Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Sample Collection and Water Level Monitoring
3.2. Measurement Methods
- (1)
- Sediment samples
- (2)
- Pore water samples
4. Results
4.1. Variation in Fe Oxide Contents with Depth
4.2. Variation in Hydrochemical Components in Pore Water with Depth
4.3. Stable Organic Carbon Isotopic Compositions
4.4. Result of Excitation Emission Matrices (EEM) Analysis
5. Discussion
5.1. Vertical Distribution and Environmental Factors Influencing Fe in Clayey Aquitard
5.2. Effect of Reclamation on Fe Occurrence in Clayey Aquitard
5.3. Potential Migration and Transformation Mechanisms of Fe during the Evolution of Clayey Aquitard
5.4. Ecological Effects of Fe (III) Reduction in Clayey Aquitard
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendry, M.J.; Woodbury, A.D. Clay Aquitards as Archives of Holocenepaleo Climate: δ18O and Thermal Profiling. Groundwater 2007, 45, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- Mihajlov, I.; Mozumder, M.R.H.; Bostick, B.C.; Stute, M.; Mailloux, B.J.; Knappett, P.S.; Choudhury, I.; Ahmed, K.M.; Schlosser, P.; Geen, A.V. Arsenic Contamination of Bangladesh Aquifers Exacerbated by Clay Layers. Nat. Commun. 2020, 11, 2244. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Ma, T.; Liu, R.; Du, Y. Variations in the Mineral Structures Dominating Solute Mobilization during Clay Compaction. J. Hydrol. 2022, 610, 127843. [Google Scholar] [CrossRef]
- Potter, P.E.; Maynard, J.B.; Depetris, P.J. Mud and Mudstones: Introduction and Overview. Econ. Geol. 2005, 100, 1469–1471. [Google Scholar]
- Wang, Y.; Jiao, J.J.; Cherry, J.A.; Lee, C. Contribution of the Aquitard to the Regional Ground Water Hydrogeochemistry of the Underlying Confined Aquifer in the Pearl River Delta, China. Sci. Total Environ. 2013, 461–462, 663–671. [Google Scholar] [CrossRef]
- Konikow, L.F.; Kendy, E. Groundwater Depletion: A Global Problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.R.; Schrader, S.; Hoper, H.; Wilke, B. Evaluation of Soil Compaction Effects on Soil Biota and Soil Biological Processes in Soils. Soil Till. Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Smith, R.; Knight, R.; Fendorf, S. Overpumping Leads to California Groundwater Arsenic Threat. Nat. Commun. 2018, 9, 2089. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Zhu, C.; Xue, X.; Qian, K.; Xie, X.; Wang, Y. Hydrogeochemical Process Controlling the Mobilization and Enrichment of Fluoride in Groundwater of the North China Plain. Sci. Total Environ. 2020, 730, 138877. [Google Scholar] [CrossRef]
- Hendry, M.J.; Wassenaar, L.I. Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard, Canada. Isotopes Environ. Health Stud. 2004, 40, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ma, T.; Qiu, W.; Du, Y.; Liu, Y. Effects of Fe Oxides on Organic Carbon Variation in the Evolution of Clayey Aquitard and Environmental Significance. Sci. Total Environ. 2020, 701, 134776. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Cecchetti, A.R.; Wen, Y.; Zhou, Q.; Sedlak, D.L. Sulfur Cycle in a Wetland Microcosm: Extended S-34-Stable Isotope Analysis and Mass Balance. Environ. Sci. Technol. 2020, 54, 5498–5508. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Deng, Y.; Du, Y.; Xu, Y.; Leng, Z.; Ma, T.; Wang, Y. Sources and Enrichment of Phosphorus in Groundwater of the Central Yangtze River Basin. Sci. Total Environ. 2020, 737, 139837. [Google Scholar] [CrossRef] [PubMed]
- Abdelrady, A.; Sharma, S.; Sefelnasr, A.; Kennedy, M. Characterisation of the Impact of Dissolved Organic Matter on Iron, Manganese, and Arsenic Mobilisation during Bank Filtration. J. Environ. Manage. 2020, 258, 110003. [Google Scholar] [CrossRef]
- Xu, D.; Hu, S.; Xiong, Y.; Yang, Y.; Ran, Y. Importance of the Structure and Micropores of Sedimentary Organic Matter in the Sorption of Phenanthrene and Nonylphenol. Environ. Pollut. 2020, 260, 114034. [Google Scholar] [CrossRef]
- Xing, G.; Garg, S.; Miller, C.J.; Pham, A.N.; Waite, T.D. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. Environ. Sci. Technol. 2020, 54, 2334–2343. [Google Scholar] [CrossRef]
- Nickson, R.T.; McArthur, J.M.; Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Appl. Geochem. 2000, 15, 403–413. [Google Scholar] [CrossRef]
- Mueller, B.; Hug, S.J. Climatic Variations and De-Coupling between Arsenic and Iron in Arsenic Contaminated Ground Water in the Lowlands of Nepal. Chemosphere 2018, 210, 347–358. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A.; Fendorf, S. Release of Arsenic to Deep Groundwater in the Mekong Delta, Vietnam, Linked to Pumping-Induced Land Subsidence. Proc. Natl. Acad. Sci. USA 2013, 110, 13751–13756. [Google Scholar] [CrossRef]
- Liu, R.; Ma, T.; Qiu, W.; Peng, Z.; Shi, C. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. J. Earth Sci. 2020, 31, 834–844. [Google Scholar] [CrossRef]
- Sharma, G.K.; Jena, R.K.; Ray, P.; Yadav, K.K.; Moharana, P.C.; Cabral-Pinto, M.M.S.; Bordoloi, G. Evaluating The Geochemistry of Groundwater Contamination with Iron and Manganese and Probabilistic Human Health Risk Assessment in Endemic Areas of The World’s Largest River Island, India. Environ. Toxicol. Phar. 2021, 87, 103690. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environ. Sci-Proc. Imp. 2017, 19, 161–172. [Google Scholar] [CrossRef]
- Du, Y.; Deng, Y.; Ma, T.; Lu, Z.; Shen, S.; Gan, Y.; Wang, Y. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multilevel Aquifer Systems. Sci. Total Environ. 2018, 645, 1159–1171. [Google Scholar] [CrossRef]
- Xiao, C.; Ma, T.; Du, Y. Arsenic Releasing Mechanisms during Clayey Sediments Compaction: An Experiment Study. J. Hydrol. 2020, 597, 125743. [Google Scholar] [CrossRef]
- Zhou, J.; Du, Y.; Deng, Y.; Tao, Y.; Leng, Z.; Ma, T.; Wang, Y. Source identification of groundwater phosphorus under different geological settings in the central Yangtze River basin. J. Hydrol. 2022, 612, 128169. [Google Scholar] [CrossRef]
- Liu, R.; Chen, J.; Ma, T. Releasing mechanism of ammonium during clayey sediments compaction and its impact on groundwater environment. Sci. Total Environ. 2023, 898, 165579. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Wang, Y.; Duan, Y.; Deng, Y.; Guo, X.; Ding, X. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. J. Geochem. Explor. 2014, 138, 81–93. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Ge, Q.; Li, H.; Zhu, B. Calculation method about hydraulic conductivity of Quaternary aquitard in Jianghan Plan. Earth Sci.-China 2017, 42, 761–770. (In Chinese) [Google Scholar]
- Xiao, C.; Ma, T.; Du, Y.; Yu, H.; Shen, S. Arsenic Releasing Characteristics During the Compaction of Muddy Sediments. Environ. Sci. Process. Impacts 2016, 18, 1297–1304. [Google Scholar] [CrossRef]
- Coward, E.K.; Thompson, A.T.; Plante, A.F. Iron-Mediated Mineralogical Control of Organic Matter Accumulation in Tropical Soils. Geoderma 2017, 306, 206–216. [Google Scholar] [CrossRef]
- Wagai, R.; Mayer, L.; Kitayama, K.; Shirato, Y. Association of Organic Matter with Iron and Aluminum across A Range of Soils Determined Via Selective Dissolution Techniques Coupled with Dissolved Nitrogen Analysis. Biogeochemistry 2013, 112, 95–109. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Childs, C.W. Estimation of Forms of Fe and Al: A Review and Analysis of Contrasting Soils by Dissolution and Mossbauer Methods. Aust. J. Soil Res. 1988, 26, 121–144. [Google Scholar] [CrossRef]
- Loveland, P.J.; Digby, P. The Extraction of Fe and Al By 0.1 M Pyrophosphate Solutions: A Comparison of Some Techniques. Eur. J. Soil Sci. 1984, 35, 243–250. [Google Scholar] [CrossRef]
- Bekhterev, V.N.; Kabina, E.A. Technology of Vapor-Phase Extraction of Water-Soluble Organic Substances. Russ. J. Appl. Chem. 2007, 80, 716–721. [Google Scholar] [CrossRef]
- Adhikari, D.; Zhao, Q.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.R.; Tang, Y.; Roden, E.E.; Yang, Y. Dynamics of Ferrihydrite-Bound Organic Carbon during Microbial Fe Reduction. Geochim. Cosmochim. Acta 2017, 212, 221–233. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe(III) and Mn(IV) Reduction. Adv. Microb. Physiol. 2004, 49, 219. [Google Scholar]
- Chen, C.; Kukkadapu, R.; Sparks, D.L. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics. Environ. Sci. Technol. 2015, 49, 10927–10936. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Characterizing groundwater/surfacewater interactions in the interior of Jianghan Plain, central China. Hydrogeol. J. 2018, 26, 1047–1059. [Google Scholar] [CrossRef]
- Guo, X. Arsenic Mobilization and Transport in Shallow Aquifer Systems of Jianghan Plain, Central China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2014. [Google Scholar]
- Schaefer, M.V.; Ying, S.C.; Benner, S.G.; Duan, Y.; Wang, Y.; Fendorf, S. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River basin. Environ. Sci. Technol. 2016, 50, 3521–3529. [Google Scholar] [CrossRef]
- Lei, K.; Ma, T.; Chen, L.; Li, Z.; Chen, Y. Effect of Reclamation on the Groundwater-Lake Water Interaction in Chen Lake. J. Earth Sci. 2022. [Google Scholar] [CrossRef]
- Schwertmann, U.; Friedl, J.; Stanjek, H. From Fe (III) Ions to Ferrihydrite and then to Hematite. J. Colloid Interf. Sci. 1999, 209, 215–223. [Google Scholar] [CrossRef]
- Hou, T.; Xu, R.; Zhao, A. Interaction between Electric Double Layers of Kaolinite and Fe/Al Oxides in Suspensions. Colloid Surf. A 2007, 297, 91–94. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J.; Zhang, K.; Zhou, Y. Enrichment and Mechanisms of Heavy Metal Mobility in a Coastal Quaternary Groundwater System of the Pearl River Delta, China. Sci. Total Environ. 2016, 545–546, 493–502. [Google Scholar] [CrossRef]
Dissolution Solvent | Solvent Molarity | Solvent pH | Target Phases | Dissolution Mechanism |
---|---|---|---|---|
Dithionite-HCl | 0.05 M, 0.05 M | 3−4 | Crystalline Fe (III) oxides, poorly crystalline Fe (III) oxides | Reduction |
Ammonium oxalate | 0.2 M | 3 | Poorly crystalline Fe (III) oxides | Chelation |
Sodium pyrophosphate | 0.1 M | ~10 | Colloidal or OM-chelated Fe | Dispersion, chelation |
Borehole C1 Depth (m) | Lithology | Moisture Content (%) | Total Fe (mg/g) | TOC (mg/g) | pH | Eh (mV) |
---|---|---|---|---|---|---|
1.5–3.5 | Clay | 42.40 | 69.04 | 10.09 | 7.854 | 216.0 |
3.5–4.7 | Organic-rich clay | 39.71 | 80.74 | 15.24 | 7.636 | 60.5 |
4.7–6.8 | Clay | 39.15 | 96.37 | 4.39 | 7.746 | −56.8 |
6.8–9.5 | Silty clay | 30.40 | 77.74 | 4.20 | 7.692 | −62.7 |
9.5–12.5 | Organic-rich clay | 34.80 | 83.23 | 6.93 | 7.706 | −70.3 |
12.5–18.8 | Clay | 33.48 | 113.43 | 4.99 | 7.517 | −82.2 |
Borehole C2 Depth (m) | Lithologic | Moisture content (%) | Total Fe (mg/g) | TOC (mg/g) | pH | Eh (mV) |
0–0.5 | Artificial fill | 30.30 | 64.12 | 7.93 | 6.732 | 297.0 |
0.5–2.2 | Clay | 41.30 | 78.86 | 9.24 | 7.106 | 317.0 |
2.2–5.0 | Organic-rich clay | 44.40 | 108.49 | 14.95 | 7.231 | 101.0 |
5.0–6.6 | Clay | 40.03 | 92.47 | 7.97 | 7.430 | −64.3 |
6.6–10.1 | Organic-rich clay | 36.57 | 110.39 | 8.42 | 7.297 | −67.3 |
10.1–12.2 | Muddy sand | 37.60 | 77.71 | 11.43 | 7.453 | −84.5 |
12.2–16.6 | Clay | 28.38 | 135.97 | 5.34 | 7.536 | −79.0 |
Borehole C3 Depth (m) | Lithologic | Moisture content (%) | Total Fe (mg/g) | TOC (mg/g) | pH | Eh (mV) |
0–1.0 | Artificial fill | 31.50 | 79.96 | 15.84 | 6.670 | 282.0 |
1.0–2.0 | Muddy sand | 40.30 | 82.47 | 11.09 | 6.891 | 244.0 |
2.0–6.0 | Clay | 37.67 | 73.97 | 10.65 | 7.025 | −11.7 |
6.0–9.7 | Muddy sand | 35.93 | 92.19 | 5.59 | 7.326 | −66.3 |
9.7–14.9 | Silty clay | 31.82 | 98.34 | 5.25 | 7.614 | −53.2 |
14.9–18.3 | Clay | 27.60 | 88.43 | 3.47 | 7.299 | −89.0 |
Borehole C1 | Moisture Content | pH | Eh | TOC | DOC | DIC | Total Fe | Fe2+ |
---|---|---|---|---|---|---|---|---|
FeDH | 0.589 ** | 0.115 | 0.512 * | 0.420 * | −0.359 | −0.546 * | −0.526 * | −0.537 * |
FeAO | 0.154 | 0.206 | −0.287 | −0.171 | 0.229 | 0.148 | 0.180 | 0.328 |
FePP | 0.278 | 0.103 | −0.223 | 0.314 | 0.301 | 0.120 | −0.149 | −0.092 |
Toal Fe | −0.248 | −0.260 | −0.402 * | −0.125 | 0.495 * | 0.648 ** | 1.000 | 0.952 ** |
Fe2+ | −0.269 | −0.263 | −0.617 ** | −0.066 | 0.597 ** | 0.706 ** | 0.952 ** | 1.000 |
Borehole C2 | Moisture content | pH | Eh | TOC | DOC | DIC | Total Fe | Fe2+ |
FeDH | 0.242 | −0.040 | 0.474 * | 0.224 | −0.411 | −0.528 * | −0.197 | −0.501 * |
FeAO | −0.266 | 0.203 | −0.324 | 0.321 | 0.109 | 0.242 | 0.046 | 0.145 |
FePP | 0.078 | 0.159 | −0.208 | 0.647 ** | −0.453 * | −0.346 | −0.416 | −0.563 * |
Toal Fe | −0.339 | −0.014 | −0.336 | −0.137 | 0.485 * | 0.482 * | 1.000 | 0.733 ** |
Fe2+ | −0.090 | 0.282 | −0.558 ** | −0.435 * | 0.543 * | 0.736 ** | 0.733 ** | 1.000 |
Borehole C3 | Moisture content | pH | Eh | TOC | DOC | DIC | Total Fe | Fe2+ |
FeDH | 0.513 * | −0.312 | 0.355 | 0.560 ** | −0.347 | −0.288 | −0.073 | −0.370 |
FeAO | 0.048 | 0.007 | −0.123 | 0.021 | 0.206 | 0.164 | −0.048 | 0.010 |
FePP | 0.076 | 0.208 | −0.032 | 0.486 * | 0.037 | −0.052 | −0.118 | −0.191 |
Toal Fe | −0.210 | 0.045 | −0.256 | −0.023 | 0.465 * | 0.518 * | 1.000 | 0.847 ** |
Fe2+ | −0.409 | 0.248 | −0.478 * | −0.188 | 0.545 ** | 0.521 * | 0.847 ** | 1.000 |
As | Ba | Cd | Co | Cr | Cu | Mn | |
---|---|---|---|---|---|---|---|
Total Fe | 0.519 ** | 0.081 | 0.013 | 0.140 | 0.538 ** | −0.258 | 0.239 |
Fe2+ | 0.752 ** | 0.269 | 0.045 | 0.194 | 0.647 ** | −0.305 | 0.450 ** |
Ni | Pb | Rb | Sr | V | Zn | ||
Total Fe | −0.164 | 0.095 | 0.095 | 0.555 * | −0.056 | 0.640 ** | |
Fe2+ | −0.366 | 0.236 | −0.081 | 0.682 ** | −0.033 | 0.659 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, R.; Jian, Y.; Ma, T. Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard. Water 2023, 15, 3934. https://doi.org/10.3390/w15223934
Chen J, Liu R, Jian Y, Ma T. Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard. Water. 2023; 15(22):3934. https://doi.org/10.3390/w15223934
Chicago/Turabian StyleChen, Juan, Rui Liu, Yantao Jian, and Teng Ma. 2023. "Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard" Water 15, no. 22: 3934. https://doi.org/10.3390/w15223934
APA StyleChen, J., Liu, R., Jian, Y., & Ma, T. (2023). Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard. Water, 15(22), 3934. https://doi.org/10.3390/w15223934