Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = aerial seeding afforestation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17559 KiB  
Article
Assessing Ecological Impacts and Recovery in Coal Mining Areas: A Remote Sensing and Field Data Analysis in Northwest China
by Deyun Song, Zhenqi Hu, Yi Yu, Fan Zhang and Huang Sun
Remote Sens. 2024, 16(12), 2236; https://doi.org/10.3390/rs16122236 - 19 Jun 2024
Cited by 3 | Viewed by 2591
Abstract
In the coal-rich provinces of Shanxi, Shaanxi, and Inner Mongolia, the landscape bears the scars of coal extraction—namely subsidence and deformation—that disrupt both the terrain and the delicate ecological balance. This research delves into the transformative journey these mining regions undergo, from pre-mining [...] Read more.
In the coal-rich provinces of Shanxi, Shaanxi, and Inner Mongolia, the landscape bears the scars of coal extraction—namely subsidence and deformation—that disrupt both the terrain and the delicate ecological balance. This research delves into the transformative journey these mining regions undergo, from pre-mining equilibrium, through the tumultuous phase of extraction, to the eventual restoration of stability post-reclamation. By harnessing a suite of analytical tools, including sophisticated remote sensing, UAV aerial surveys, and the meticulous ground-level sampling of flora and soil, the study meticulously measures the environmental toll of mining activities and charts the path to ecological restoration. The results are promising, indicating that the restoration initiatives are effectively healing the landscapes, with proactive interventions such as seeding, afforestation, and land rehabilitation proving vital in the swift ecological turnaround. Remote sensing technology, in particular, emerges as a robust ally in tracking ecological shifts, supporting sustainable practices and guiding ecological management strategies. This study offers a promising framework for assessing geological environmental shifts, which may guide policymakers in shaping the future of mining rehabilitation in arid and semi-arid regions. Full article
Show Figures

Graphical abstract

14 pages, 4384 KiB  
Article
Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China)
by Zhenyu Zhao, Guodong Tang, Jian Wang, Yanping Liu and Yong Gao
Water 2023, 15(20), 3562; https://doi.org/10.3390/w15203562 - 12 Oct 2023
Cited by 5 | Viewed by 1496
Abstract
Considering the importance of soil moisture in hydrological processes, it is crucial to understand the water distribution and time stability of different aerial shrub soils. There are few studies on the soil moisture of aerial vegetation in the northeastern margin of the Tengger [...] Read more.
Considering the importance of soil moisture in hydrological processes, it is crucial to understand the water distribution and time stability of different aerial shrub soils. There are few studies on the soil moisture of aerial vegetation in the northeastern margin of the Tengger Desert. Based on long-term monitoring data from the aerial seeding area in the northeastern margin of the Tengger Desert, the distribution characteristics of soil moisture and the temporal stability of soil moisture were studied. From June to October 2022, the soil moisture monitoring instrument WatchDog was used to monitor the long-term soil moisture changes (0–200 cm) in the four aerial afforestation plots of Hedysarum scoparium, mixed forest land (Hedysarum scoparium dominant species), mixed forest land (Calligonum mongolicum dominant species), and Calligonum mongolicum. The Spearman rank correlation coefficient was used to study the temporal stability of soil moisture in the four plots. Rainfall data were collected through small weather stations. The results show that the average soil water storage of four kinds of aerial shrub land in the study area was the highest in August, and the average soil water storage of different forest lands was different. The soil water content of the surface layer (0–30 cm) fluctuated the most in different months. The variation in soil water content in the shallow layer (30–100 cm) was smaller than that in the surface layer. The fluctuation of soil water content in the middle layer (100–150 cm) and deep layer (150–200 cm) was relatively stable. There was no strong variability in soil moisture content, and the temporal variation coefficient of surface soil moisture was the highest (31.44–39.8%), which showed moderate variability. The temporal variation coefficient of soil moisture in the shallow, middle and deep layers of all kinds of plots was significantly reduced, and the soil moisture stability of different aerial shrub land was the same. Spearman rank correlation analysis showed that the spatial pattern of soil water content in the surface layer (0–30 cm) and deep layer (150–200 cm) was more stable over time, that is, the temporal stability of soil water content was higher, and the temporal stability of soil water content in the middle and shallow layers of different types of shrub land was different. The research results help us to understand the soil hydrological process in the aerial seeding afforestation area in the northeastern margin of Tengger Desert, rationally arrange soil moisture monitoring points, efficiently manage and utilize water resources in the aerial seeding area, and provide a theoretical basis for local vegetation restoration and the optimization of the ecological environment. Full article
(This article belongs to the Special Issue Remote Sensing-Based Study on Surface Water Environment)
Show Figures

Figure 1

17 pages, 4499 KiB  
Article
An Effective Precision Afforestation System for UAV
by Haiyang Liu, Zhuo Chen, Zhiliang Wang and Jian Li
Sustainability 2023, 15(3), 2212; https://doi.org/10.3390/su15032212 - 25 Jan 2023
Cited by 5 | Viewed by 3607
Abstract
Much agricultural and forestry land in the world cannot be accessed by ground planting equipment because of traffic, terrain, and other factors. This not only causes low efficiency and waste of resources, but also has a negative impact on the sustainable development of [...] Read more.
Much agricultural and forestry land in the world cannot be accessed by ground planting equipment because of traffic, terrain, and other factors. This not only causes low efficiency and waste of resources, but also has a negative impact on the sustainable development of forestry. Therefore, it is significant to develop an accurate, efficient, and energy-saving aerial precision seeding system using unmanned aerial vehicle (UAV) technology to meet the actual needs of forestry planting. In this study, a UAV precision afforestation system with a GUI, afforestation UAV, positioning system, and information interaction system were developed using related approaches such as electronic information technology. The UAV airborne seeding device added a control circuit and electronic chip to control the launching speed of the cylinder and seed loading speed, while the UAV flight speed is jointly controlled to accurately control the UAV seeding depth and seed spacing. The experimental results showed that the maximum seeding depth of the afforestation equipment was 6.7 cm. At the same seed launching speed, the smaller the content of sand and gravel in the soil, the higher the sowing qualification index, and the greater the sowing depth. The average absolute error of dynamic route RTK-automatic control seeding position accuracy was 7.6 cm, and the average error of static position hovering seeding was 7.7 cm. Resulting from the separate sown experiments of three crops, the sowing pitch angle of 75° gave the highest germination rate. The UAV seeding device has a low missing seed index and a qualified seeding index of more than 95% at 120 r/min seeding speed. The seeding device studied in this paper has a good seeding effect, can meet the requirements of afforestation, and provides a new technical means for managing forest and plant resources. Full article
(This article belongs to the Special Issue Managing Forest and Plant Resources for Sustainable Development)
Show Figures

Figure 1

13 pages, 4178 KiB  
Article
Promotion of Soil Microbial Community Restoration in the Mu Us Desert (China) by Aerial Seeding
by Yina Ma, Lei Zu, Fayu Long, Xiaofan Yang, Shixiong Wang, Qing Zhang, Yuejun He, Danmei Chen, Mingzhen Sui, Guangqi Zhang, Lipeng Zang and Qingfu Liu
Sustainability 2022, 14(22), 15241; https://doi.org/10.3390/su142215241 - 17 Nov 2022
Cited by 4 | Viewed by 2049
Abstract
Soil microbial communities link soil and plants and play a key role in connecting above-ground and below-ground communities in terrestrial ecosystems. Currently, how artificial revegetation promotes the restoration of soil microbial community diversity in degraded ecosystems attracts extensive attention. In this study, soil [...] Read more.
Soil microbial communities link soil and plants and play a key role in connecting above-ground and below-ground communities in terrestrial ecosystems. Currently, how artificial revegetation promotes the restoration of soil microbial community diversity in degraded ecosystems attracts extensive attention. In this study, soil samples were collected from long-term artificially restored mobile sandy lands (aerial seeding sample plots) from 1983 to 2015 in the Mu Us Desert. The second-generation high-throughput sequencing technology was adopted to identify soil microorganisms and analyze the changes in their community structure and diversity. The relationships between changes in microbial diversity and soil nutrients were explored by Pearson correlation analysis and canonical correspondence analysis. In addition, the restoration of subsurface soil microbial communities in this area was evaluated. The results are as follows: (1) The alpha diversity of the soil microorganisms increased significantly with the restoration period, and the composition and diversity of the soil microbial communities in the sample plots in different restoration years varied significantly. (2) Soil nutrient indexes, such as total carbon, total nitrogen and nitrate nitrogen, significantly increased with the restoration period and were significantly positively correlated with soil fungal and bacterial diversity. (3) Key soil fungal and bacterial phyla contributed to nutrient cycling in degraded ecosystems. It can be concluded that afforestation by aerial seeding facilitates the change in community structure and increases the diversity of soil microorganisms in the Mu Us Desert. This paper provides a basis for future measures and policies for restoring degraded lands and ecosystems. Full article
(This article belongs to the Special Issue Conservation and Sustainability of Forest Biodiversity)
Show Figures

Figure 1

30 pages, 1841 KiB  
Review
UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications
by Midhun Mohan, Gabriella Richardson, Gopika Gopan, Matthew Mehdi Aghai, Shaurya Bajaj, G. A. Pabodha Galgamuwa, Mikko Vastaranta, Pavithra S. Pitumpe Arachchige, Lot Amorós, Ana Paula Dalla Corte, Sergio de-Miguel, Rodrigo Vieira Leite, Mahlatse Kganyago, Eben North Broadbent, Willie Doaemo, Mohammed Abdullah Bin Shorab and Adrian Cardil
Remote Sens. 2021, 13(13), 2596; https://doi.org/10.3390/rs13132596 - 2 Jul 2021
Cited by 115 | Viewed by 28715
Abstract
Replanting trees helps with avoiding desertification, reducing the chances of soil erosion and flooding, minimizing the risks of zoonotic disease outbreaks, and providing ecosystem services and livelihood to the indigenous people, in addition to sequestering carbon dioxide for mitigating climate change. Consequently, it [...] Read more.
Replanting trees helps with avoiding desertification, reducing the chances of soil erosion and flooding, minimizing the risks of zoonotic disease outbreaks, and providing ecosystem services and livelihood to the indigenous people, in addition to sequestering carbon dioxide for mitigating climate change. Consequently, it is important to explore new methods and technologies that are aiming to upscale and fast-track afforestation and reforestation (A/R) endeavors, given that many of the current tree planting strategies are not cost effective over large landscapes, and suffer from constraints associated with time, energy, manpower, and nursery-based seedling production. UAV (unmanned aerial vehicle)-supported seed sowing (UAVsSS) can promote rapid A/R in a safe, cost-effective, fast and environmentally friendly manner, if performed correctly, even in otherwise unsafe and/or inaccessible terrains, supplementing the overall manual planting efforts globally. In this study, we reviewed the recent literature on UAVsSS, to analyze the current status of the technology. Primary UAVsSS applications were found to be in areas of post-wildfire reforestation, mangrove restoration, forest restoration after degradation, weed eradication, and desert greening. Nonetheless, low survival rates of the seeds, future forest diversity, weather limitations, financial constraints, and seed-firing accuracy concerns were determined as major challenges to operationalization. Based on our literature survey and qualitative analysis, twelve recommendations—ranging from the need for publishing germination results to linking UAVsSS operations with carbon offset markets—are provided for the advancement of UAVsSS applications. Full article
(This article belongs to the Special Issue UAV Applications for Forest Management: Wood Volume, Biomass, Mapping)
Show Figures

Graphical abstract

Back to TopTop