatering Sludge. China Water Wastewater 2021, 37, 74–77. [Google Scholar]
- Wei, L.L.; Zhu, F.Y.; Li, Q.Y.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivalent emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Chai, C.Y.; Zhang, D.W.; Yu, Y.L.; Feng, Y.; Wong, M.S. Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
Materials | Cyanobacterial Mud | Spent Mushroom Compost | Crops Straw | Livestock Manure | Liquid Compound Bacterium Agent |
---|---|---|---|---|---|
ratios by weight /% | 1.0 | 0.4 | 0.3 | 0.3 | 0.002 |
moisture content /% | 85 | 25 | 20 | 80 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, Y.; Zhang, Q. Comparative Study on Carbon Emission of the Cyanobacteria Mud Disposal Process. Water 2023, 15, 528. https://doi.org/10.3390/w15030528
Wang L, Li Y, Zhang Q. Comparative Study on Carbon Emission of the Cyanobacteria Mud Disposal Process. Water. 2023; 15(3):528. https://doi.org/10.3390/w15030528
Chicago/Turabian StyleWang, Liying, Youcai Li, and Qingbo Zhang. 2023. "Comparative Study on Carbon Emission of the Cyanobacteria Mud Disposal Process" Water 15, no. 3: 528. https://doi.org/10.3390/w15030528
APA StyleWang, L., Li, Y., & Zhang, Q. (2023). Comparative Study on Carbon Emission of the Cyanobacteria Mud Disposal Process. Water, 15(3), 528. https://doi.org/10.3390/w15030528