Effect of Land Use on Stream Water Quality and Biological Conditions in Multi-Scale Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Water Quality and Biological Indicators
2.2.2. Land Use/Land Cover
2.3. Statistical Analysis
2.3.1. Independent Two-Sample T-Test and Pearson’s Correlation
2.3.2. RF Regression Algorithm
3. Results
3.1. Descriptive Statistics and Independent Sample T-Test Analysis
3.2. Correlation Analysis
3.3. RF Models for Water Quality and Biological Indicators in Large- and Small-Scale Watersheds
3.4. Analysis of the ALE Plots
4. Discussion
4.1. Land-Use Thresholds for Water Quality and Biological Indicators
4.2. Watershed Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Diem, J.E.; Hill, T.C.; Milligan, R.A. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region. J. Hydrol. 2018, 556, 61–71. [Google Scholar] [CrossRef]
- Schiff, R.; Benoit, G. Effects of impervious Cover at multiple spatial scales on coastal watershed streams 1. J. Am. Water Resour. Assoc. 2007, 43, 712–730. [Google Scholar] [CrossRef]
- Wicke, D.; Matzinger, A.; Sonnenberg, H.; Caradot, N.; Schubert, R.-L.; Dick, R.; Heinzmann, B.; Dünnbier, U.; von Seggern, D.; Rouault, P. Micropollutants in urban stormwater runoff of different land uses. Water 2021, 13, 1312. [Google Scholar] [CrossRef]
- Hamid, A.; Bhat, S.U.; Jehangir, A. Local determinants influencing stream water Quality. Appl. Water Sci. 2020, 10, 24. [Google Scholar] [CrossRef]
- Teurlincx, S.; Kuiper, J.J.; Hoevenaar, E.C.; Lurling, M.; Brederveld, R.J.; Veraart, A.J.; Janssen, A.B.; Mooij, W.M.; de Senerpont Domis, L.N. Towards restoring urban waters: Understanding the main pressures. Curr. Opin. Environ. Sustain. 2019, 36, 49–58. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water Quality at multi-spatial scales. CATENA 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Park, S.R.; Kim, S.; Lee, S.W. Evaluating the relationships between riparian land cover characteristics and biological integrity of streams using random forest algorithms. Int. J. Environ. Res. Public Health 2021, 18, 3182. [Google Scholar] [CrossRef]
- Johnson, R.C.; Jin, H.; Carreiro, M.M.; Jack, J.D. Macroinvertebrate community structure, secondary production and trophic-level dynamics in urban streams affected by non-point-source pollution. Freshw. Biol. 2013, 58, 843–857. [Google Scholar] [CrossRef]
- Liu, B.; Chen, S.; Liu, H.; Guan, Y. Changes in the ratio of benthic to planktonic diatoms to eutrophication status of muskegon lake through time: Implications for a valuable indicator on water Quality. Ecol. Indic. 2020, 114, 106284. [Google Scholar] [CrossRef]
- Smucker, N.J.; Vis, M.L. Using diatoms to assess human impacts on streams benefits from multiple-habitat sampling. Hydrobiologia 2010, 654, 93–109. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water Quality, habitat, and organisms: A literature review. J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Turunen, J.; Elbrecht, V.; Steinke, D.; Aroviita, J. Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams. Freshw. Biol. 2021, 66, 785–798. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water Quality in low-order streams of the Dongjiang River Basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef]
- Buck, O.; Niyogi, D.K.; Townsend, C.R. Scale-dependence of land use effects on water Quality of streams in agricultural catchments. Environ. Pollut. 2004, 130, 287–299. [Google Scholar] [CrossRef]
- Lammert, M.; Allan, J.D. Assessing biotic integrity of streams: Effects of scale in measuring the influence of land use/Cover and habitat structure on fish and macroinvertebrates. Environ. Manag. 1999, 23, 257–270. [Google Scholar] [CrossRef]
- Roth, N.E.; Allan, J.D.; Erickson, D.L. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Lands. Ecol. 1996, 11, 141–156. [Google Scholar] [CrossRef]
- Dala-Corte, R.B.; Giam, X.; Olden, J.D.; Becker, F.G.; Guimarães, T.d.F.; Melo, A.S. Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshw. Biol. 2016, 61, 1921–1934. [Google Scholar] [CrossRef]
- Pan, Y.; Herlihy, A.; Kaufmann, P.; Wigington, J.; Van Sickle, J.; Moser, T. Linkages among land-use, water Quality, physical habitat conditions and lotic diatom assemblages: A multi-spatial scale assessment. Hydrobiologia 2004, 515, 59–73. [Google Scholar] [CrossRef]
- Oeding, S.; Taffs, K.H.; Cox, B.; Reichelt-Brushett, A.; Sullivan, C. The influence of land use in a highly modified catchment: Investigating the importance of scale in riverine health assessment. J. Environ. Manag. 2018, 206, 1007–1019. [Google Scholar] [CrossRef]
- Tudesque, L.; Tisseuil, C.; Lek, S. Scale-dependent effects of land Cover on Water physico-chemistry and diatom-based metrics in a major river system, the Adour-Garonne Basin (south Western France). Sci. Total Environ. 2014, 466–467, 47–55. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Jiang, C. Effects of Land Use on water Quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian Zone. Ecol. Indic. 2020, 113, 106226. [Google Scholar] [CrossRef]
- Young-Kyu, S. Comparison of water Quality between forested and agricultural subcatchments in Daegwallyong Area. Korean Geogr. Soc. 2004, 39, 544–561. [Google Scholar]
- Lee, J.W.; Lee, S.W.; An, K.J.; Hwang, S.J.; Kim, N.Y. An estimated structural equation model to assess the effects of land use on water Quality and benthic macroinvertebrates in streams of the Nam-Han River system, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2116. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; p. 2. [Google Scholar]
- Chen, K.; Olden, J.D. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Chang. Biol. 2020, 26, 4952–4965. [Google Scholar] [CrossRef]
- Munsch, S.H.; Andrews, K.S.; Crozier, L.G.; Fonner, R.; Gosselin, J.L.; Greene, C.M.; Harvey, C.J.; Lundin, J.I.; Pess, G.R.; Samhouri, J.F.; et al. Potential for ecological nonlinearities and thresholds to inform pacific salmon management. Ecosphere 2020, 11, e03302. [Google Scholar] [CrossRef]
- Clément, F.; Ruiz, J.; Rodríguez, M.A.; Blais, D.; Campeau, S. Landscape diversity and forest edge density regulate stream water Quality in agricultural catchments. Ecol. Indic. 2017, 72, 627–639. [Google Scholar] [CrossRef]
- Foudi, S.; Spadaro, J.V.; Chiabai, A.; Polanco-Martínez, J.M.; Neumann, M.B. The climatic dependencies of urban ecosystem services from green roofs: Threshold effects and non-linearity. Ecosyst. Serv. 2017, 24, 223–233. [Google Scholar] [CrossRef]
- Chang, H. Spatial analysis of water quality trends in the Han River Basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Lee, S.-W.; Hwang, S.-J.; Lee, J.-K.; Jung, D.-I.; Park, Y.-J.; Kim, J.-T. Overview and application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea. Ann. Limnol. Int. J. Lim. 2011, 47, S3–S14. [Google Scholar] [CrossRef]
- Greenwell, B.M.; Boehmke, B.C.; McCarthy, A.J. A simple and effective model-based variable importance measure. arXiv 2018, arXiv:1805.04755. [Google Scholar]
- Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Comput. Stat. Data Anal. 2020, 152, 107043. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ratolojanahary, R.; Houé Ngouna, R.H.; Medjaher, K.; Junca-Bourié, J.; Dauriac, F.; Sebilo, M. Model selection to improve multiple imputation for handling high rate missingness in a water quality dataset. Expert Syst. Appl. 2019, 131, 299–307. [Google Scholar] [CrossRef]
- Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random Forest. WIREs Data Min. Knowl. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- RColorBrewer, S.; Liaw, M.A. Package ‘Randomforest.’; University of California: Berkeley, CA, USA, 2018. [Google Scholar]
- Molnar, C. Interpretable Machine Learning; Lulu.com: Morrisville, NC, USA, 2020; ISBN 0244768528. [Google Scholar]
- Yu, Q.; Ji, W.; Prihodko, L.; Ross, C.W.; Anchang, J.Y.; Hanan, N.P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 2021, 12, 2117–2128. [Google Scholar] [CrossRef]
- Stritih, A.; Senf, C.; Seidl, R.; Grêt-Regamey, A.; Bebi, P. The impact of land-use legacies and recent management on natural disturbance susceptibility in mountain forests. For. Ecol. Manag. 2021, 484, 118950. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. B 2020, 82, 1059–1086. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.D.; et al. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Tromboni, F.; Dodds, W.K. Relationships between land use and stream nutrient concentrations in a highly urbanized tropical region of brazil: Thresholds and riparian zones. Environ. Manage. 2017, 60, 30–40. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.; Liu, S.; Zhang, Y.; Lu, D.; Wang, L. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia 2012, 680, 39–51. [Google Scholar] [CrossRef]
- Ni, X.; Parajuli, P.B.; Ouyang, Y.; Dash, P.; Siegert, C. Assessing land use change impact on stream discharge and stream water Quality in an agricultural watershed. CATENA 2021, 198, 105055. [Google Scholar] [CrossRef]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73–80. [Google Scholar] [CrossRef]
- Mangadze, T.; Wasserman, R.J.; Froneman, P.W.; Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater austral streams. Sci. Total Environ. 2019, 695, 133910. [Google Scholar] [CrossRef]
- Grimstead, J.P.; Krynak, E.M.; Yates, A.G.; Land Cover, S.-S. Thresholds for conservation of stream invertebrate communities in agricultural landscapes. Landsc. Ecol. 2018, 33, 2239–2252. [Google Scholar] [CrossRef]
- D’Amario, S.C.; Rearick, D.C.; Fasching, C.; Kembel, S.W.; Porter-Goff, E.; Spooner, D.E.; Williams, C.J.; Wilson, H.F.; Xenopoulos, M.A. The prevalence of nonlinearity and detection of ecological breakpoints across a land use gradient in streams. Sci. Rep. 2019, 9, 3878. [Google Scholar] [CrossRef]
- Marzin, A.; Verdonschot, P.F.M.; Pont, D. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French Rivers. Hydrobiologia 2013, 704, 375–388. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Jones, K.B.; Neale, A.C.; Nash, M.S.; Van Remortel, R.D.; Wickham, J.D.; Riitters, K.H.; O’Neill, R.V. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States mid-Atlantic region. Landsc. Ecol. 2001, 16, 301–312. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Miller, J.R.; Melack, J.M.; Stanley, E.H. Landscape indicators of human impacts to riverine systems. Aquat. Sci. 2002, 64, 118–128. [Google Scholar] [CrossRef]
- Fitzpatrick, F.A.; Scudder, B.C.; Lenz, B.N.; Sullivan, D.J. Effects of multi-scale environmental characteristics on agricultural stream biota in Eastern Wisconsin 1. J. Am. Water Resour. Assoc. 2001, 37, 1489–1507. [Google Scholar] [CrossRef]
- Hawkins, C.P.; Norris, R.H.; Gerritsen, J.; Hughes, R.M.; Jackson, S.K.; Johnson, R.K.; Stevenson, R.J. Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. J. N. Am. Benthol. Soc. 2000, 19, 541–556. [Google Scholar] [CrossRef]
- Meador, M.R.; Goldstein, R.M. Assessing water Quality at large geographic scales: Relations among land use, Water physicochemistry, riparian condition, and fish community structure. Environ. Manag. 2003, 31, 504–517. [Google Scholar] [CrossRef]
- De Mello, K.; Valente, R.A.; Randhir, T.O.; dos Santos, A.C.A.; Vettorazzi, C.A. Effects of Land Use and Land Cover on water Quality of Low-Order Streams in Southeastern Brazil: Watershed versus riparian Zone. CATENA 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Brogna, D.; Dufrêne, M.; Michez, A.; Latli, A.; Jacobs, S.; Vincke, C.; Dendoncker, N. Forest cover correlates with good biological water Quality. Insights from a regional study (Wallonia, Belgium). J. Environ. Manag. 2018, 211, 9–21. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Levine, D.A. Hierarchical approaches to the study of water Quality in rivers. BioScience 1995, 45, 193–203. [Google Scholar] [CrossRef]
- Villeneuve, B.; Piffady, J.; Valette, L.; Souchon, Y.; Usseglio-Polatera, P. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts. Sci. Total Environ. 2018, 612, 660–671. [Google Scholar] [CrossRef]
- Forio, M.A.E.; Burdon, F.J.; De Troyer, N.; Lock, K.; Witing, F.; Baert, L.; De Saeyer, N.; Rîșnoveanu, G.; Popescu, C.; Kupilas, B.; et al. A bayesian belief network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates. Sci. Total Environ. 2022, 810, 152146. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the effects of landscape pattern on river water Quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecol. Indic. 2012, 23, 166–175. [Google Scholar] [CrossRef]
- Nash, M.S.; Heggem, D.T.; Ebert, D.; Wade, T.G.; Hall, R.K. Multi-scale landscape factors influencing stream water Quality in the State of Oregon. Environ. Monit. Assess. 2009, 156, 343–360. [Google Scholar] [CrossRef]
- Pratt, B.; Chang, H. Effects of land Cover, topography, and built structure on seasonal water Quality at multiple spatial scales. J. Hazard. Mater. 2012, 209–210, 48–58. [Google Scholar] [CrossRef]
- Allan, J.D.; Johnson, L. Catchment-scale analysis of aquatic ecosystems. Freshw. Biol. 1997, 37, 107–111. [Google Scholar] [CrossRef]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The contribution of headwater streams to biodiversity in river networks 1. J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef]
- Wipfli, M.S.; Richardson, J.S.; Naiman, R.J. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels 1. J. Am. Water Resour. Assoc. 2007, 43, 72–85. [Google Scholar] [CrossRef]
Biological Indicators | Equations |
---|---|
TDI (Trophic Diatom Index) | WMS: weighted mean sensitivity : proportion (relative abundance) of species in sample, % : pollution sensitivity of species, 1 ≤ S ≤ 5 : indicator value of species, 1 ≤ V ≤ 3 |
BMI (Benthic Macroinvertebrate Index) | : number assigned to the species : number of species : unit saprobic value of the species : frequency of the species : indicator weight value of the species |
FAI (Fish Assessment Index) | Metric 1 (M1): number of Korean native species Metric 2 (M2): number of rifle benthic species Metric 3 (M3): number of sensitive species Metric 4 (M4): percentage of tolerant species Metric 5 (M5): percentage of omnivores Metric 6 (M6): percentage of insectivores Metric 7 (M7): amount of native species Metric 8 (M8): percentage of fish abnormalities |
Variables | Min. | Max. | Mean | S.D. |
---|---|---|---|---|
TDI (0–100) | 13.8 | 87.2 | 59.9 | 17.2 |
BMI (0–100) | 23.7 | 94.0 | 65.3 | 17.9 |
FAI (0–100) | 6.3 | 100 | 56.3 | 17.8 |
BOD (mg/L) | 0.6 | 7.8 | 2.2 | 1.1 |
TN (mg/L) | 0.97 | 10.28 | 3.37 | 1.42 |
TP (mg/L) | 0.006 | 0.390 | 0.085 | 0.074 |
Urban (%) | 0.0 | 68.6 | 10.4 | 11.0 |
Agricultural (%) | 0.2 | 86.1 | 28.5 | 18.0 |
Forest (%) | 0.0 | 96.7 | 54.3 | 22.0 |
Variables | Min. | Max. | Mean | S.D. |
---|---|---|---|---|
TDI (0–100) | 11.4 | 98.7 | 65.1 | 18.0 |
BMI (0–100) | 27.0 | 94.6 | 72.2 | 16.8 |
FAI (0–100) | 3.2 | 100 | 66.8 | 21.1 |
BOD (mg/L) | 0.5 | 5.9 | 1.6 | 0.8 |
TN (mg/L) | 1.04 | 8.16 | 2.88 | 1.20 |
TP (mg/L) | 0.007 | 0.368 | 0.051 | 0.049 |
Urban (%) | 0.0 | 77.8 | 7.7 | 14.5 |
Agricultural (%) | 0.0 | 100 | 17.0 | 13.8 |
Forest (%) | 0.0 | 100 | 69.3 | 21.6 |
Variables | Levene | t-Value | p-Value | |
---|---|---|---|---|
F | Sig. | |||
TDI (0–100) | 0.001 | 0.981 | 2.669 | 0.008 |
BMI (0–100) | 2.106 | 0.148 | 3.626 | 0.000 |
FAI (0–100) | 9.441 | 0.002 | 4.931 | 0.000 |
BOD (mg/L) | 14.043 | 0.000 | −5.327 | 0.000 |
TN (mg/L) | 1.10 | 0.29 | −3.41 | 0.00 |
TP (mg/L) | 24.057 | 0.000 | −4.819 | 0.000 |
Urban (%) | 1.237 | 0.267 | −1.874 | 0.062 |
Agricultural (%) | 20.991 | 0.000 | −6.455 | 0.000 |
Forest (%) | 0.126 | 0.723 | 6.257 | 0.000 |
Scale | Evaluate | BOD | TN | TP | TDI | BMI | FAI |
---|---|---|---|---|---|---|---|
Large-scale | RMSE | 0.40 | 0.80 | 0.024 | 12.71 | 9.52 | 11.26 |
MAE | 0.30 | 0.59 | 0.017 | 9.90 | 7.00 | 7.91 | |
Small-scale | RMSE | 0.69 | 0.63 | 0.044 | 15.45 | 12.29 | 16.06 |
MAE | 0.55 | 0.53 | 0.032 | 12.31 | 9.75 | 12.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Park, S.-R.; Lee, S.-W. Effect of Land Use on Stream Water Quality and Biological Conditions in Multi-Scale Watersheds. Water 2023, 15, 4210. https://doi.org/10.3390/w15244210
Lee J-W, Park S-R, Lee S-W. Effect of Land Use on Stream Water Quality and Biological Conditions in Multi-Scale Watersheds. Water. 2023; 15(24):4210. https://doi.org/10.3390/w15244210
Chicago/Turabian StyleLee, Jong-Won, Se-Rin Park, and Sang-Woo Lee. 2023. "Effect of Land Use on Stream Water Quality and Biological Conditions in Multi-Scale Watersheds" Water 15, no. 24: 4210. https://doi.org/10.3390/w15244210