# A Hydrosuction Siphon System to Remove Particles Using Fan Blades

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental and Methods

#### 2.1. Experimental Setup

#### 2.2. Experimental Conditions

^{3}), the uniformity coefficient (2.17), and the curvature coefficient (0.017), as shown in Figure 4.

#### 2.3. Experimental Procedure

## 3. Dimensional Analysis

_{1}is an unknown function. Using the Buckingham ($\pi $) method, the basic parameters considered for the analysis were $\rho ,\text{}v,\text{}\mathrm{and}\text{}D$, which resulted in the following Equation (3) with dimensionless variables:

## 4. Results and Discussion

#### 4.1. Effects of the Fan Blade Angles on the System’s Performance

#### 4.2. Influence of the Effective Head of the Suction Pipe on the Systems’ Performance

#### 4.3. Effect of the Height of the Inlet from the Sand Layer on the Systems’ Performance

#### 4.4. Time Effect on the Proportion of Concentration for Sediment Removal

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Notation

H | Effective head of water |

Z | Height of inlet siphon from soil^’ surface |

D | Diameter of suction pipe |

D50 | median size of the particles |

${f}_{1},{f}_{2},{f}_{3}$ | functions |

T | test period |

α | angle of fan blades |

N | number of fan blades |

${Q}_{max}$ | pump^’ s flow rate |

R | Hole diameter |

E | Hole depth |

μ | water dynamic viscosity |

g | gravitational acceleration |

${R}_{e}$ | Renols number |

${G}_{s}$ | specific soil gravity |

${F}_{r}$ | Froude number |

${\rho}_{w}$ | water density |

${\rho}_{s}$ | soil density |

$SR$ | sediment removal |

## References

- Moghbeli, A.; Khanjani, M.J.; Zounemat-Kermani, M. An experimental study of the geometric performance of the hydrosuction dredging system. Acta Geophys.
**2021**, 69, 271–283. [Google Scholar] [CrossRef] - Vlastara, M.; Zarris, D.; Panagoulia, D. Sediment Yield Modelling in Transboundary River Basins: Application to the Nestos River Basin; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–8. [Google Scholar]
- Zarris, D.; Evdoxia, L.E.; Panagoulia, D.G.; Lykoudi, E.; Panagoulia, D. Sediment Yield Assessment in Greece Catchment Hydrology under GISS-Climate Changes View Project Transient Climate Models and Irrigation View Project Sediment Yield Assessment in Greece. 2012, pp. 261–268. Available online: https://www.researchgate.net/publication/268030258_Sediment_Yield_Assessment_in_Greece?channel=doi&linkId=545f5af60cf2c1a63bfda7ee&showFulltext=true (accessed on 12 January 2023). [CrossRef]
- Chen, S.-C.; Wang, S.-C.; Wu, C.-H. Sediment removal efficiency of siphon dredging with wedge-type suction head and float tank. Int. J. Sediment Res.
**2010**, 25, 149–160. [Google Scholar] [CrossRef] - Ke, W.-T.; Chen, Y.-W.; Hsu, H.-C.; Toigo, K.; Weng, W.-C.; Capart, H. Influence of Sediment Consolidation on Hydrosuction Performance. J. Hydraul. Eng.
**2016**, 142, 04016037. [Google Scholar] [CrossRef] - Naisen, J.; Rcsecuch, B.1.C.I.O.W.R.A.H.P.; Lingyan, F. Problems of reservoir sedimentation in China. J. Lake Sci.
**1997**, 9, 1–8. [Google Scholar] [CrossRef] - Liu, J.; Minami, S.; Otsuki, H.; Liu, B.; Ashida, K. Environmental impacts of coordinated sediment flushing. J. Hydraul. Res.
**2004**, 42, 461–472. [Google Scholar] [CrossRef] - Rizzuan, W.N.; Zainol, M.R.R.M.A.; Ab Wahab, M.; Kang, C.W.; Setiawan, I. A review: Removal of sediment in water reservoir by using Siphon. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 646, 012040. [Google Scholar] [CrossRef] - Kantoush, S.A.; Sumi, T.; Murasaki, M. Evaluation of sediment by pass efficiency by flow field and sediment concentration monitoring techniques. Ann. J. Hydraul. Eng. JSCE
**2011**, 55, 169–174. [Google Scholar] [CrossRef][Green Version] - Lee, C.; Foster, G. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling. Hydrol. Process.
**2012**, 27, 1426–1439. [Google Scholar] [CrossRef] - Hotchkiss, R.H.; Huang, X. Hydrosuction Sediment-Removal Systems (HSRS): Principles and Field Test. J. Hydraul. Eng.
**1995**, 121, 479–489. [Google Scholar] [CrossRef] - Rehbinder, G. Enlevément des depots sédimentaires au moyen d’un siphon à flux critique. J. Hydraul. Res.
**1994**, 32, 845–860. [Google Scholar] [CrossRef] - Ullah, S.M.; Mazurek, K.A.; Asce, M.; Rajaratnam, N.; Asce, F.; Reitsma, S. Siphon Removal of Cohesionless Ma-terials. J. Waterw. Port Coast. Ocean. Eng.
**2005**, 131, 115–122. [Google Scholar] [CrossRef][Green Version] - Shrestha, H.S. Application of Hydrosuction Sediment Removal System (HSRS) on Peaking Ponds. Hydro Nepal: J. Water Energy Environ.
**2012**, 11, 43–48. [Google Scholar] [CrossRef][Green Version] - Slotta, L.S. Flow visualization techniques used in dredge cutterhead evaluation. In World Dredging Conference; World Organization of Dredging Associations: Amsterdam, The Netherlands, 1968; pp. 56–77. [Google Scholar]
- Brahme, S.B.; Herbich, J.B. Hydraulic Model Studies for Suction Cutterheads. J. Waterw. Port Coastal Ocean Eng.
**1986**, 112, 591–606. [Google Scholar] [CrossRef] - Mahdavi-Meymand, A.; Zounemat-Kermani, M.; Qaderi, K. Vortex Hydrosuction: A New Sediment Removal System. J. Hydraul. Eng.
**2021**, 147, 04021048. [Google Scholar] [CrossRef] - Asiaban, P.; Kouchakzadeh, S. Enhanced hydrosuction performance for cohesive sediment removal in low-head reservoirs. Ain Shams Eng. J.
**2017**, 8, 491–497. [Google Scholar] [CrossRef][Green Version] - Issa, I.E.; Al-Ansari, N.; Khaleel, M.; Knutsson, S. Experimental Analysis of Sediment Deposition Due to Backwater Effect up-stream a Reservoir Experimental Analysis of Sediment Deposition Due to Backwater Effect up-stream a Reservoir’. J. Civil Eng. Archit.
**2014**, 9, 1193–1201. Available online: https://www.researchgate.net/publication/266026334 (accessed on 12 January 2023). - Rohani, I.; Paroka, D.; Thaha, M.A.; Hatta, M.P. Dimensional Analysis of Compound Section in The Regulate Section Channel Model for Maintenance Main Channel. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 921. [Google Scholar] [CrossRef] - Garcia, M.H. Sedimentation Engineering; ASCE: Reston, VI, USA, 2007. [Google Scholar] [CrossRef]

**Figure 6.**Flow chart for the processes of the experimental tests using both the HSSR and FBHSSR systems.

**Figure 8.**The effects of fan blade angles on the geometric properties of the scour hole for (1) T10-0: sample siphon; and (2) T2-60°-0, T2-45°-0; T2-30°-0: siphon with fan blades.

No. | Test | D (mm) | α | Z (mm) | H (cm) | D50 (mm) | N | Time (Minute) |
---|---|---|---|---|---|---|---|---|

1 | T1-0-0 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 15 |

2 | T 1-0-‘H’-2 | 27.5 | 0 | 0 | 75 | 0.225 | 0 | 15 |

3 | T 1-0-‘H’-3 | 27.5 | 0 | 0 | 65 | 0.225 | 0 | 15 |

4 | T 1-0-‘Z’-1 | 27.5 | 0 | 10 | 85 | 0.225 | 0 | 15 |

5 | T 1-0-‘Z’-2 | 27.5 | 0 | 20 | 85 | 0.225 | 0 | 15 |

6 | T 1-0-‘Z’-3 | 27.5 | 0 | 30 | 85 | 0.225 | 0 | 15 |

7 | T 1-0-‘Z’-4 | 27.5 | 0 | 40 | 85 | 0.225 | 0 | 15 |

8 | T 1-0-‘Z’-5 | 27.5 | 0 | 50 | 85 | 0.225 | 0 | 15 |

9 | T 1-0-‘T’-1 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 1 |

10 | T 1-0-‘T’-2 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 2 |

11 | T 1-0-‘T’-3 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 3 |

12 | T 1-0-‘T’-4 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 4 |

13 | T 1-0-‘T’-5 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 5 |

14 | T 1-0-‘T’-6 | 27.5 | 0 | 0 | 85 | 0.225 | 0 | 50 |

15 | T 2-60°-0 | 27.5 | 60° | 0 | 85 | 0.225 | 4 | 15 |

16 | T 3-45°-0 | 27.5 | 45° | 0 | 85 | 0.225 | 4 | 15 |

17 | T 4-30°-0 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 15 |

18 | T 4-30°-‘H’-1 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 15 |

19 | T 4-30°-‘H’-2 | 27.5 | 30° | 0 | 75 | 0.225 | 4 | 15 |

20 | T 4-30°-‘H’-3 | 27.5 | 30° | 0 | 65 | 0.225 | 4 | 15 |

21 | T 4-30°-‘Z’-1 | 27.5 | 30° | 10 | 85 | 0.225 | 4 | 15 |

22 | T 4-30°-‘Z’-2 | 27.5 | 30° | 20 | 85 | 0.225 | 4 | 15 |

23 | T 4-30°-‘Z’-3 | 27.5 | 30° | 30 | 85 | 0.225 | 4 | 15 |

24 | T 4-30°-‘Z’-4 | 27.5 | 30° | 40 | 85 | 0.225 | 4 | 15 |

25 | T 4-30°-‘Z’-5 | 27.5 | 30° | 50 | 85 | 0.225 | 4 | 15 |

26 | T 4-30°-‘Z’-6 | 27.5 | 30° | 60 | 85 | 0.225 | 4 | 15 |

27 | T 4-30°-‘Z’-7 | 27.5 | 30° | 70 | 85 | 0.225 | 4 | 15 |

28 | T 4-30°-‘T’-1 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 1 |

29 | T 4-30°-‘T’-2 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 2 |

30 | T 4-30°-‘T’-3 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 3 |

31 | T 4-30°-‘T’-4 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 4 |

32 | T 4-30°-‘T’-5 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 5 |

33 | T 4-30°-‘T’-6 | 27.5 | 30° | 0 | 85 | 0.225 | 4 | 50 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rasool, M.H.; Zainol, M.R.R.M.A.; Noor, N.M.; Aziz, M.S.A.; Zawawi, M.H.; A. Wahab, M.K.; Abu Bakar, M.A. A Hydrosuction Siphon System to Remove Particles Using Fan Blades. *Water* **2023**, *15*, 515.
https://doi.org/10.3390/w15030515

**AMA Style**

Rasool MH, Zainol MRRMA, Noor NM, Aziz MSA, Zawawi MH, A. Wahab MK, Abu Bakar MA. A Hydrosuction Siphon System to Remove Particles Using Fan Blades. *Water*. 2023; 15(3):515.
https://doi.org/10.3390/w15030515

**Chicago/Turabian Style**

Rasool, Mohammed Hamid, Mohd Remy Rozainy Mohd Arif Zainol, Norazian Mohamed Noor, Mohd Sharizal Abdul Aziz, Mohd Hafiz Zawawi, Muhammad Khairi A. Wahab, and Mohd Azmeer Abu Bakar. 2023. "A Hydrosuction Siphon System to Remove Particles Using Fan Blades" *Water* 15, no. 3: 515.
https://doi.org/10.3390/w15030515