Geochronological and Sedimentological Study of the Fluvio-Lacustrine Deposits from Shigu to Longjie: Implications for the Evolution of the Lower Jinsha River since the Early Pleistocene
Abstract
:1. Introduction
2. Geological and Geomorphic Setting
3. Samples and Methods
3.1. Field Work
3.2. Dating Method
4. Results
4.1. Spatial Distribution and Sedimentary Characteristics of the Fluvio-Lacustrine Sediments
4.1.1. Shigu Reach
4.1.2. Taoyuan Reach
4.1.3. Panzhihua Reach
4.1.4. Longjie Reach
4.2. Dating Results
5. Discussion
5.1. The Genesis of the Lacustrine Sediments: Regional Paleo Xigeda Lake or Local Damming Lake
5.2. Incision Time of the Lower Jinsha River
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potter, P.E. Significance and origin of big rivers. J. Geol. 1978, 86, 13–33. [Google Scholar] [CrossRef]
- Ward, F.K. The hydrography of the Yunnan-Tibet frontier. Geogr. J. 1918, 52, 288–299. [Google Scholar] [CrossRef]
- Davis, W.M. Drainage Evolution on the Yünnan-Tibet Frontier. Geogr. Rev. 1919, 7, 413–415. [Google Scholar] [CrossRef]
- Lee, C.Y. The development of the upper Yangtze valley. Bull. Geol. Soc. China 1934, 13, 107–118. (In Chinese) [Google Scholar] [CrossRef]
- Barbour, G.B. Physiographic history of the Yangtze. Geogr. J. 1936, 87, 17–32. [Google Scholar] [CrossRef]
- Li, C.S. Development history of the Yangtze River. Yangtze River 1956, 12, 3–6. (In Chinese) [Google Scholar]
- Yuan, F.L. Supplementay study on the development history of the Yangtze River. J. People’s Yangtze River 1957, 2, 1–9. (In Chinese) [Google Scholar]
- Ren, M.E.; Bao, H.S.; Han, T.C.; Wang, F.Y.; Huang, P.H. The problems of valley landforms and river capture of the Jinshajiang River in northwestern Yunnan. Acta Geogr. Sin. 1959, 25, 135–155. [Google Scholar]
- He, H.S.; He, K.Z.; Zhu, X.M.; Zhu, Z.Y. A discussion on the problem of river-capture of the Jinshajiang River in Northwest Yunnan. Geoscience 1989, 3, 319–330. (In Chinese) [Google Scholar]
- Chen, J. Discussion on the evolutionary history of Jinsha River from Benzilan to Jinjiangjie in northwestern Yunnan. J. East China Geol. Inst. 1994, 17, 234–253. (In Chinese) [Google Scholar]
- Yang, D.Y.; Han, Z.Y.; Ge, Z.S. Geomorphic processs of the formation and incision of the section from Shigu to Yibin of the Jinshajiang River. Quat. Sci. 2008, 28, 564–568. (In Chinese) [Google Scholar]
- Ouimet, W.; Whipple, K.; Royden, L.; Reiners, P.; Hodges, K.; Pringle, M. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere 2010, 2, 50–63. [Google Scholar] [CrossRef]
- Zheng, H.B.; Clift, P.D.; Wang, P.; Tada, R.; Jia, J.T.; He, M.Y.; Jourdan, F. Pre-Miocene birth of the Yangtze River. Proc. Natl. Acad. Sci. USA 2013, 110, 7556–7561. [Google Scholar] [CrossRef] [PubMed]
- McPhillips, D.; Hoke, G.D.; Liu-Zeng, J.; Bierman, P.R.; Rood, D.H.; Niedermann, S. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophys. Res. Lett. 2016, 43, 101–110. [Google Scholar] [CrossRef]
- Shen, X.; Tian, Y.; Li, D.; Li, D.; Qin, S.; Pieter, V.; James, S. Oligocene-Early Miocene river incision near the first bend of the Yangze River: Insights from apatite (U-Th-Sm)/He thermochronology. Tectonophysics 2016, 687, 223–231. [Google Scholar] [CrossRef]
- Su, H.; Dong, M.; Hu, Z.B. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate. Glob. Planet. Change 2019, 183, 103002. [Google Scholar] [CrossRef]
- Liu, F.L.; Gao, H.S.; Li, Z.M.; Pan, B.T.; Su, H. Terraces development and their implications for valley evolution of the Jinsha River from Qiaojia to Menggu. Acta Geogr. Sin. 2020, 75, 1095–1105. [Google Scholar]
- Zheng, H.; Clift, P.D.; He, M.; Bian, Z.; Liu, G.; Liu, X.; Xia, L.; Yang, Q.; Jourdan, F. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology 2021, 49, 35–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Daly, J.S.; Tian, Y.; Wang, Y.; Eszter, B.; Sun, X.; Liu, Y. Sedimentary recycling in Jianchuan Basin, SE Tibet: A solution to the debate on the formation age of the First Bend (Yangtze River). Geomorphology 2023, 440, 108888. [Google Scholar] [CrossRef]
- Rohrmann, A.; Kirby, E.; Schwanghart, W. Accelerated Miocene incision along the Yangtze River driven by headward drainage basin expansion. Sci. Adv. 2023, 9, eadh1636. [Google Scholar] [CrossRef]
- Clark, M.K.; House, M.A.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W. Late Cenozoic uplift of southeastern Tibet. Geology 2005, 33, 525–528. [Google Scholar] [CrossRef]
- Clift, P.D.; Blusztajn, J.; Nguyen, A.D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys. Res. Lett. 2006, 33, L19403. [Google Scholar] [CrossRef]
- Zhao, M.; Shao, L.; Liang, J.; Li, Q. No Red River capture since the late Oligocene: Geochemical evidence from the northwestern South China Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 122, 185–194. [Google Scholar] [CrossRef]
- Wei, H.H.; Wang, E.; Wu, G.L.; Meng, K. No sedimentary records indicating southerly flow of the paleo upperYangtze River from the first bend in southeastern Tibet. Gondwana Res. 2016, 32, 93–104. [Google Scholar] [CrossRef]
- Wissink, G.K.; Hoke, G.D.; Garzione, C.N.; Liu-Zeng, J. Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon. Tectonics 2016, 35, 2538–2563. [Google Scholar] [CrossRef]
- Kong, P.; Granger, D.E.; Wu, F.Y.; Caffee, M.W.; Wang, Y.J.; Zhao, X.T.; Zheng, Y. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth Planet. Sci. Lett. 2009, 278, 131–141. [Google Scholar] [CrossRef]
- Deng, B.; Chew, D.; Mark, C.; Liu, S.G.; Cogné, N.; Jiang, L.; O’Sullivan, G.; Li, Z.W.; Li, J.X. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. GSA Bull. 2021, 133, 199–211. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Tao, Y.; Wang, Y.; Pang, J.; Ma, Y.; Zhang, J.; Ma, Z.; Xiong, J. Pliocene to Early Pleistocene drainage reorganization in eastern Tibet inferred from detrital zircons. Geophys. Res. Lett. 2021, 48, e2021GL094563. [Google Scholar] [CrossRef]
- Chen, Z.L.; Sun, Z.P.; Royden, L.H.; Zhang, X.Y. Landslide blocked lake: Origin of the Xigeda Formation in Luding, Sichuan and its significance. Quat. Sci. 2014, 24, 614–620. (In Chinese) [Google Scholar]
- Wang, P.; Li, J.P.; Wang, J.C.; Liu, C.R.; Han, F.; Gao, L. Quartz Ti-center in ESR dating of Xigeda formation in Sichuan and contrast with magnetic stratigraphic profiles. Nucl. Tech. 2011, 34, 111–115. (In Chinese) [Google Scholar]
- Xu, Z.M.; Liu, W.L. Some problems in the study of the genesis of Xigeda Formation. Earth Sci. Front. 2011, 18, 256–270. (In Chinese) [Google Scholar]
- Yang, Y.; Xu, S.; Binnie, S.A.; Ritter, B.; Cui, L.F.; Cao, Z.P.; Zhang, S.C.; Liu, C.Q.; Dunai, T. Late Cenozoic locally landslide-dammed lakes across the Middle Yangtze River. Geomorphology 2022, 413, 108366. [Google Scholar] [CrossRef]
- Gopinath, G.; Resmi, T.R.; Karunakara, N.; Manjula, P.; Jesiya, N.P.; Kumara, K.S.; Srinivas, R. How Long a Tropical Mountainous Lake Can Survive? Inferences from Geochemistry and Radiometric Measurements of Pookode Lake, Kerala, India. J. Geol. Soc. India 2023, 99, 840–846. [Google Scholar] [CrossRef]
- Giano, S.I.; Schiattarella, M. Drainage integration of small endorheic basins at the Pleistocene-Holocene transition: An example from southern Italy. Geomorphology 2023, 427, 108622. [Google Scholar] [CrossRef]
- Clark, M.K.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res. Earth Surf. 2006, 111, F03002. [Google Scholar] [CrossRef]
- Liu, F.L.; Gao, H.S.; Pan, B.T.; Li, Z.M.; Su, H. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Front. Earth Sci. 2019, 13, 55–74. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Chen, Z.L.; Liu, Y.P.; Royden, L.H. Tectonics of the Longmen Shan and adjacent regions, central China. Int. Geol. Rev. 1995, 37, 661–735. [Google Scholar] [CrossRef]
- Wang, E.; Kirby, E.; Furlong, K.P.; Soest, M.v.; Xu, G.; Shi, X.; Kamp, P.J.J.; Hodges, K.V. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat. Geosci. 2012, 5, 640–645. [Google Scholar] [CrossRef]
- Sichuan Bureau of Geology and Mineral Resources (SBGMR). Regional Geology of Sichuan Province; Geological Publishing House: Beijing, Chian, 1991. [Google Scholar]
- Burchfiel, B.C.; Chen, Z. (Eds.) Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America: Boulder, CO, USA, 2012. [Google Scholar]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1998, 100, 1054–1068. [Google Scholar] [CrossRef]
- Fan, X.M.; Dufresne, A.; Subramanian, S.S.; Strom, A.; Hermanns, R.; Stefanelli, C.T.; Hewitt, K.; Yunus, A.P.; Dunning, S.; Capra, L.; et al. The formation and impact of landslide dams-state of the art. Earth Sci. Rev. 2020, 203, 103116. [Google Scholar] [CrossRef]
- Liu, C.R.; Yin, G.M.; Gao, L.; Bahain, J.J.; Li, J.P.; Lin, M.; Chen, S.M. ESR dating of Pleistocene archaeological localities of the Nihewan Basin, North China-Preliminary results. Quat. Geochronol. 2010, 5, 385–390. [Google Scholar] [CrossRef]
- Rixhon, G.; Briant, R.M.; Cordier, S.; Duval, M.; Jones, A.; Scholz, D. Revealing the pace of river landscape evolution during the Quaternary: Recent developments in numerical dating methods. Quat. Sci. Rev. 2017, 166, 91–113. [Google Scholar] [CrossRef]
- Duval, M.; Arnold, L.J.; Rixhon, G. Electron spin resonance(ESR) dating in Quaternary studies: Evolution, recent advances and applications. Quat. Int. 2020, 556, 1–10. [Google Scholar] [CrossRef]
- Del, V.M.; Alonso, M.J.; Duval, M.; Arriolabengoa, M.; Álvarez, I.; Bodego, A.; Cheng, H.; Hermoso de Mendoza, A.; Aranburu, A.; Iriarte, E. Luminescence and ESR dating of thesedimentary infill from the multi-level cave system of Alkerdi-Zelaieta(Navarre, N Spain). Quat. Geochronol. 2022, 73, 101380. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Falgueres, C.; Quaegebeur, J.P. ESR dating of quartz from Quaternary sediments: First attempt. Nucl. Tracks Radiat. Meas. (1982) 1985, 10, 921–928. [Google Scholar] [CrossRef]
- Lai, Z.P. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau. Radiat. Meas. 2006, 41, 9–16. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Roberts, H.M.; Duller, G.A.T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiat. Meas. 2004, 38, 241–252. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence Dating; Academic Press: London, UK, 1985. [Google Scholar]
- Zhao, X.T.; Wu, Z.H.; Feng, Y.Y.; Zhang, Y.S.; Hu, D.G.; Qu, Y.X.; Guo, C.B. Landscapes and sediments ofthe‘Yangtze First Bend’valley along the Jinsha River and development of the valley. Geol. Bull. China 2015, 34, 83–103. [Google Scholar]
- Xu, Z.M. Deposits of Zhaizicun Landslide-dammed lake along Jinsha River and its implication for the genesis of Xigeda Formation. Geol. Rev. 2011, 57, 675–686. (In Chinese) [Google Scholar]
- Zhao, X.T.; Hu, D.G.; Zhang, Y.S. Genesis and age of the gravels underlying the Xigeda Formation of Panzhihua, Sichuan, China, and valley development of the ancient Jinsha River. Acta Geosci. Sin. 2008, 29, 1–12. (In Chinese) [Google Scholar]
- Zhang, Y.C.; Li, J.J.; Zhu, J.J.; Chen, Y.; Pan, B.T.; Kuang, M.S. Studies on development of Jinshajiang River during Late Cenozoic. Yunnan Geogr. Environ. Res. 1998, 10, 43–48. (In Chinese) [Google Scholar]
- Blöthe, J.H.; Munack, H.; Korup, O.; Fülling, A.; Garzanti, E.; Resentini, A.; Kubik, P.W. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quat. Sci. Rev. 2014, 94, 102–119. [Google Scholar] [CrossRef]
- Phartiyal, B.; Anupam, S.; Pradeep, S.; Yogesh, R. Chronology of relict lake deposits in the Spiti River, NW Trans Himalaya: Implications to Late Pleistocene-Holocene climate-tectonic perturbations. Geomorphology 2009, 108, 264–272. [Google Scholar] [CrossRef]
- Liu, F.L.; Gao, H.S.; Li, Z.M.; Pan, B.T.; Su, H. Terraces development and their implications for valley evolution of the Jinsha River since Late Pleistocene near Longjie, Yunnan. Adv. Earth Sci. 2020, 35, 431. (In Chinese) [Google Scholar]
- Wang, K.; Yin, G.M.; Wei, C.Y.; Chen, L.; Liu, C.R.; Wang, W.B. ESR chronology of lacustrine sediment in the Fengke reaches of the middle Jinsha River: Implications for landslide dammed lake formation. J. Earth Environ. 2022, 13, 270–280. (In Chinese) [Google Scholar]
- Wang, H.; Tong, K.; Hu, G.; Wang, P.; Li, D.H.; Huang, J.W.; Cao, G.R.; Zhang, J.F.; Chen, J. Dam and megafloods at the First Bend of the Yangtze River since the Last Glacial Maximum. Geomorphology 2021, 373, 107491. [Google Scholar] [CrossRef]
- Zhu, Z.F.; Su, H.; Dong, M.; Ming, Q.Z.; Shi, Z.T. The age of Zhaizicun ancient dammed lake sediments in Jinsha River. Quat. Sci. 2018, 38, 145–150. (In Chinese) [Google Scholar]
- Liu, W.M.; Hu, K.H.; Carling, P.A.; Carling, P.A.; Lai, Z.P.; Cheng, T.; Xu, Y.L. The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan Plateau. Geomorphology 2018, 321, 167–173. [Google Scholar] [CrossRef]
- Chai, H.J.; Liu, H.C.; Zhang, Z.Y. The catalog of Chinese landslide dam events. J. Geol. Hazards Environ. Preserv. 1995, 6, 1–9. (In Chinese) [Google Scholar]
- Zhang, Y.S.; Zhao, X.T.; Lan, H.X.; Xiong, T.Y. A Pleistocene landslide-dammed lake, Jinsha River, Yunnan, China. Quat. Int. 2011, 233, 72–80. [Google Scholar] [CrossRef]
- Chen, J.; Dai, F.; Lv, T.; Cui, Z. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quat. Int. 2013, 298, 107–113. [Google Scholar] [CrossRef]
- Higgitt, D.L.; Zhang, X.B.; Liu, W.M.; Tang, Q.; He, X.B.; Ferrant, S. Giant palaeo-landslide dammed the Yangtze river. Geosci. Lett. 2014, 1, 6. [Google Scholar] [CrossRef]
- Bao, Y.D.; Zhai, S.J.; Chen, J.P.; Xu, P.H.; Sun, X.H.; Zhan, J.W.; Zhang, W.; Zhou, X. The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 2020, 351, 106970. [Google Scholar] [CrossRef]
- Fan, X.M.; Xu, Q.; Alonso-Rodriguez, A.; Subramanian, S.S.; Li, W.L.; Zheng, G.; Dong, X.J.; Huang, R.Q. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.P.; Zhou, F.J.; Song, S.Y.; Zhang, Y.W.; Gu, F.F.; Chen, C. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 2020, 368, 107351. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Wang, L.; Shan, L. Back analysis of breaching process of Baige landslide dam. Landslides 2020, 17, 1681–1692. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, K.; Yuan, X.; Wang, G.; Beek, P.v.d. Late Oligocene-early Miocene Origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization. Geomorphology 2022, 411, 108303. [Google Scholar] [CrossRef]
- Davis, W.M. The geographical cycle. Geogr. J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Su, H.; Ming, Q.Z.; Pan, B.T.; Gao, H.S.; Zhang, W.X.; Dong, M.; Shi, Z.T. The analysis and discussions on the chronological frame of Jinshajiang River Vally-drainage. J. Mt. Sci. 2013, 31, 685–692. (In Chinese) [Google Scholar]
- Dong, M.; Su, H.; Shi, Z.T.; Ming, Q.Z.; He, H.L. The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution. Acta Geogr. Sin. 2018, 73, 1728–1736. (In Chinese) [Google Scholar]
- He, Z.; Zhang, X.; Bao, S.; Qiao, Y.S.; Sheng, Y.Y.; Liu, X.T.; He, X.T.; Yang, X.C.; Zhao, J.X.; Liu, R. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau. Geomorphology 2015, 250, 95–112. [Google Scholar] [CrossRef]
Sample No. | Sampling Site | Altitude (m) | Dating Material | U (μg/g) | Th (μg/g) | K2O (%) | Water Content (%) | Equivalent Dose (Gy/ka) | Paleodose (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|---|---|---|
PZH01 | T7 at Bingcaogang | 1335 | Lacustrine sediment | 1.35 | 9.20 | 1.62 | 2.80 | 2.65 | 3751 ± 260 | 1416 ± 98 |
PZH02 | T1 at Bingcaogang | 1047 | Fluvial sand | 1.42 | 6.33 | 1.56 | 8.25 | 2.27 | 1188 ± 208 | 523 ± 92 |
PZH03 | T5 at Sanduizi | 1435 | Lacustrine sediment | 1.76 | 12.9 | 2.34 | 9.34 | 3.39 | 6035 ± 231 | 1780 ± 68 |
PZH04 | T1 at Sanduizi | 1075 | Fluvial sand | 1.46 | 9.85 | 2.23 | 8.87 | 3.05 | 3673 ± 551 | 1204 ± 181 |
PZH05 | Wanzitou | 1208 | Lacustrine sediment | 1.61 | 13.7 | 1.94 | 9.00 | 3.09 | 3175 ± 349 | 1028 ± 113 |
PZH06 | T3 at Guanyinyan | 1140 | Fluvial sand | 1.87 | 13.6 | 2.10 | 12.56 | 3.13 | 2881 ± 331 | 921 ± 106 |
Sample No. | Sampling Site | Altitude (m) | Dating Material | K (%) | Th (ppm) | U (ppm) | Water Content (%) | Dose Rate (Gy/ka) | De (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|---|---|---|
SHG | T1 at SHG | 1850 | Lacustrine sediment | 1.94 ± 0.05 | 15.20 ± 0.40 | 2.79 ± 0.10 | 10 ± 5 | 3.50 ± 0.23 | 108.57 ± 3.09 | 31 ± 2.2 |
LZ | T1 at Lazha | 1025 | Lacustrine sediment | 1.80 ± 0.05 | 12.6 ± 0.34 | 3.29 ± 0.11 | 8 ± 5 | 3.32 ± 0.22 | 84.00 ± 4.54 | 25.3 ± 2.2 |
TY | T3 at Taoyuan | 1298 | Lacustrine sediment | 1.56 ± 0.05 | 14.2 ± 0.37 | 2.54 ± 0.10 | 10 ± 5 | 2.91 ± 0.20 | 225.63 ± 7.32 | 77.5 ± 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Gao, H.; Li, Z.; Huang, C.; Xi, Z.; Xue, Y. Geochronological and Sedimentological Study of the Fluvio-Lacustrine Deposits from Shigu to Longjie: Implications for the Evolution of the Lower Jinsha River since the Early Pleistocene. Water 2023, 15, 3613. https://doi.org/10.3390/w15203613
Liu F, Gao H, Li Z, Huang C, Xi Z, Xue Y. Geochronological and Sedimentological Study of the Fluvio-Lacustrine Deposits from Shigu to Longjie: Implications for the Evolution of the Lower Jinsha River since the Early Pleistocene. Water. 2023; 15(20):3613. https://doi.org/10.3390/w15203613
Chicago/Turabian StyleLiu, Fenliang, Hongshan Gao, Zongmeng Li, Changjun Huang, Zhen Xi, and Yun Xue. 2023. "Geochronological and Sedimentological Study of the Fluvio-Lacustrine Deposits from Shigu to Longjie: Implications for the Evolution of the Lower Jinsha River since the Early Pleistocene" Water 15, no. 20: 3613. https://doi.org/10.3390/w15203613