Multi-Site Calibration of Hydrological Model and Spatio-Temporal Assessment of Water Balance in a Monsoon Watershed
Abstract
:1. Introduction
2. Area of Study
3. Materials and Methods
3.1. Hydrological Model
3.2. SWAT Input Data
3.2.1. Digital Elevation Model (DEM)
3.2.2. Soil Map
3.2.3. Land Use and Land Cover
3.2.4. Weather Data
3.2.5. Streamflow Data
3.2.6. Dams Inflow and Outflow Data
3.3. Model Setup
3.4. SWAT Model Evaluation
3.4.1. Sensitivity Evaluation
3.4.2. Model Calibration and Validation
4. Results
4.1. Model Evaluation
4.2. Water Balance of the Yeongsan River Basin
4.2.1. Seasonal Water Balance
4.2.2. Annual Water Balance
4.3. Spatial Distribution of Water Balance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musyoka, F.K.; Strauss, P.; Zhao, G.; Srinivasan, R.; Klik, A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water 2021, 13, 2238. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Thapa, B.R.; Ishidaira, H.; Pandey, V.P.; Shakya, N.M. A multi-model approach for analysing water balance dynamics in Kathmandu Valley, Nepal. J. Hydrol. Reg. Stud. 2017, 9, 162. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Sun, G.; Strauss, P.; Guo, J.; Tang, Y.; Yao, A. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol. Earth Syst. Sci. 2012, 16, 4621–4632. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Hydrological model development using multi-site calibration approach (Part-A). J. Hydrol. Reg. Stud. 2020, 29, 100690. [Google Scholar] [CrossRef]
- Desai, S.; Singh, D.K.; Islam, A.; Sarangi, A. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quatern. Inter. 2021, 571, 136–149. [Google Scholar] [CrossRef]
- Serur, A.B.; Adi, K.A. Multi-site calibration of hydrological model and the response of water balance components to land use land cover change in a rift valley Lake Basin in Ethiopia. Sci. Afr. 2022, 15, e01093. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Lau, K.-M. East Asian Summer Monsoon Rainfall Variability and Climate Teleconnection. J. Meteorol. Soc. Japan. Ser. II 1992, 70, 211–242. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-J.; Kripalani, R.H.; Oh, J.-H.; Moon, S.-E. Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor. Appl. Clim. 2002, 72, 65–74. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. Nation-Wide River Basins Investigation Report; MOLIT: Seoul, Republic of Korea, 2012.
- Ministry of Land, Infrastructure and Transport. The 4th Long-Term Comprehensive Plan of Water Resources (2001–2020); 3rd Revision; K-Water; MOLIT: Seoul, Republic of Korea, 2016.
- Kwak, J.W. A study on estimation of agricultural water usage in river consider hydrological condition. J. Korean Soc. Water Res. 2021, 54, 311–320. (In Korean) [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Kim, J.; Kim, Y.; Shin, H.; Song, I.; Kim, S. Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority. Water 2022, 14, 298. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Bretreger, D. Identification of Suitable Hydrological Models for Streamflow Assessment in the Kangsabati River Basin, India, by Using Different Model Selection Scores. Nat. Resour. Res. 2021, 30, 4187–4205. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [Google Scholar] [CrossRef]
- Islam, Z. A review of physically based distributed hydrological models. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, May 2011. [Google Scholar]
- Lees, M.; O’Connell, P.E. Modeling distributed hydrological processes using physically based models. In Handbook of Hydrology; Maidment, D., Ed.; McGraw-Hill: New York, NY, USA, 1993; pp. 901–932. [Google Scholar]
- Gupta, H.V.; Sorooshian, S. Evaluation of artificial neural networks and multivariate adaptive regression splines for predicting soil moisture. Water Resour. Res. 1997, 33, 1485–1500. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Johanson, R.C.; Imhoff, J.C.; Kittle, J.L.; Donigian, A.S. Hydrological Simulation Program-FORTRAN (HSPF): User’s Manual for Release 8.0: EPA-600/3-84-066; USEPA: Athens, GA, USA, 1984.
- Ambroise, B.; Beven, K.; Freer, J. Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity. Water Resour. Res. 1996, 32, 2135–2145. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B. Computer models of watershed hydrology. In Mike She; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1995; pp. 809–846. [Google Scholar]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.A.; Dar, A.Q.; Jain, M.K. Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Model. Earth Syst. Environ. 2022, 8, 1203–1213. [Google Scholar] [CrossRef]
- Tegegne, G.; Kim, Y.O. Modelling ungauged catchments using the catchment runoff response similarity. J. Hydrol. 2018, 564, 452–466. [Google Scholar] [CrossRef]
- Seong, Y.J.; Lee, S.H.; Jung, Y. Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure. J. Korea Water Resour. Assoc. 2019, 52, 931–940. (In Korean) [Google Scholar] [CrossRef]
- Ashu, A.B.; Lee, S.-I. Assessing Climate Change Effects on Water Balance in a Monsoon Watershed. Water 2020, 12, 2564. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, Y.J.; Kim, N.W. Estimating the temporal distribution of groundwater recharge by using the transient water table fluctuation method and watershed hydrologic model. Appl. Eng. Agric. 2021, 37, 95–104. [Google Scholar] [CrossRef]
- Kim, Y.W.; Lee, J.W.; Woo, S.Y.; Kim, S.J. Inter-basin water transfer modeling from Seomjin river to Yeongsan river using SWAT. J. Korea Water Resour. Assoc. 2020, 53, 57–70. (In Korean) [Google Scholar] [CrossRef]
- Jolejole, M.E.; Kim, B.J.; Jeon, D.J.; Cayetano, M.; Kim, J.H. Scenario study of the effect of different land use to a sub-basin in Yeongsan River basin using SWAT model. Desalination Water Treat. 2018, 120, 198–204. [Google Scholar] [CrossRef]
- Cha, S.M.; Ki, S.J.; Cho, K.H.; Choi, H.; Kim, J.H. Effect of environmental flow management on river water quality: A case study at Yeongsan River, Korea. Water Sci. Technol. 2009, 59, 2437–2446. [Google Scholar] [CrossRef]
- Shin, J.K.; Kang, B.G.; Hwang, S.J. Limnological study on springbloom of a green algae, Eudorina elegans and weirwater pulsed flows in the midstream (Seungchon Weir Pool) of the Yeongsan River, Korea. Korean J. Ecol. Environ. 2016, 49, 320–333. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kang, T.-W.; Ryu, H.-S.; Hwang, S.-H.; Kim, K. Analysis of spatiotemporal variation in river water quality using clustering techniques: A case study in the Yeongsan River, Republic of Korea. Environ. Sci. Pollut. Res. 2020, 27, 29327–29340. [Google Scholar] [CrossRef]
- MOLIT. Water Resources Long-Term Comprehensive Plan Report (2001–2020); Ministry of Land, Infrastructure and Transport: Sejong-si, Republic of Korea, 2016. (In Korean)
- Lee, B.J.; Kim, J.C.; Kim, Y.B.; Cho, D.L.; Choi, H.I.; Jeon, H.Y.; Kim, B.C. Explanatory note of the 1:250,000 Geological Map of Gwangju sheet; Korea Institute of Geoscience and Mineral Resources: Gwanju, Republic of Korea, 1997; pp. 1–82. (In Korean) [Google Scholar]
- Im, Y.S. Evaluation of Suspended Sediment Sources in the Yeongsan River. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, February 2016. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool. Theoretical Documentation, Version 2005; Soil and Water Research Laboratory, Agricultural Research Service: Temple, TX, USA, 2005.
- Choi, H.C.; Kim, J.H.; Yun, K.H.; Kim, T.G. A Management Plan for River-Stream Maintenance Flow to Improve Water Quality in Yeongsan River; Ministry of Environment, National Institute of Environmental Research: Seoul, Republic of Korea, 2006.
- Yoon, K.-S.; Jo, Y.-J.; Yoo, S.-H.; Her, Y. Assessing agricultural reservoirs as the sources of environmental flow: Case study in Korea. In Proceedings of the 3rd World Irrigation Forum (WIF3), Bali, Indonesia, 1–7 September 2019. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP 2012, SWAT Calibration and Uncertainty Program—A User Manual, Eawag; Swiss Federal Institute of Aquatic Science and Technology: Duebendorf, Switzerland, 2013. [Google Scholar]
- Schuol, J.; Abbaspour, K.C.; Sarinivasan, R.; Yang, H. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Refsgaard, J.C. Parameterization, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute Report No. 406; Texas A & M University: College Station, TX, USA, 2011. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daqqupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual model. Part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Kim, H. Impact of monsoon on the hydrological cycle in Korea. J. Hydrol. 2007, 333, 50–62. [Google Scholar]
- Lee, J.H.; Lee, J.Y. Effects of the Asian summer monsoon on the water balance of the Han River basin in South Korea. Hydrol. Proc. 2012, 26, 3027–3038. [Google Scholar]
- Lee, J.Y.; Kim, H. Impacts of the Asian summer monsoon on the water balance of the Nakdong River basin in Korea. Hydrol. Proc. 2006, 20, 2143–2155. [Google Scholar]
- Hossain, F.; Yusoff, I. An analysis of the water balance of a monsoon-dominated catchment in Malaysia. J. Hydrol. Sci. 2016, 61, 1109–1121. [Google Scholar]
- Thakur, R.K.; Singh, R. Hydrological aspects of monsoon in India. In Hydrological Processes of Monsoon Asia; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–18. [Google Scholar]
- Rhea, K.R.; Conklin, M.M. Impoundment regulation of base flow in two catchments in the eastern United States. Hydrol. Earth Sys. Sci. 2011, 15, 1729–1743. [Google Scholar]
- Hunt, R.H.; Newbold, J.D. 2014. Hydrologic response to dam removal in four catchments in the eastern United States. Water Resour. Res. 2014, 50, 6168–6182. [Google Scholar]
- Jimenez, J.A.; Vautard, R.J.; Kilsby, C. Spatiotemporal variability of actual evapotranspiration in Europe. Agri. For. Meteorol. 2010, 150, 1042–1053. [Google Scholar]
- Chen, J.; Liu, Y.; Liu, Y. Comparison of actual evapotranspiration between urban and rural areas in China. Environ. Moni. Ass. 2018, 190, 576. [Google Scholar]
- Zhang, L.; Zhou, T. Drought over East Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Bae, H.; Ji, H.; Lim, Y.J.; Ryu, Y.; Kim, M.H.; Kim, B.J. Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 2019, 99, 1–16. [Google Scholar] [CrossRef]
Soil Class | SWAT Code | Area (km2) | % of Watershed Area |
---|---|---|---|
Loam | Kh29-2b-5920 | 1083.62 | 31.49 |
Sandy Loam | Lo57-1-2b-5983 | 297.57 | 8.65 |
Sandy Loam | Qa13-1b-6022 | 2027.45 | 58.92 |
Lfs-Lfs-S | Sample-0 | 32.46 | 0.94 |
Land Use | SWAT Code | Area (km2) | % of Watershed Area |
---|---|---|---|
Agricultural Land—Close-grown | AGRC | 675.14 | 19.62 |
Forest—Deciduous | FRSD | 498.61 | 14.49 |
Forest—Evergreen | FRSE | 547.48 | 15.91 |
Agricultural Land—Row Crops | AGRR | 262.56 | 7.63 |
Agricultural Land—Generic | AGRL | 49.9 | 1.45 |
Forest—Mixed | FRST | 698.54 | 20.3 |
Pasture | PAST | 110.46 | 3.21 |
Range—Grasses | RNGE | 25.46 | 0.74 |
Range—Brush | RNGB | 35.79 | 1.04 |
Residential | URBN | 340.6 | 9.9 |
Barren | BARR | 83.37 | 2.51 |
Water | WATR | 110 | 3.20 |
ID | Station | Latitude (Decimal Degree) | Longitude (Decimal Degree) | Elevation (m) |
---|---|---|---|---|
156 | Gwanju (Q1) | 35.17294 | 126.89156 | 70 |
165 | Mokpo (Q2) | 34.81732 | 126.38151 | 45 |
174 | Suchon (Q3) | 35.0204 | 127.3694 | 165 |
244 | Imsil (Q4) | 35.61225 | 127.28554 | 247 |
245 | Jeongeup (Q5) | 35.56337 | 126.83904 | 69 |
247 | Namwon (Q6) | 35.42129 | 127.39651 | 133 |
260 | Jangheung (Q7) | 34.68886 | 126.91951 | 44 |
261 | Haenam (Q8) | 34.55375 | 126.56907 | 16 |
Dam Characteristics | JS | DY | GJ | NJ | Dike |
---|---|---|---|---|---|
Dam ID | 5002410 | 5001420 | 5001410 | 5003410 | - |
Watershed area (ha) | 12,280 | 6560 | 4130 | 10,470 | - |
Surface Area (ha) | 742 | 443 | 217 | 779 | 270 |
Total storage capacity (103 m3) | 103,883 | 77,608 | 23,256 | 107,810 | 253.6 |
Dead storage capacity (103 m3) | 99,707 | 76,670 | 21,086 | 106,544 | - |
Mandatory discharge amount (m3/s) | 0.78 | 0.4 | 0.18 | 0.3 | - |
Length (m) | 603 | 316 | 505 | 496 | 4300 |
Height (m) | 36 | 46 | 25 | 31 | 20 |
Data | Description | Range | Reference |
---|---|---|---|
CN2.mgt | SCS runoff curve number | 0.1–0.5 | 0.2 |
ALPHA_BF.gw | Baseflow alpha factor | 0–1 | 0.09 |
GW_DELAY.gw | Groundwater delay | 10–30 | 24 |
CH_K2.rte | Alluvium main channel hydraulic conductivity | 30–150 | 88 |
SOL_AWC.sol | The capacity of water available | ±0.025 | −0.08 |
GWQMN.gw | Shallow aquifer water threshold depth | 1000–3500 | 1591 |
GW_REVAP.gw | Coefficient of groundwater “revap” | ±0.036 | −0.01 |
ESCO.bsn | Compensation soil evaporation | 0–1 | 0.69 |
REVAPMN.gw | Shallow aquifer water depth threshold | 1–30 | 13 |
SOL_Z.sol | Soil surface to bottom layer depth | ±0.025 | 0.04 |
SOL_K.sol | Saturated hydraulic conductivity | ±0.025 | 0.03 |
EPCO.bsn | Compensation plant uptake factor | 0–1 | 0.72 |
OV_N.hru | Overland flow for Manning’s number | ±10 | −1.23 |
RCHRG_DP.gw | Deep aquifer percolation fraction | 0–1 | 0.51 |
Station | P-factor | PBIAS | NSE | R-factor | R2 | RSR |
---|---|---|---|---|---|---|
Najudaegyo | 0.51 | 14.9 | 0.85 | 0.35 | 0.87 | 0.39 |
Yeongsugyo | 0.51 | 11.6 | 0.65 | 0.17 | 0.88 | 0.59 |
Hwangryonggyo 2 | 0.63 | 19.3 | 0.79 | 0.43 | 0.88 | 0.45 |
Deokyonggyo | 0.64 | 4.5 | 0.75 | 0.40 | 0.83 | 0.50 |
Station | P-factor | PBIAS | NSE | R-factor | R2 | RSR |
---|---|---|---|---|---|---|
Najudaegyo | 0.54 | −0.9 | 0.89 | 0.53 | 0.89 | 0.33 |
Yeongsugyo | 0.60 | 2.1 | 0.60 | 0.26 | 0.91 | 0.63 |
Hwangryonggyo 2 | 0.75 | −13.5 | 0.91 | 0.77 | 0.92 | 0.30 |
Deokyonggyo | 0.71 | −19.5 | 0.84 | 0.72 | 0.86 | 0.40 |
Seasons | Rainfall | Surface Runoff | Base Flow | Evapotranspiration | Water Yield | |||||
---|---|---|---|---|---|---|---|---|---|---|
mm | % | mm | % | mm | % | mm | % | mm | % | |
Winter | 76.49 | 5.7 | 14.45 | 2.8 | 8.89 | 6.5 | 37.94 | 7 | 35.74 | 4.6 |
Pre-monsoon | 256.9 | 19.2 | 80.08 | 15.7 | 15.84 | 21 | 125.39 | 23.1 | 131.05 | 17 |
Monsoon | 853.89 | 63.9 | 382.21 | 74.7 | 44.54 | 59 | 316.8 | 58.4 | 514.12 | 66.6 |
Post-monsoon | 148.79 | 11.1 | 33.55 | 6.6 | 10.22 | 13.5 | 62.63 | 11.5 | 91.37 | 11.8 |
Average Annual | 1336.07 | 100 | 510.29 | 100 | 75.49 | 100 | 542.76 | 100 | 772.28 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashu, A.B.; Lee, S.-I. Multi-Site Calibration of Hydrological Model and Spatio-Temporal Assessment of Water Balance in a Monsoon Watershed. Water 2023, 15, 360. https://doi.org/10.3390/w15020360
Ashu AB, Lee S-I. Multi-Site Calibration of Hydrological Model and Spatio-Temporal Assessment of Water Balance in a Monsoon Watershed. Water. 2023; 15(2):360. https://doi.org/10.3390/w15020360
Chicago/Turabian StyleAshu, Agbortoko Bate, and Sang-Il Lee. 2023. "Multi-Site Calibration of Hydrological Model and Spatio-Temporal Assessment of Water Balance in a Monsoon Watershed" Water 15, no. 2: 360. https://doi.org/10.3390/w15020360