Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Sample Plot Setting and Investigation
2.2.2. Sample Collection and Index Determination
2.2.3. Data Processing
Calculation of Soil Water Storage
Coefficient of Variation
Spearman Rank Correlation Coefficient
3. Results and Analysis
3.1. Soil Water Storage
3.2. Spatial and Temporal Distribution Characteristics of Soil Moisture
3.3. Spatiotemporal Variability of Soil Moisture
3.4. Time Stability of Soil Water Content
4. Discussion
5. Conclusions
- (1)
- The soil water storage of the four kinds of aerial shrub land reached their highest levels in August, and the average levels of soil water storage during the growing season can be ranked as Calligonum mongolicum forest land (21.34 mm) > Hedysarum scoparium forest land (20.63 mm) > mixed forest land (Hedysarum scoparium dominant species) (19.36 mm) > mixed forest land (Calligonum mongolicum dominant species) (18.88 mm);
- (2)
- The soil water content in the 0–200 cm layer of different aerial seeding shrub lands changed obviously with time. Among them, the surface soil water content fluctuated most in different months, the range of change in the shallow soil water content was smaller than that in the surface layer, and the fluctuations in the middle (100–150 cm) and deep layer soil water contents were stable;
- (3)
- There was no strong variability in soil moisture content in the study area. Further, the temporal variation coefficient of the soil moisture at the surface was the highest (31.44~39.8%), and the soil moisture stability was weak. The soil moisture stability of different aerial seeding shrub lands can be ranked as Hedysarum scoparium forest land > mixed forest land (Calligonum mongolicum dominant species) > mixed forest land (Hedysarum scoparium dominant species) > Calligonum mongolicum forest land;
- (4)
- The soil water contents of the four kinds of aerially sown shrub land showed high correlation coefficients in the surface layer (0–30 cm) and deep layer (150–200 cm), and the time stability of soil water was high. The temporal stability of surface and deep soil moisture during the growing season in the four kinds of aerial shrub land was high in June and October, and the lowest in September.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vachaud, G.A.; Silans, A.P.D.; Balabanis, P.; Vauclin, M. Temporal Stability of Spatially Measured Soil Water Probability Density Function1. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Chen, H.M.; Shao, M.A.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Reichardt, K. Using a New Criterion to Identify Sites for Mean Soil Water Storage Evaluation. Soil Sci. Soc. Am. J. 2010, 74, 762–773. [Google Scholar] [CrossRef]
- Heathman, G.C.; Cosh, M.H.; Merwade, V.; Han, E.J. Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana. Catena 2012, 95, 91–103. [Google Scholar] [CrossRef]
- Wang, G.H.; Chen, Z.X.; Shen, Y.Y.; Yang, X.L. Efficient prediction of profile mean soil water content for hillslope-scale Caragana korshinskii plantation using temporal stability analysis. Catena 2021, 206, 105491. [Google Scholar] [CrossRef]
- Liu, Z.B.; Wang, Y.H.; Yu, P.T.; Tian, A.; Wang, Y.R.; Xiong, W.; Xu, L.H. Spatial Pattern and Temporal Stability of Root-Zone Soil Moisture during Growing Season on a Larch Plantation Hillslope in Northwest China. Forests 2018, 9, 68. [Google Scholar] [CrossRef]
- Gao, L.; Shao, M.A.; Peng, X.H.; She, D.L. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. Catena 2015, 132, 29–36. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Huggins, D.R. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale. J. Hydrol. (Amst.) 2011, 404, 186–197. [Google Scholar] [CrossRef]
- Zhu, X.; He, Z.B.; Du, J.; Chen, L.F.; Lin, P.F.; Tian, Q.Y. Soil moisture temporal stability and spatio-temporal variability about a typical subalpine ecosystem in northwestern China. Hydrol. Process. 2020, 34, 2401–2417. [Google Scholar] [CrossRef]
- He, Z.B.; Zhao, M.M.; Zhu, X.; Du, J.; Chen, F.L.; Lin, P.F.; Li, J. Temporal stability of soil water storage in multiple soil layers in high-elevation forests. J. Hydrol. (Amst.) 2019, 569, 532–545. [Google Scholar] [CrossRef]
- Comegna, V.; Basile, A. Temporal stability of spatial patterns of soil water storage in a cultivated Vesuvian soil. Geoderma 1994, 62, 299–310. [Google Scholar] [CrossRef]
- Penna, D.; Brocca, L.; Borga, M.; Fontana, G.D. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. (Amst.) 2013, 477, 55–71. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shen, Y.X.; Wang, Q.H.; Jiang, R.H. The temporal stability of soil moisture spatial pattern and its influencing factors in rocky environments. Catena 2020, 187, 104418. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Hu, W.; Zhu, Y.J.; Shao, M.A.; Xiao, S.; Zhang, C.C. Vertical distribution and temporal stability of soil water in 21-m profiles under different land uses on the Loess Plateau in China. J. Hydrol. (Amst.) 2015, 527, 543–554. [Google Scholar] [CrossRef]
- Gao, L.; Shao, M.A. Temporal stability of soil water storage in diverse soil layers. Catena 2012, 95, 24–32. [Google Scholar] [CrossRef]
- Gómez-Plaza, A.; Alvarez-Rogel, J.; Albaladejo, J.; Castillo, V.M. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment. Hydrol. Process. 2000, 14, 1261–1277. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M. Regional scale spatiotemporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. J. Hydrol. (Amst.) 2014, 516, 317–329. [Google Scholar] [CrossRef]
- Gbohoui, Y.P.; Paturel, J.; Tazen, F.; Mounirou, L.A.; Yonaba, R.; Karambiri, H.; Yacouba, H. Impacts of climate and environmental changes on water resources: A multi-scale study based on Nakanb’e nested watersheds in West African Sahel. J. Hydrol. Reg. Stud. 2021, 35, 100828. [Google Scholar] [CrossRef]
- Muratoglu, A.; Iraz, E.; Ercin, E. Water resources management of large hydrological basins in semi-arid regions: Spatial and temporal variability of water footprint of the Upper Euphrates River basin. Sci. Total Environ. 2022, 846, 153796. [Google Scholar] [CrossRef]
- Saeed, F.H.; Al-Khafaji, M.S.; Al-Faraj, F. Hydrologic response of arid and semi-arid river basins in Iraq under a changing climate. J. Water Clim. Chang. 2022, 13, 1225–1240. [Google Scholar] [CrossRef]
- Del Jesus, M.; Rinaldo, A.; Rodriguez-Iturbe, I. Point rainfall statistics for ecohydrological analyses derived from satellite integrated rainfall measurements. Water Resour. Res. 2015, 51, 2974–2985. [Google Scholar] [CrossRef]
- Priyadarshini, K.V.; Prins, H.H.; de Bie, S.; Heitkönig, I.M.; Woodborne, S.; Gort, G.; Kirkman, K.; Ludwig, F.; Dawson, T.E.; de Kroon, H. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions. Ecohydrology 2016, 9, 218–228. [Google Scholar] [CrossRef]
- Amy, A.; McCole; Libby, A.S. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. (Amst.) 2007, 342, 238–248. [Google Scholar] [CrossRef]
- Wu, H.W.; Li, X.Y.; Jiang, Z.Y.; Chen, H.Y.; Zhang, C.C.; Xiao, L. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Sci. Total Environ. 2016, 542, 182–191. [Google Scholar] [CrossRef]
- Kafando, M.B.; Koïta, M.; Mathieu, L.C.; Yonaba, O.R.; Fowe, T.; Zouré, C.O.; Faye, M.D.; Leye, B. Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water 2021, 13, 3216. [Google Scholar] [CrossRef]
- Tian, Y.J.; Si, J.H.; Cheng, Y.S.; Pang, D.S.; Xie, Z.C. Study on the experiment of aerial sowing afforestation in sandy area of Alxa. J. Arid Land Resour Environ. 2010, 24, 149–153. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, C.G.; Li, H.Y.; Yu, T.F.; Chen, W.Y.; Xie, Z.C. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert. Arid Zone Res. 2022, 39, 1112–1121. (In Chinese) [Google Scholar] [CrossRef]
- Yang, T.T.; Musa, A.; Zhang, Y.S.; Wu, J.B.; Wang, A.Z.; Guan, D.X. Characteristics of soil moisture under different vegetation coverage in Horqin Sandy Land, northern China. PLoS ONE 2018, 13, e0198805. [Google Scholar] [CrossRef]
- Han, X.Y.; Liu, W.Z.; Cheng, L.P. Vertical distribution characteristics and temporal stability of soil water in deep profile on the Loess TablelanoNorthwest China. Chin. J. Appl. Ecol. 2017, 28, 430–438. (In Chinese) [Google Scholar] [CrossRef]
- Shan, Y.L.; Xie, J.C.; Han, Q.C.; Lei, N.; Dong, Q.G. Soil moisture characteristics and temporal stability on the slope of the Loess Plateau: A case study of Jjiulongquan ditch in Yan’an city. J. Soil Water Conserv. 2021, 19, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Markewitz, D.; Devine, S.; Davidson, E.A.; Brando, P.; Nepstad, D.C. Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake. New Phytol. 2010, 187, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Li, Z.S.; Jiao, L.; Wang, C.; Gao, G.Y.; Fu, B.J. Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China. Chin. Geogr. Sci. 2020, 30, 19. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Gao, L.; Shao, M.A. Temporal stability of shallow soil water content for three adjacent transects on a hillslope. Agric. Water Manag. 2012, 110, 41–54. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, C.; Zheng, Y.Z.; Li, T.T.; Yu, N. Temporal stability of soil moisture of Amygdalus pedunculate woodland in Mu Us sandy land. Sci. Soil Water Conserv. 2021, 19, 8–17. [Google Scholar] [CrossRef]
- Zhang, P.P. Soil Organic Carbon, Water Variability and Plant Diversity in Desert Landscape in the Middle Reaches of Heihe River Basin. Ph.D. Thesis, Northwest Agriculture and Forestry University, Yang Ling, China, 2014. [Google Scholar]
- Chen, W.L.; Wang, S.X.; Qi, T.X.; Jiao, L.; Wang, C.; Maierdang, K.; Li, Z.S.; Fu, B.J. Spatiotemporal dynamics and temporal stability of soil moisture at black locust plantations with different restoration years on hilly region of the loess plateau, China. Acta Ecol. Sin. 2021, 41, 5643–5657. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, P.Q.; Yao, W.Y.; Liu, G.B.; Sun, W.Y. Profile distribution of soil moisture response to precipitation on the Pisha sandstone hillslopes of China. Sci. Rep. 2020, 10, 9136. [Google Scholar] [CrossRef]
- Brandt, A.C.; Zhang, Q.; Caceres, M.L.L.; Hideki, M. Soil temperature and soil moisture dynamics in winter and spring under heavy snowfall conditions in North-Eastern Japan. Hydrol. Process. 2020, 34, 3235–3251. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, B.Q.; He, C.S.; Han, Z.B.; Bogena, H.R.; Huisman, J.A. Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed, Northwest China. Agric. For. Meteorol. 2019, 271, 225–239. [Google Scholar] [CrossRef]
- Zhang, C.C.; Wang, Y.Q.; Jia, X.Y.; Shao, M.A.; An, Z.S. Variations in capacity and storage of plant-available water in deep profiles along a revegetation and precipitation gradient. J. Hydrol. (Amst.) 2020, 581, 124401. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.J.; Wang, L.X.; Lu, N.; Li, J.Y. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agric. For. Meteorol. 2020, 288–289, 108020. [Google Scholar] [CrossRef]
- Xu, G.C.; Ren, Z.P.; Li, P.; Li, Z.B.; Yuan, S.L.; Zhang, H.; Wang, D.; Zhang, Z.Y. Temporal persistence and stability of soil water storage after rainfall on terrace land. Environ. Earth Sci. 2016, 75, 966. [Google Scholar] [CrossRef]
- Cosh, M.H.; Jackson, T.J.; Moran, S.; Bindlish, R. Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sens. Environ. 2008, 112, 304–313. [Google Scholar] [CrossRef]
- Grant, L.; Seyfried, M.; McNamara, J. Spatial variation and temporal stability of soil water in a snow-dominated, mountain catchment. Hydrol. Process. 2004, 18, 3493–3511. [Google Scholar] [CrossRef]
Plot | Species Composition | Plant Height/cm | Tree Crown/cm | Basal Diameter/cm | Herb | Altitude/m | Gradient | Slope Aspect |
---|---|---|---|---|---|---|---|---|
I | Hedysarum scoparium100% | 176 ± 35 | 179 ± 44 | 1.4 ± 0.8 | Bassia dasyphylla; Stipa capillata; Agriophyllum squarrosum | 1254 ± 2 | 14 ± 1 | Northwest–Southeast |
II | Calligonum mongolicum9% + Hedysarum scoparium91% | 153 ± 51 | 152 ± 42 | 2.5 ± 1.3 | Stipa capillata; Bassia dasyphylla | 1256 ± 2 | 11 ± 3 | Northwest–Southeast |
III | Hedysarum scoparium25% + Calligonum mongolicum75% | 105 ± 28 | 111 ± 30 | 1.4 ± 0.8 | Stipa capillata; Agriophyllum squarrosum | 1268 ± 2 | 12 ± 6 | Northwest–Southeast |
IV | Calligonum mongolicum100% | 104 ± 51 | 111 ± 52 | 2.0 ± 1.6 | Allium mongolicum; Artemisia ordosica Krasch | 1273 ± 3 | 15 ± 2 | Northwest–Southeast |
Soil Characteristics/Plot Type | Hedysarum scoparium | Mixed Woodland (Hedysarum scoparium Dominant Species) | Mixed Woodland (Calligonum mongolicum Dominant Species) | Calligonum mongolicum |
---|---|---|---|---|
Crusts coverage (%) | 39 ± 9 ab 1 | 51 ± 18 a | 51 ± 17 a | 35 ± 12 b |
Soil bulk density (g/cm3) | 1.45 ± 0.11 b | 1.50 ± 0.12 a | 1.46 ± 0.07 b | 1.46 ± 0.12 b |
Soil porosity (%) | 45.27 ± 3.98 a | 43.37 ± 4.44 b | 44.77 ± 2.77 a | 45.05 ± 4.63 a |
Month | Precipitation (mm) | Average Temperature (°C) | Average Wind Speed (m/s) |
---|---|---|---|
June | 8.70 | 15.34 | 2.81 |
July | 77.00 | 26.04 | 2.03 |
August | 170.00 | 22.85 | 1.61 |
September | 24.33 | 19.21 | 1.67 |
October | 7.67 | 8.87 | 1.28 |
Plot Type | Soil Depth | Soil Water Content Average Value | Soil Water Content Maximum Value | Soil Water Content Minimum Value | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|
Hedysarum scoparium | 0~30 cm | 0.8870 | 1.2841 | 0.5411 | 0.2941 | 33.16% |
30~100 cm | 0.7502 | 0.8181 | 0.6670 | 0.0586 | 7.81% | |
100~150 cm | 0.7602 | 0.7883 | 0.7338 | 0.0207 | 2.73% | |
150~200 cm | 0.7982 | 0.9253 | 0.6936 | 0.1012 | 12.68% | |
Mixed woodland (Hedysarum scoparium dominant species) | 0~30 cm | 0.7228 | 1.0532 | 0.4678 | 0.2435 | 33.69% |
30~100 cm | 0.6455 | 0.7595 | 0.5003 | 0.0948 | 14.68% | |
100~150 cm | 0.6431 | 0.7535 | 0.5455 | 0.0751 | 11.68% | |
150~200 cm | 0.6636 | 0.7100 | 0.6074 | 0.0473 | 7.12% | |
Mixed woodland (Calligonum mongolicum dominant species) | 0~30 cm | 0.7011 | 1.0179 | 0.4857 | 0.2204 | 31.44% |
30~100 cm | 0.6340 | 0.7401 | 0.5450 | 0.0709 | 11.18% | |
100~150 cm | 0.6368 | 0.8049 | 0.5589 | 0.0991 | 15.56% | |
150~200 cm | 0.5807 | 0.6582 | 0.4963 | 0.0608 | 10.47% | |
Calligonum mongolicum | 0~30 cm | 0.7714 | 1.2561 | 0.4911 | 0.3070 | 39.80% |
30~100 cm | 0.7593 | 0.9747 | 0.5856 | 0.1421 | 18.72% | |
100~150 cm | 0.7552 | 0.8935 | 0.6055 | 0.1258 | 16.65% | |
150~200 cm | 0.7214 | 0.8160 | 0.5432 | 0.1070 | 14.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Tang, G.; Wang, J.; Liu, Y.; Gao, Y. Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China). Water 2023, 15, 3562. https://doi.org/10.3390/w15203562
Zhao Z, Tang G, Wang J, Liu Y, Gao Y. Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China). Water. 2023; 15(20):3562. https://doi.org/10.3390/w15203562
Chicago/Turabian StyleZhao, Zhenyu, Guodong Tang, Jian Wang, Yanping Liu, and Yong Gao. 2023. "Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China)" Water 15, no. 20: 3562. https://doi.org/10.3390/w15203562
APA StyleZhao, Z., Tang, G., Wang, J., Liu, Y., & Gao, Y. (2023). Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China). Water, 15(20), 3562. https://doi.org/10.3390/w15203562