Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = clayey aquitard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 19609 KiB  
Article
Transformation of the Geological Environment under the Influence of Liquid Radioactive Waste (Russian Experience in Studying Historical Nuclear Disposal)
by Victoria Krupskaya, Sergey Zakusin and Mikhail Chernov
Minerals 2024, 14(3), 252; https://doi.org/10.3390/min14030252 - 28 Feb 2024
Viewed by 1519
Abstract
Due to various historical events, in the Russian Federation, in addition to the radioactive waste storage facilities used in world practice, there are various nuclear and radiation hazardous facilities that require special procedures for monitoring and decommissioning. One of these facilities is the [...] Read more.
Due to various historical events, in the Russian Federation, in addition to the radioactive waste storage facilities used in world practice, there are various nuclear and radiation hazardous facilities that require special procedures for monitoring and decommissioning. One of these facilities is the disposal site for LRW on the territory of the JSC Siberian Chemical Plant, where specially prepared waste is injected into sand reservoirs lying at depths of 300–350 m between clayey strata. This study examines in detail the features of the lithological and mineral composition of reservoir sands and aquitards. The processes of environmental transformation in reservoir sands, which lead to changes in the composition and structure of rocks, were characterized. These processes manifest themselves in the form of the development of leaching zones and their “healing” with newly formed smectite, the destruction of terrigenous grains, including the development of cracks, and the growth of newly formed smectite in the pore space of reservoirs. The forms of occurrence and localization of authigenic smectite formed as a result of technogenic impact are described. It has been shown that, despite the obvious impact of highly reactive solutions accompanying liquid radioactive waste, the insulating properties of the geological environment are maintained and even improved to some extent. Full article
(This article belongs to the Special Issue Adsorption Properties and Environmental Applications of Clay Minerals)
Show Figures

Graphical abstract

17 pages, 7560 KiB  
Article
Spatial Distribution and Factors Influencing the Various Forms of Iron in Alluvial–Lacustrine Clayey Aquitard
by Juan Chen, Rui Liu, Yantao Jian and Teng Ma
Water 2023, 15(22), 3934; https://doi.org/10.3390/w15223934 - 11 Nov 2023
Cited by 4 | Viewed by 1761
Abstract
The compression release of pore water in clayey aquitards has a significant impact on groundwater quality. Iron is an active variable element that mediates biochemical reactions in groundwater systems, but its transformation mechanisms in clayey aquitards remain unclear. The sediment and pore water [...] Read more.
The compression release of pore water in clayey aquitards has a significant impact on groundwater quality. Iron is an active variable element that mediates biochemical reactions in groundwater systems, but its transformation mechanisms in clayey aquitards remain unclear. The sediment and pore water samples from the shallow clayey aquitard (thickness = ~20 m) in the Chen Lake area of China were collected in three boreholes. The spatial distribution and influencing factors of Fe occurrence in the aquitard were revealed using hierarchical extraction, statistical analysis, and simulation calculations. The results indicate that the background value of alluvial–lacustrine sediments primarily affects the Fe concentration of clayey sediments. The dissimilatory reduction in free Fe oxide was the main source of Fe ions in pore water, resulting in a major percentage of Fe2+ in the total Fe concentration (0.07−5.91 mg/L). The abundant organic matter in organic-rich clay promoted a dissimilatory reduction in Fe (III) oxides, while the Fe concentrations of sediment and pore water were lower in the sand-rich stratum because of its weak adsorption capacity. The impact of human reclamation activities on the aquitard was mainly concentrated in the shallow layer (>3 m), resulting in water drainage and O2 and CO2 input, which induced the crystallization of poorly crystalline Fe oxides. The input of reactive organic matter from reclaimed crops promoted the dissimilatory reduction in Fe oxides and the enrichment of Fe in deep pore water. The copious Fe2+ in deep stratum pore water tended to interact with CO32− and S2− to form coprecipitation with Fe (II). The concentrations of As, Cr, Sr, Zn, and Mn in pore water followed a similar variation trend to the Fe ion concentration, and their release could be attributed to the reduction dissolution of sediment Fe (III) oxides. Full article
Show Figures

Figure 1

15 pages, 2827 KiB  
Article
Impact of Pressure on Arsenic Released from Pore Water in Clayey Sediment
by Cong Xiao, Yuzhu Chen, Teng Ma and Wen Xiong
Toxics 2022, 10(12), 738; https://doi.org/10.3390/toxics10120738 - 29 Nov 2022
Cited by 3 | Viewed by 1764
Abstract
Overpumping can cause arsenic to be released from the pore water in clayey aquitards into aquifers. The amount of water pumped during groundwater exploitation may change over time, leading to different soil-compaction rates or patterns. However, the impact of pressure on the release [...] Read more.
Overpumping can cause arsenic to be released from the pore water in clayey aquitards into aquifers. The amount of water pumped during groundwater exploitation may change over time, leading to different soil-compaction rates or patterns. However, the impact of pressure on the release of arsenic during the compaction of a clayey aquitard is poorly understood. We performed a laboratory-compaction experiment using clayey sediment to identify the effects of compaction rates and patterns on arsenic release by analyzing the chemical characteristics and arsenic species present in pore water samples collected at different stages of the compaction experiment. A rapid (PV increased linearly) and a slow (PV increased exponentially) water-release patterns were recognized according to the compaction rate. We observed that arsenic concentrations in the slow pattern (6.7 to 36.4 μg/L) were considerably higher than those in the rapid pattern (7.6 to 16.1 μg/L). Furthermore, concentrations were the highest in the accelerated compaction pattern (16.8 to 47.4 μg/L), followed by those in the constant and decelerated patterns (4.3 to 14.4 μg/L). Overall, compaction rate and pattern did not alter the arsenic-release mechanism; however, they did alter the moisture content of the sediment at each stage, which indirectly led to differences in the released arsenic concentrations. These results suggest that pumping rates and patterns must be considered to prevent arsenic contamination in groundwater-extraction scenarios. Full article
Show Figures

Figure 1

17 pages, 9296 KiB  
Article
Hydrostratigraphic Framework and Physicochemical Status of Groundwater in the Gioia Tauro Coastal Plain (Calabria—Southern Italy)
by Giuseppe Cianflone, Giovanni Vespasiano, Rosanna De Rosa, Rocco Dominici, Carmine Apollaro, Orlando Vaselli, Luca Pizzino, Cristiano Tolomei, Francesco Capecchiacci and Maurizio Polemio
Water 2021, 13(22), 3279; https://doi.org/10.3390/w13223279 - 19 Nov 2021
Cited by 11 | Viewed by 3376
Abstract
In this study, we analysed the Gioia Tauro Plain (Tyrrhenian coast, southern Italy) in terms of hydrostratigraphy and the physicochemical status of groundwater. We investigated the hydrostratigraphic framework of the area identifying a deep aquifer (made by late Miocene succession), an aquitard (consisting [...] Read more.
In this study, we analysed the Gioia Tauro Plain (Tyrrhenian coast, southern Italy) in terms of hydrostratigraphy and the physicochemical status of groundwater. We investigated the hydrostratigraphic framework of the area identifying a deep aquifer (made by late Miocene succession), an aquitard (consisting of Pliocene clayey and silty deposits) and a shallow aquifer (including Late Pleistocene and Holocene marine and alluvial sediments) using subsoil data (boreholes and geophysics). Our reconstruction showed that the structural geology controls the spatial pattern of the aquitard top and the shallow aquifer thickness. Furthermore, we evaluated the hydraulic conductivity for the shallow aquifer using an empirical method, calibrated by slug tests, obtaining values ranging from 10−4 to 10−5 m/s with a maximum of 10−3 m/s located close to inland dune fields. The piezometric level of the shallow aquifer recorded a significant drop between the 1970s and 2021 (−35 m as the worst value). It is the effect of climate and soil use changes, the latter being the increased water demand for kiwi cultivation. Despite the overexploitation of the shallow aquifer, shallow groundwater is fresh (736 µS/cm as mean electrical conductivity) except for a narrow coastal area where the electrical conductivity is more than 1500 µS/cm, which can be due to the seawater intrusion. What was more complex was the physicochemical status of the deep aquifer characterised by high temperature (up to 25.8 °C) and electrical conductivity up to 10,520 µS/cm along the northern and southern plain boundaries marked by tectonic structures. This issue suggested the dominant role of the local fault system that is likely affecting the deep groundwater flow and its chemical evolution. Full article
Show Figures

Figure 1

Back to TopTop