# Theoretical Estimation of Disinfectant Mass Balance Components in Drinking Water Distribution Systems

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Water, Energy, and Water Quality Audits

_{2}. Zhao et al. [34] and Xu et al. [35] also showed more extensive relationships between chlorine decay and THMs under different operational conditions. Therefore, the THM mass can be estimated by ${M}_{r}$ in the disinfectant mass balance. In addition, Lipiwattanakarn et al. [17] proposed three performance indicators to assess the disinfectant mass losses, safety, and reliability of water distribution systems in terms of water quality. Their concept presented a new way to build an effective disinfectant loss control program based on the mass balance principle.

#### 1.2. Top-Down Approach for Water and Energy Audits

#### 1.3. Proposed Estimation of Disinfectant Mass Loss Components for Top-Down Approach

## 2. Theoretical Analysis of Disinfectant Residual Mass Balance

#### 2.1. Single Pipe Network with One Demand at Pipe End

#### 2.2. Single Pipe Network with Multiple Demands along Pipe

#### 2.3. Branched Pipe Network

#### 2.4. Utilization of Theory to Real Networks

## 3. Application to Real Water Networks

#### 3.1. Characteristics of Water Distribution Networks

#### 3.2. Basic Relationship for Disinfectant Mass Loss Components

#### 3.3. Parameter Estimation for Disinfectant Mass Loss Components

#### 3.4. Application for Top-Down Water Quality Audit

- Choose the type of disinfectant mass balance to be complied with, as shown in Table 1.
- Collect the hydraulic data: system inflow ($Q$) and flow delivered to users (${Q}_{u}$)
- Compute water loss (${Q}_{l}$) and the ratio of water losses ($p$) by using (1) and (2), respectively.
- Collect the water quality data: input concentration (${C}_{in}$) and concentration at the critical pressure point (${C}_{p}$).
- Compute the normalized time-averaged concentration at the critical pressure point (${C}_{p}^{*}$) by using (56).
- Estimate the normalized values of ${M}_{l}$, ${M}_{r},$ and ${M}_{WL}$ in (57), (58), and (59), respectively, by using the values of the coefficients ${A}_{1}$, ${A}_{2}$, and ${A}_{3}$ and the exponents ${B}_{1}$ and ${B}_{2}$ in Table 2 for DMAs.
- Estimate the dimensional value of ${M}_{in}$ by using (6).
- Finally, estimate the other dimensional components (${M}_{u}$, ${M}_{l}$, ${M}_{r}$, ${M}_{ro},$ and ${M}_{WL}$) in Table 1 by using (12).

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

${A}_{1}$ | Coefficient in (57) |

${A}_{2}$ | Coefficient in (58) |

${A}_{3}$ | Coefficient in (59) |

AC | Authorized consumption |

${B}_{1}$ | Exponent in (57) |

${B}_{2}$ | Exponent in (58) |

${C}_{c}^{*}$ | Normalized time-averaged critical disinfectant concentration |

${C}_{p}^{*}$ | Normalized time-averaged disinfectant concentration at critical pressure point |

$\overline{C}$ | Average disinfectant concentration |

${\overline{C}}_{in}$ | Average disinfectant concentration at inlets |

${\overline{C}}_{o}$ | Average disinfectant concentration without water loss |

${C}_{c}^{\prime}$ | Normalized critical disinfectant concentration |

${C}_{co}^{\prime}$ | Normalized critical disinfectant concentration for no water loss case |

${C}_{c}$ | Critical disinfectant concentration |

${C}_{cm}$ | Critical disinfectant concentration at node m |

${C}_{cmo}$ | Critical disinfectant concentration at node m for no water loss case |

${C}_{co}$ | Critical disinfectant concentration for no water loss case |

${C}_{i}$ | Disinfectant concentration at node $i$ |

${C}_{in}$ | Input disinfectant concentration at source |

${C}_{o,i}$ | Disinfectant concentration at node $i$ for no water loss case |

CPP | Critical pressure point |

DBP | Disinfection by-product |

DMA | District metering area |

DO | Dissolved oxygen |

HAA | Halo acetic acid |

$k$ | Disinfectant decay rate |

$m$ | Number of branching |

${M}_{in}^{\prime}$ | Normalized input disinfectant mass |

${M}_{l}^{\prime}$ | Normalized outgoing disinfectant mass through water loss |

${M}_{l,mo}^{\prime}$ | Normalized outgoing disinfectant mass through water loss from models |

${M}_{l,th}^{\prime}$ | Normalized outgoing disinfectant mass through water loss from theory |

${M}_{r}^{\prime}$ | Normalized disinfectant mass loss by reactions |

${M}_{r,mo}^{\prime}$ | Normalized disinfectant mass loss by reactions from models |

${M}_{r,th}^{\prime}$ | Normalized disinfectant mass loss by reactions from theory |

${M}_{ro}^{\prime}$ | Normalized disinfectant mass loss by reactions for no water loss case |

${M}_{u}^{\prime}$ | Normalized disinfectant mass delivered to users |

${M}_{WL}^{\prime}$ | Normalized disinfectant mass associated with water loss |

${M}_{WL,mo}^{\prime}$ | Normalized disinfectant mass associated with water loss from models |

${M}_{WL,th}^{\prime}$ | Normalized disinfectant mass associated with water loss from theory |

${M}_{AC}$ | Disinfectant mass associated with authorized consumption |

${M}_{in}$ | Input disinfectant mass |

${M}_{in,mo}$ | Input disinfectant mass from models |

${M}_{l}$ | Outgoing disinfectant mass through water losses |

${M}_{r}$ | Disinfectant mass losses by reactions |

${M}_{ro}$ | Disinfectant mass loss by chemical reactions in no water loss case |

${M}_{u}$ | Disinfectant mass delivered to users |

${M}_{WL}$ | Disinfectant mass associated with water loss |

$n$ | Number of demand nodes alone a pipe |

$p$ | Ratio of water loss |

$Q$ | System inflow |

${Q}_{l}$ | Flow due to water loss |

${Q}_{u}$ | Flow delivered to users |

THM | Trihalomethane |

$V$ | Flow velocity |

${V}_{o}$ | Flow velocity for the no water loss case |

$WL$ | Water losses |

$\alpha $ | Parameter in (23) |

${\alpha}_{o}$ | Parameter in (26) |

## References

- McGuire, M.J. Eight revolutions in the history of US drinking water disinfection. Am. Water Works Assoc. J.
**2006**, 98, 123–149. [Google Scholar] [CrossRef] - Singer, P.C. Control of disinfection by-products in drinking water. J. Environ. Eng.
**1994**, 120, 727–744. [Google Scholar] [CrossRef] [Green Version] - Wilczak, A.; Jacangelo, J.G.; Marcinko, J.P.; Odell, L.H.; Kirmeyer, G.J. Occurrence of nitrification in chloraminated distribution systems. J. Am. Water Works Assoc.
**1996**, 88, 74–85. [Google Scholar] [CrossRef] - Li, R.A.; McDonald, J.A.; Sathasivan, A.; Khan, S.J. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. Water Res.
**2019**, 153, 335–348. [Google Scholar] [CrossRef] [PubMed] - Yousefian, R.; Duchesne, S. Modeling the mixing phenomenon in water distribution networks: A state-of-the-art review. J. Water Resour. Plan. Manag.
**2022**, 148, 03121002. [Google Scholar] [CrossRef] - Abdiyev, K.Z.; Maric, M.; Orynbayev, B.Y.; Toktarbay, Z.; Zhursumbaeva, M.B.; Seitkaliyeva, N.Z. Flocculating properties of 2-acrylamido-2-methyl-1-propane sulfonic acid-co-allylamine polyampholytic copolymers. Polym. Bull.
**2022**, 79, 10741–10756. [Google Scholar] [CrossRef] - Azat, S.; Arkhangelsky, E.; Papathanasiou, T.; Zorpas, A.A.; Abirov, A.; Inglezakis, V.J. Synthesis of biosourced silica–Ag nanocomposites and amalgamation reaction with mercury in aqueous solutions. Comptes Rendus Chim.
**2020**, 23, 77–92. [Google Scholar] [CrossRef] - Abhijith, G.R.; Kadinski, L.; Ostfeld, A. Modeling bacterial regrowth and trihalomethane formation in water distribution systems. Water
**2021**, 13, 463. [Google Scholar] [CrossRef] - Abhijith, G.R.; Ostfeld, A. Contaminant fate and transport modeling in distribution systems: EPANET-C. Water
**2022**, 14, 1665. [Google Scholar] [CrossRef] - Sharif, M.N.; Farahat, A.; Haider, H.; Al-Zahrani, M.A.; Rodriguez, M.J.; Sadiq, R. Risk-based framework for optimizing residual chlorine in large water distribution systems. Environ. Monit. Assess.
**2017**, 189, 307. [Google Scholar] [CrossRef] - Fisher, I.; Kastl, G.; Shang, F.; Sathasivan, A. Framework for optimizing chlorine and byproduct concentrations in drinking water distribution systems. J. Am. Water Works Assoc.
**2018**, 110, 38–49. [Google Scholar] [CrossRef] - Yoo, D.G.; Lee, S.M.; Lee, H.M.; Choi, Y.H.; Kim, J.H. Optimizing re-chlorination injection points for water supply networks using harmony search algorithm. Water
**2018**, 10, 547. [Google Scholar] [CrossRef] [Green Version] - Abokifa, A.A.; Maheshwari, A.; Gudi, R.D.; Biswas, P. Influence of dead-end sections of drinking water distribution networks on optimization of booster chlorination systems. J. Water Resour. Plan. Manag.
**2019**, 145, 04019053. [Google Scholar] [CrossRef] - Javadinejad, S.; Ostad-Ali-Askari, K.; Jafary, F. Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Model Earth Syst. Environ.
**2019**, 5, 1015–1023. [Google Scholar] [CrossRef] - Monteiro, L.; Carneiro, J.; Covas, D.I. Modelling chlorine wall decay in a full-scale water supply system. Urban Water J.
**2020**, 17, 754–762. [Google Scholar] [CrossRef] - Li, J.; Liu, S.; Meng, F.; Wu, X.; Smith, K. An efficient constraint-based pruning method to improve chlorine dosage optimization. J. Water Resour. Plan. Manag.
**2022**, 148, 04022038. [Google Scholar] [CrossRef] - Lipiwattanakarn, S.; Kaewsang, S.; Makpiboon, C.; Changklom, J.; Pornprommin, A. Water quality audit in drinking water distribution networks. J. Water Resour. Plan. Manag.
**2021**, 147, 04020113. [Google Scholar] [CrossRef] - Alegre, H.; Baptista, J.M.; Cabrera, E., Jr.; Cubillo, F.; Duarte, P.; Hirner, W.; Merkel, W.; Parena, R. Performance Indicators for Water Supply Services; IWA Publishing: London, UK, 2006. [Google Scholar]
- AWWA (American Water Works Association). Manual of Water Supply Practices: M36 Water Audits and Loss Control Programs, 4th ed.; AWWA: Denver, CO, USA, 2016. [Google Scholar]
- Rupiper, A.M.; Guilliams, M.S.; Bush, M.M.; Jessoe, K.K.; Loge, F.J. Assessing data adequacy for determining utility-specific water loss reduction standards. J. Water Resour. Plan. Manag.
**2021**, 147, 05021011. [Google Scholar] [CrossRef] - Cabrera, E.; Pardo, M.A.; Cobacho, R.; Cabrera Jr, E. Energy audit of water networks. J. Water Resour. Plan. Manag.
**2010**, 136, 669–677. [Google Scholar] [CrossRef] - Mamade, A.; Loureiro, D.; Alegre, H.; Covas, D. A comprehensive and well tested energy balance for water supply systems. Urban Water J.
**2017**, 14, 853–861. [Google Scholar] [CrossRef] - Lenzi, C.; Bragalli, C.; Bolognesi, A.; Artina, S. From energy balance to energy efficiency indicators including water losses. Water Sci. Technol. Water Supply
**2013**, 13, 889–895. [Google Scholar] [CrossRef] - Dziedzic, R.; Karney, B.W. Energy metrics for water distribution system assessment: Case study of the Toronto network. J. Water Resour. Plan. Manag.
**2015**, 141, 04015032. [Google Scholar] [CrossRef] [Green Version] - Lapprasert, S.; Pornprommin, A.; Lipiwattanakarn, S.; Chittaladakorn, S. Energy balance of a trunk main network in Bangkok, Thailand. J. Am. Water Works Assoc.
**2018**, 110, E18–E27. [Google Scholar] [CrossRef] - Lipiwattanakarn, S.; Kaewsang, S.; Pornprommin, A.; Wongwiset, T. Real benefits of leak repair and increasing the number of inlets to energy. Water Pract. Technol.
**2019**, 14, 714–725. [Google Scholar] [CrossRef] - Jorge, C.; Almeida, M.D.; Covas, D. Energy balance in wastewater systems with energy recovery: A Portuguese case study. Infrastructures
**2021**, 6, 141. [Google Scholar] [CrossRef] - Ferrante, M.; Bosco, C.; Ugarelli, R.; Magenta, L.; Eidsmo, T. Mass, energy, and cost balances in water distribution systems with PATs: The Trondheim network case study. J. Water Resour. Plan. Manag.
**2020**, 146, 05020005. [Google Scholar] [CrossRef] - Loureiro, D.; Silva, C.; Cardoso, M.A.; Mamade, A.; Alegre, H.; Rosa, M.J. The development of a framework for assessing the energy efficiency in urban water systems and its demonstration in the Portuguese water sector. Water
**2020**, 12, 134. [Google Scholar] [CrossRef] [Green Version] - Monteiro, L.; Cristina, R.; Covas, D. Water and energy efficiency assessment in urban green spaces. Energies
**2021**, 14, 5490. [Google Scholar] [CrossRef] - Silqueira, M.G.; da Silva, F.D.; Silva, A.T.; Barbedo, M.D. A water-energy balance application with adaptations to a brazilian water supply system. Res. Soc. Dev.
**2021**, 10, e380101019039. [Google Scholar] [CrossRef] - Quintiliani, C.; Di Cristo, C.; Leopardi, A. Vulnerability assessment to trihalomethane exposure in water distribution systems. Water
**2018**, 10, 912. [Google Scholar] [CrossRef] - Dias, V.C.; Besner, M.C.; Prévost, M. Predicting water quality impact after district metered area implementation in a full-scale drinking water distribution system. J. Am. Water Works Assoc.
**2017**, 109, E363–E380. [Google Scholar] [CrossRef] - Zhao, Y.; Yang, Y.J.; Shao, Y.; Neal, J.; Zhang, T. The dependence of chlorine decay and DBP formation kinetics on pipe flow properties in drinking water distribution. Water Res.
**2018**, 141, 32–45. [Google Scholar] [CrossRef] [PubMed] - Xu, J.; Huang, C.; Shi, X.; Dong, S.; Yuan, B.; Nguyen, T.H. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study. Sci. Total Environ.
**2018**, 642, 516–525. [Google Scholar] [CrossRef] - Mamade, A.; Loureiro, D.; Alegre, H.; Covas, D. Top-down and bottom-up approaches for water-energy balance in Portuguese supply systems. Water
**2018**, 10, 577. [Google Scholar] [CrossRef] [Green Version] - Lipiwattanakarn, S.; Kaewsang, S.; Charuwimolkul, N.; Changklom, J.; Pornprommin, A. Theoretical estimation of energy balance components in water networks for top-down approach. Water
**2021**, 13, 1011. [Google Scholar] [CrossRef] - Brandt, K.; Johnson, K.M.; Elphinston, A.J. Twort’s Water Supply, 7th ed.; IWA Publishing: London, UK, 2017. [Google Scholar]
- Taha, A.F.; Wang, S.; Guo, Y.; Summers, T.H.; Gatsis, N.; Giacomoni, M.H.; Abokifa, A.A. Revisiting the water quality sensor placement problem: Optimizing network observability and state estimation metrics. J. Water Resour. Plan. Manag.
**2021**, 147, 04021040. [Google Scholar] [CrossRef] - Zheng, Z.; Zheng, F.; Bi, W.; Du, J.; Duan, H.F.; Savic, D.; Kapelan, Z. Evaluating the robustness of water quality sensor placement strategies of water distribution systems considering possible sensor failures and system changes. J. Water Resour. Plan. Manag.
**2022**, 148, 04022050. [Google Scholar] [CrossRef] - McKenzie, R. WRC Report No. TT 152/01: Pressure Management Program (PRESMAC); Water Research Commission: Pretoria, South Africa, 2001. [Google Scholar]
- Rossman, L.A. EPANET 2 Users Manual; Water Supply and Water Resources Division (USEPA): Cincinnati, OH, USA, 2000.
- Klise, K.; Hart, D.; Bynum, M.; Hogge, J.; Haxton, T.; Murray, R.; Burkhardt, J. Water Network Tool for Resilience (WNTR) User Manual; (No. SAND2020-9301R); Sandia National Lab (SNL-NM): Albuquerque, NM, USA, 2020.

**Figure 1.**Two disinfectant mass balance concepts in water networks, considering water loss and reactions, focusing on: (

**a**) processes and (

**b**) the effect of water loss, where ${M}_{ro}$ is the disinfectant mass loss by reactions in the case of no water losses. Each component has a unit of mass per period of time, for example, kg/day.

**Figure 2.**Disinfection concentration distribution for a single pipe network with one demand node at the pipe end, where (

**a**) is with water loss and (

**b**) is without water loss.

**Figure 3.**Disinfection concentration distribution for a single pipe network with multiple demands along the pipe, where (

**a**) is with water loss and (

**b**) is without water loss.

**Figure 4.**Disinfection concentration distribution for a branched pipe network with demand nodes at the pipe ends, where (

**a**) is with water loss and (

**b**) is without water loss.

**Figure 5.**Examples of residual chlorine distributions in DMA networks, where (

**a**,

**b**) are networks with 1 inlet, and (

**c**,

**d**) are networks with 2 inlets. Red dashed circles show the inlets connected to networks by imaginary pipes with no friction loss; orange triangles represent critical pressure points (CPPs) and pink rectangles are critical chlorine points.

**Figure 6.**Relationships between disinfectant mass balance components, calculated using EPANET models and basic network parameters. (

**a**) ${M}_{l,mo}^{\prime}$ vs. $p$, (

**b**) ${M}_{r,mo}^{\prime}$ vs. $1-{C}_{p}^{*},$ and (

**c**) ${M}_{WL,mo}^{\prime}$ vs. $p$.

**Figure 7.**Comparison between the disinfectant mass balance components calculated using EPANET models and the ones estimated by theory. (

**a**) ${M}_{l,mo}^{\prime}$ vs. ${M}_{l,th}^{\prime}$, (

**b**) ${M}_{r,mo}^{\prime}$ vs. ${M}_{r,th}^{\prime},$ and (

**c**) ${M}_{WL,mo}^{\prime}$ vs. ${M}_{WL,th}^{\prime}$.

DMA ID | No. of Inlets | $\mathit{p}$ | ${\overline{\mathit{C}}}_{\mathit{i}\mathit{n}}$ | ${\mathit{C}}_{\mathit{p}}^{*}$ | ${\mathit{C}}_{\mathit{c}}^{*}$ | ${\mathit{M}}_{\mathit{i}\mathit{n},\mathit{m}\mathit{o}}$ | ${\mathit{M}}_{\mathit{l},\mathit{m}\mathit{o}}^{\prime}\text{}$ | ${\mathit{M}}_{\mathit{r},\mathit{m}\mathit{o}}^{\prime}$ | ${\mathit{M}}_{\mathit{W}\mathit{L},\mathit{m}\mathit{o}}^{\prime}\text{}$ |
---|---|---|---|---|---|---|---|---|---|

(%) | (mg/L) | (%) | (%) | (g/day) | (%) | (%) | (%) | ||

1 | 1 | 37.1 | 1.03 | 83.3 | 38.7 | 5074 | 32.0 | 12.3 | 33.6 |

2 | 1 | 28.6 | 0.73 | 79.8 | 25.8 | 3939 | 24.9 | 11.5 | 26.2 |

3 | 1 | 44.6 | 0.52 | 41.8 | 31.1 | 3735 | 37.1 | 15.5 | 39.8 |

4 | 1 | 38.5 | 0.78 | 63.7 | 18.9 | 5091 | 30.7 | 18.7 | 34.4 |

5 | 1 | 44.2 | 0.63 | 74.8 | 29.8 | 5555 | 32.9 | 23.0 | 39.8 |

6 | 1 | 54.9 | 0.67 | 53.6 | 22.1 | 8347 | 40.8 | 22.8 | 48.1 |

7 | 1 | 32.4 | 0.77 | 18.4 | 14.4 | 4727 | 14.8 | 44.1 | 24.0 |

8 | 1 | 12.9 | 0.73 | 58.9 | 7.8 | 4841 | 9.1 | 25.9 | 10.8 |

9 | 1 | 29.7 | 0.85 | 91.9 | 5.3 | 5227 | 28.4 | 4.3 | 28.6 |

10 | 1 | 2.8 | 0.61 | 71.2 | 50.1 | 3251 | 2.2 | 18.1 | 2.4 |

11 | 2 | 30.0 | 0.81 | 73.8 | 35.3 | 6257 | 23.8 | 18.4 | 24.0 |

12 | 2 | 50.9 | 0.65 | 74.1 | 46.9 | 3212 | 39.7 | 20.0 | 45.2 |

13 | 2 | 31.9 | 0.75 | 67.1 | 43.9 | 4867 | 24.5 | 20.6 | 28.1 |

14 | 2 | 33.9 | 0.41 | 84.4 | 65.9 | 3808 | 33.0 | 7.1 | 33.8 |

15 | 2 | 7.7 | 0.72 | 57.7 | 26.9 | 6480 | 5.1 | 28.1 | 6.6 |

16 | 2 | 36.3 | 0.60 | 69.0 | 6.4 | 5805 | 31.7 | 12.8 | 33.0 |

17 | 2 | 30.7 | 0.57 | 67.6 | 10.9 | 7404 | 27.2 | 11.6 | 28.0 |

18 | 2 | 30.0 | 0.72 | 43.0 | 0.3 | 6821 | 19.3 | 33.2 | 24.9 |

19 | 2 | 31.2 | 0.68 | 50.5 | 20.0 | 4774 | 28.7 | 13.3 | 31.0 |

20 | 2 | 47.2 | 0.65 | 68.4 | 15.9 | 7691 | 32.8 | 28.0 | 41.4 |

Avg. | 1.5 | 32.8 | 0.69 | 64.7 | 25.8 | 5345 | 25.9 | 19.5 | 29.2 |

**Table 2.**Performance of proposed theoretical methods to evaluate disinfectant mass loss components with network model results.

Component | Equation | $\mathit{A}$ | $\mathit{B}$ | $\mathit{r}$ | $\mathit{R}\mathit{M}\mathit{S}\mathit{E}\text{}(\%)$ |
---|---|---|---|---|---|

${M}_{l,th}^{\prime}$ | (57) | 0.9106 | 0.2844 | 0.963 | 2.86 |

${M}_{r,th}^{\prime}$ | (58) | 0.9151 | 0.2726 | 0.755 | 5.99 |

${M}_{WL,th}^{\prime}$ | (59) | 0.4962 | - | 0.989 | 1.76 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wongpeerak, K.; Charuwimolkul, N.; Changklom, J.; Lipiwattanakarn, S.; Pornprommin, A.
Theoretical Estimation of Disinfectant Mass Balance Components in Drinking Water Distribution Systems. *Water* **2023**, *15*, 368.
https://doi.org/10.3390/w15020368

**AMA Style**

Wongpeerak K, Charuwimolkul N, Changklom J, Lipiwattanakarn S, Pornprommin A.
Theoretical Estimation of Disinfectant Mass Balance Components in Drinking Water Distribution Systems. *Water*. 2023; 15(2):368.
https://doi.org/10.3390/w15020368

**Chicago/Turabian Style**

Wongpeerak, Kittikun, Natchapol Charuwimolkul, Jiramate Changklom, Surachai Lipiwattanakarn, and Adichai Pornprommin.
2023. "Theoretical Estimation of Disinfectant Mass Balance Components in Drinking Water Distribution Systems" *Water* 15, no. 2: 368.
https://doi.org/10.3390/w15020368