Variations in Polycyclic Aromatic Hydrocarbon Contamination Values in Subtidal Surface Sediment via Oil Fingerprinting after an Accidental Oil Spill: A Case Study of the Wu Yi San Oil Spill, Yeosu, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Method
2.2. Analysis Method
2.3. Substances Subject to Instrumental Analysis
2.4. Instrument Analysis Conditions
2.5. Quality Assurance/Quality Control (QA/QC)
3. Results and Discussions
3.1. Distribution of the PAHs Concentrations in Surface Sediment
3.2. Distribution of the PAH Concentrations in Surface Seawater
3.3. Estimation of Origins through the Isomeric Ratio of PAHs
3.4. Levels of Biological Contamination in Submarine Sediments Due to PAHs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisler, R. Polycyclic Aromatic Hydrocarbons Hazards to Fish, Wildlife, and Invertebrates; Fish and Wildlife Service, US Department of the Interior: Washington, DC, USA, 1987; p. 85. [Google Scholar]
- Wang, Z.D.; Fingas, M.; Shu, Y.Y.; Sigouin, L.; Landriault, M.; Lambert, P.; Turpin, R.; Campagna, P.; Mullin, J. Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs–the 1994 mobile burn study. Environ. Sci. Technol. 1999, 33, 3100–3109. [Google Scholar] [CrossRef]
- Hatch, A.C.; Burton, G.A. Photo-induced toxicity of PAHs to Hyalella azteca and Chironomus tentans: Effects of mixtures and behavior. Environ. Pollut. 1999, 106, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.L.; Farrington, J.W.; Reddy, C.M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—A review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Jiang, J.; Lee, C.; Fang, M.; Liu, J.T. Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: An appraisal of diagnostic ratios in source recognition. Mar. Pollut. Bull. 2009, 58, 752–760. [Google Scholar] [CrossRef]
- Saha, M.; Togo, A.; Mizukawa, K.; Murakami, M.; Takada, H.; Zakaria, M.P.; Chiem, N.H.; Tuyen, B.C.; Prudente, M.; Boonyatumanond, R.; et al. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 2009, 58, 189–200. [Google Scholar] [CrossRef]
- Harris, K.A.; Yunker, M.B.; Dangerfield, N.; Ross, P.S. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition, and associated risks to protected sea otters. Environ. Pollut. 2011, 159, 2665–5674. [Google Scholar] [CrossRef]
- Chiou, C.T.; McGroddy, S.E.; Kile, D.E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 1998, 32, 264–269. [Google Scholar] [CrossRef]
- Connel, D.W.; Hawker, D.W.; Warne, M.J.; Vowles, P.P.; McCombs, K.; Starkweather, A.W. Introduction into Environmental Chemistry. In Polycyclic Aromatic Hydrocarbons (PAHs); CRC: Boca Raton, FL, USA, 1997; pp. 205–217. [Google Scholar]
- Gravato, C.; Santos, M.A. Juvenile sea bass liver P450, EROD induction, and erythrocytic genotoxic responses to PAH and PAH-like compounds. Ecotoxicol. Environ. Safety 2002, 51, 115–127. [Google Scholar] [CrossRef]
- Cheikyula, J.O.; Koyama, J.; Uno, S. Micronuclei and other nuclear abnormalities formation in the red sea bream, Pagrus major, exposed to polycyclic aromatic hydrocarbons. Jpn. J. Environ. Toxicol. 2009, 12, 33–39. [Google Scholar]
- Heintz, R.A.; Rice, S.D.; Wertheimer, A.C.; Bradshaw, R.F.; Thrower, F.P.; Joyce, J.E.; Short, J.W. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 2000, 208, 205–216. [Google Scholar] [CrossRef]
- Rhodes, S.; Farwell, A.; Hewitt, L.M.; Mackinnon, M.; Dixon, D.G. The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka. Ecotoxicol. Environ. Safety 2005, 60, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Farrington, J.W.; Goldberg, E.D.; Risegrough, R.W.; Martin, J.H.; Bowen, V.T. US ‘Mussel Watch’ 1976-1978: An Overview of the Trace-metal, DDE, PCB, hydrocarbon, and artificial radionuclide data. Environ. Sci. Technol. 1983, 17, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Henner, P.; Schiavon, M.; Morel, J.L.; Lichtfouse, E. Polycyclic Aromatic Hydrocarbon (PAH) Occurrence and Remediation Methods. Analysis 1997, 25, 56–59. [Google Scholar]
- Wild, S.R.; Jones, K.C. Polynuclear Aromatic Hydrocarbons in the United Kingdom Environment: A Preliminary Source Inventory and Budget. Environ. Pollut. 1995, 88, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Korea Coast Guard (KCG). Statistics of Marine Pollution Accident in 2014; Korea Coast Guard (KCG): Incheon, Republic of Korea, 2015; pp. 1–7. (In Korean) [Google Scholar]
- Ministry of Oceans and Fisheries. The Official Experiment Standard of Marine Environment. 2013. Available online: https://law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000202962 (accessed on 20 March 2014). (In Korean).
- Report on the Investigation of the Impact of the Oil Pollution Accident of the Collision of Wu Yi San on Marine Pollution; Chonnam National University Fishery Science Research Institute: Gwangju, Republic of Korea, 2015; Volume 558–559, pp. 571–573. (In Korean)
- Yim, U.H.; Ha, S.Y.; An, J.G.; Won, J.H.; Han, G.M.; Hong, S.H.; Kim, M.; Jung, J.H.; Shim, W.J. Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill. J. Hazard. Mater. 2011, 197, 60–69. [Google Scholar] [CrossRef]
- Kim, E.S.; An, J.G.; Kim, G.B.; Sim, W.J.; Joo, C.K.; Kim, M.K. Identification of Major Crude Oils Imported into Korea using Molecular and Stable Carbon Isotopic Compositions. J. Kor. Soc. Mar. Environ. Eng. 2012, 15, 247–256. (In Korean) [Google Scholar] [CrossRef]
- Yim, U.H.; Hong, S.H.; Ha, S.Y.; Han, G.M.; An, J.G.; Kim, N.S.; Lim, D.I.; Choi, H.W.; Shim, W.J. Source- and region-specific distribution of polycyclic aromatic hydrocarbons in sediments from Jinhae Bay. Kor. Sci. Total Environ. 2014, 470, 1485–1493. (In Korean) [Google Scholar] [CrossRef]
- Jang, Y.L.; Lee, H.J.; Jeong, H.J.; Park, S.Y.; Yang, W.H.; Kim, H.Y.; Kim, G.B. Restoration and source identification of polycyclic aromatic hydrocarbons after the Wu Yi San oil spill, Korea. Mar. Pollut. Bull. 2016, 111, 463–467. [Google Scholar] [CrossRef]
- Kim, M.K.; Jung, J.H.; Ha, S.Y.; An, J.G.; Shim, W.J.; Yim, U.H. Long-Term Monitoring of PAH Contamination in Sediment and Recovery After the Hebei Spirit Oil Spill, Arch. Environ. Contam. Toxicol. 2017, 73, 93–102. [Google Scholar] [CrossRef]
- Yim, U.H.; Hong, S.H.; Sim, W.J. Distribution and characteristics of PAHs in sediments from the marine environment of Korea. Chemosphere 2007, 68, 85–92. [Google Scholar] [CrossRef]
- Kim, H.J. A Study on the Spatial and Seasonal Variation of Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metals in Sediments around Gwangyang Bay. Master’s Degree, Chonnam National University, Gwangju, Republic of Korea, 2010. (In Korean). [Google Scholar]
- Park, J.H.; Lee, C.D.; Kim, J.H. Distributions and Sources of Polycyclic Aromatic Hydrocarbons in the Tidal Flat Sediments from Incheon Coastal Area. Kor. J. Wetlands Res. 2013, 15, 441–451. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Miki, S.; Uno, S.; Ito, K.; Koyama, J.; Tanaka, H. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay. Japan. Mar. Pollut. Bull. 2014, 85, 558–565. [Google Scholar] [CrossRef]
- Barakat, A.O.; Mostafa, A.; Wade, T.L.; Sweet, S.T.; El Sayed, N.B. Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar. Pollut. Bull. 2011, 62, 1969–1978. [Google Scholar] [CrossRef]
- Harvey, H.R.; Taylor, K.A.; Pie, H.V.; Mitchelmore, C.L. Polycyclic aromatic and aliphatic hydrocarbons in Chukchi Sea biota and sediments and their toxicological response in the Arctic cod. Boreogadus saida. Deep-Sea Res. II 2014, 102, 32–55. [Google Scholar] [CrossRef]
- Sprovieri, M.; Feo, M.L.; Prevedello, L.; Salvagio Manta, D.; Sammartino, S.; Tamburrino, S.; Marsella, E. Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere 2007, 67, 998–1009. [Google Scholar] [CrossRef]
- Perra, G.; Pozo, K.; Guerranti, C.; Lazzeri, D.; Volpi, V.; Corsolini, S.; Focardi, S. Levels and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in superficial sediment from 15 Italian marine protected areas (MPA). Mar. Pollut. Bull. 2011, 62, 874–877. [Google Scholar] [CrossRef]
- Baek, K.M.; Seo, Y.K.; Baek, S.O. Occurrence of Particulate Polycyclic Aromatic Hydrocarbons and Phthalates in the Ambient Air of Yeosu·Gwangyang Area. J. Kor. Soc. Atm. Environ. 2019, 35, 767–785. (In Korean) [Google Scholar] [CrossRef]
- Voice, T.C.; Weber, W.J., Jr. Sorption of hydrophobic compounds by sediments, soils and suspended solids—I. Theory and background. Water Res. 1983, 17, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.C.; Gschwend, P.M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sci. Technol. 1986, 20, 717–725. [Google Scholar] [CrossRef]
- Smith, J.N.; Levy, E.M. Geochronology for polycyclic aromatic hydrocarbon contamination in sediments of the Saguenay Fjord. Environ. Sci. Technol. 1990, 24, 874–879. [Google Scholar] [CrossRef]
- Wang, D.G.; Alaee, M.; Byer, J.; Liu, Y.J.; Tian, C.G. Fugacity approach to evaluate the sediment–water diffusion of polycyclic aromatic hydrocarbons. J. Environ. Mon. 2011, 13, 1589–1596. [Google Scholar] [CrossRef]
- McElroy, A.E.; Farrington, J.W.; Teal, J.M. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; CRC Press, Inc.: Boca Raton, FL, USA, 1989; pp. 1–39. [Google Scholar]
- Eganhouse, R.P. Molecular markers and their use in environmental organic geochemistry. Geochem. Soc. Spec. Publ. 2004, 9, 143–158. [Google Scholar]
- Kumata, H.; Yamada, J.; Masuda, K.; Takada, H.; Sato, Y.; Sakurai, T.; Fujiwara, K. Benzothiazolamines as tire-derived molecular markers: Sorptive behavior in street runoff and application to source apportioning. Environ. Sci. Technol. 2002, 36, 702–708. [Google Scholar] [CrossRef]
- Zakaria, M.P.; Takada, H.; Tsutsumi, S.; Ohno, K.; Yamada, J.; Kouno, E.; Kumata, H. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environ. Sci. Technol. 2002, 36, 1907–1918. [Google Scholar] [CrossRef]
- Budzinski, H.; Bellocq, J.; Pierard, C.; Garrigues, P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Yan, W.; Chi, J.; Wang, Z.; Huang, W.; Zhang, G. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ. Pollut. 2009, 157, 1823–1830. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 32, 489–515. [Google Scholar] [CrossRef]
- Luo, X.J.; Chen, S.J.; Mai, B.X.; Yang, Q.S.; Sheng, G.Y.; Fu, J.M. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas. China. Environ. Pollut. 2006, 139, 9–20. [Google Scholar] [CrossRef]
- Korea Port Management Information System. Available online: https://new.portmis.go.kr (accessed on 26 November 2022). (In Korean).
- Ministry of Maritime Affairs and Fisheries. Central Maritime Safety Tribunal Maritime Accident Statistical Yearbook. 2014. Available online: https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do (accessed on 30 November 2014). (In Korean).
- Douglas, G.S.; Bence, A.E.; Prince, R.C.; McMillen, S.J.; Butler, E.L. Environmental stability of selected petroleum hydrocarbon source and weathering ratios Environ. Sci. Technol. 1996, 30, 2332–2339. [Google Scholar] [CrossRef]
- Boehm, P.D.; Douglas, G.S.; Burns, W.A.; Mankiewicz, P.J.; Page, D.S.; Bence, A.E. Application of petroleum hydrocarbon chemical fingerprinting and allocation techniques after the Exxon Valdez oil spill. Mar. Pollut. Bull. 1997, 34, 599–613. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Kalf, D.F.; Crommentuijn, T.; van de Plassche, E.J. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol. Environ. Safety 1997, 36, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.S.; Chaudhry, A.H.; Shafiq, M.; Berhanu, G. Factors affecting students’ quality of academic performance: A case of secondary school level. J. Qual. Technol. Manag. 2011, 7, 1–14. [Google Scholar]
- Dudhagara, D.R.; Rajpara, R.K.; Bhatt, J.K.; Gosai, H.B.; Sachaniya, B.K.; Dave, B.P. Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ. Pollut. 2016, 213, 338–346. [Google Scholar] [CrossRef] [PubMed]
March 2014 | May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | |
---|---|---|---|---|---|---|
Oil spill accident areas | 6 points (St.A-St.F) | - | - | - | - | - |
the Yeosu Channel and Gwangyang Bay, Korea | - | 20 points (St.1-St.20) | 20 points (St.1-St.20) | 20 points (St.1-St.20) | 20 points (St.1-St.20) | 20 points (St.1-St.20) |
Compounds | Code | Target Ions | Confirmation (m/z) | Compounds | Code | Target Ions | Confirmation (m/z) |
---|---|---|---|---|---|---|---|
PAHs | Alkylated PAHs | ||||||
2-Rings | 2-Rings | ||||||
Naphthalene | Nap | 128 | 127 | C1-Naphthalenes | C1-Nap | 142 | |
3-Rings | 1-Methyl Napthalene | 142 | 141 | ||||
Acenaphthylene | AcPy | 152 | 151 | 2-Methyl Napthalene | 142 | 141 | |
Acenaphthene | Ace | 154 | 153, 152 | C2-Naphthalenes | C2-Nap | 156 | |
Fluorene | Flu | 166 | 164 | 1,2-Dimethyl Naphthalene | 156 | 154 | |
Phenanthrene | Phe | 178 | 176 | C3-Naphthalenes | C3-Nap | 170 | |
Anthracene | AnT | 178 | 176 | C4-Naphthalenes | C4-Nap | 184 | |
4-Rings | 3-Rings | ||||||
Fluoranthene | FluA | 202 | 201 | C1-Fluorenes | C1-Flu | 180 | |
Pyrene | Pyr | 202 | 201 | 1-Methyl Fluorene | 180.2 | 180 | |
Benzo[a]anthracene | BaA | 228 | 226 | C2-Fluorenes | C2-Flu | 194 | |
Chrysene | Chr | 228 | 226 | C3-Fluorenes | C3-Flu | 208 | |
5 or 6 Rings | C1-Dibenzothiophenes | C1-DBT | 198 | ||||
Benzo[b]fluoranthene | BbF | 252 | 250 | 4-Methyl Dibenzothiophenes | 198.3 | 198 | |
Benzo[k]fluoranthene | BkF | 252 | 250 | C2-Dibenzothiophenes | C2-DBT | 212 | |
Benzo[a]pyrene | BaP | 252 | 250 | 3-Dibenzothiophenes | C3-DBT | 226 | |
Indeno(1,2,3-CD)pyrene | DbA | 276 | 275 | C1-Phenanthrenes | C1-Phe | 192 | |
Dibenz(a,h)anthracene | InP | 278 | 277 | 1-Methyl Phenanthrenes | 191 | 192 | |
Benzo[ghi]perylene | BghiP | 276 | 275 | C2-Phenanthrenes | C2-Phe | 206 | |
C3-Phenanthrenes | C3-Phe | 220 | |||||
C4-Phenanthrenes | C4-Phe | 234 | |||||
4-Rings | |||||||
C1-Chrysenes | C1-Chr | 242 | |||||
1-Methyl Chrysenes | 242 | 242 | |||||
C2-Chrysenes | C2-Chr | 254 | |||||
C3-Chrysenes | C3-Chr | 268 |
Station | ∑16 PAHs (ng/g dw.) | ∑Alkylated PAHs (ng/g dw.) |
---|---|---|
March 2014 | March 2014 | |
St. A | 605.1 | 3071.9 |
St. B | 205.3 | 1839.0 |
St. C | 199.1 | 2530.9 |
St. D | 200.8 | 2651.8 |
St. E | 357.9 | 1900.9 |
St. F | 239.2 | 2625.8 |
Min | 199.1 | 1839.0 |
Max | 605.1 | 3071.9 |
Mean | 301.2 | 2436.7 |
SD | 146.7 | 435.64 |
Median | 222.3 | 2578.4 |
Station | ∑16 PAHs (ng/g dw.) | ∑Alkylated PAHs (ng/g dw.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | |
St. 1 | 195.8 | 193.6 | 63.1 | 38.2 | 133.9 | 335.8 | 361.9 | 380.0 | 234.0 | 168.9 |
St. 2 | 883.2 | 239.3 | 171.3 | 107.1 | 29.9 | 316.4 | 291.9 | 273.0 | 366.7 | 211.0 |
St. 3 | 192.5 | 170.6 | 101.2 | 215.2 | 38.5 | 343.5 | 95.4 | 214.4 | 210.3 | 208.6 |
St. 4 | 139.4 | 83.9 | 67.9 | 38.5 | 22.2 | 167.5 | 106.3 | 207.3 | 159.9 | 167.3 |
St. 5 | 244.0 | 188.3 | 68.2 | 56.7 | 30.7 | 217.0 | 216.1 | 137.2 | 347.7 | 228.5 |
St. 6 | 65.4 | 99.5 | 59.2 | 35.6 | 64.8 | 156.0 | 168.3 | 109.1 | 74.2 | 159.9 |
St. 7 | 115.1 | 146.7 | 52.7 | 47.3 | 23.5 | 188.3 | 173.4 | 125.8 | 242.0 | 225.2 |
St. 8 | 127.6 | 157.0 | 55.8 | 27.4 | 34.4 | 176.8 | 227.8 | 178.2 | 138.4 | 191.0 |
St. 9 | 169.0 | 397.2 | 68.3 | 66.2 | 25.0 | 149.0 | 227.0 | 232.4 | 524.4 | 272.3 |
St. 10 | 153.0 | 150.0 | 49.3 | 116.8 | 33.6 | 232.8 | 244.0 | 100.0 | 518.2 | 197.9 |
St. 11 | 148.5 | 140.0 | 38.2 | 76.2 | 32.2 | 283.8 | 200.8 | 175.3 | 139.7 | 212.6 |
St. 12 | 45.7 | 98.4 | 42.6 | 71.8 | 24.6 | 85.1 | 146.0 | 119.3 | 172.8 | 187.0 |
St. 13 | 39.6 | 204.7 | 85.6 | 96.2 | 32.8 | 197.1 | 301.4 | 265.7 | 378.3 | 186.9 |
St. 14 | 43.6 | 237.8 | 109.8 | 36.8 | 46.0 | 197.1 | 349.5 | 190.8 | 74.6 | 253.5 |
St. 15 | 54.6 | - | 97.7 | 92.2 | 49.5 | 280.8 | - | 245.4 | 235.1 | 286.2 |
St. 16 | 223.3 | 227.0 | 111.4 | 74.9 | 40.0 | 402.5 | 692.6 | 484.8 | 171.0 | 151.3 |
St. 17 | 246.9 | 115.7 | 75.4 | 80.4 | 31.1 | 238.4 | 250.7 | 320.1 | 215.9 | 232.8 |
St. 18 | 74.1 | 132.4 | 61.7 | 95.0 | 65.5 | 108.8 | 233.9 | 211.4 | 343.3 | 295.1 |
St. 19 | 186.8 | 103.1 | 46.5 | 96.0 | 52.0 | 242.3 | 145.8 | 171.0 | 263.9 | 265.4 |
St. 20 | 86.7 | 193.6 | 40.0 | 80.0 | 34.0 | 116.0 | 200.5 | 191.1 | 518.0 | 128.5 |
Min | 39.6 | 83.9 | 38.2 | 27.4 | 22.2 | 85.1 | 95.4 | 100.0 | 74.2 | 128.5 |
Max | 883.2 | 397.2 | 171.3 | 215.2 | 133.9 | 402.5 | 692.6 | 484.8 | 524.4 | 295.1 |
Mean | 171.7 | 175.1 | 73.3 | 77.4 | 42.2 | 221.8 | 243.9 | 216.6 | 266.4 | 211.5 |
SD | 176.0 | 72.3 | 31.4 | 40.7 | 24.3 | 82.8 | 127.4 | 92.7 | 136.4 | 45.1 |
Median | 143.9 | 157.0 | 65.5 | 75.6 | 33.8 | 207.1 | 227.0 | 199.2 | 234.5 | 209.8 |
Country | Sampling Areas | N* | ∑PAHs, ng/g Dry wt. | Reference | |
---|---|---|---|---|---|
16 PAHs | Alkylated PAHs | ||||
Korea | Incheon coast | 16 | 62.34–260.79 | - | [27] |
Masan Bay | 39 | 175 ± 358 | 111 ± 116 | [22] | |
Haengam Bay | 39 | 133 ± 122 | 90.5 ± 40.6 | [22] | |
Wonmoon Bay | 39 | 242 ± 619 | 139 ± 102 | [22] | |
Gohyun Bay | 39 | 214 ± 141 | 87.2 ± 35.4 | [22] | |
Italy | Marine-protected areas | 16 | 0.71–1550 | - | [32] |
Naples harbour | 16 | 9–31,774 | - | [31] | |
Japan | Osaka Bay | 39 | 6.40–7800 | 13.7–1700 | [28] |
Egypt | Mediterranean coastal | 39 | 3.5–14,100 | 10–7500 | [29] |
Arctic Ocean | Chukchi Sea | 39 | 30.5–601.1 | 93.0–2353.0 | [30] |
Korea | 20 Station | 34 | 39.6–883.3 | 85.1–692.6 | this study |
Korea | 5 Station (Accident point) | 34 | 199.1–605.1 | 1839.0–3071.9 | this study |
Station | ∑16 PAHs (ng/L) | ||||
---|---|---|---|---|---|
May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | |
St. 1 | 2.2 | 167.9 | 11.0 | 15.9 | 9.1 |
St. 2 | 38.9 | 21.2 | 86.0 | 14.5 | 10.4 |
St. 3 | 24.9 | 54.9 | 74.4 | 37.5 | 9.3 |
St. 4 | 38.6 | 45.3 | 75.6 | 43.9 | 7.4 |
St. 5 | 39.8 | 46.6 | 81.6 | 46.0 | 6.5 |
St. 6 | 40.3 | 28.7 | 82.0 | 29.5 | 8.9 |
St. 7 | 25.7 | 40.0 | 2.9 | 32.0 | 10.2 |
St. 8 | 14.0 | 40.0 | 44.2 | 55.9 | 5.1 |
St. 9 | 17.8 | 46.0 | 11.0 | 9.0 | 6.5 |
St. 10 | 18.3 | 18.8 | 8.4 | 19.0 | 5.5 |
St. 11 | 15.4 | 19.7 | 13.1 | 56.3 | 8.2 |
St. 12 | 14.6 | 107.5 | 11.3 | 17.0 | 11.4 |
St. 13 | 14.6 | 97.0 | 18.5 | 17.1 | 8.2 |
St. 14 | 10.9 | 20.8 | 21.2 | 24.6 | 12.5 |
St. 15 | 11.8 | - | 17.7 | 26.5 | 11.4 |
St. 16 | 19.4 | 90.1 | 20.9 | 23.8 | 10.9 |
St. 17 | 16.2 | 21.4 | 34.1 | 9.7 | 6.7 |
St. 18 | 30.3 | 19.0 | 38.8 | 43.4 | 5.2 |
St. 19 | 11.2 | 82.5 | 12.7 | 40.4 | 6.2 |
St. 20 | 13.9 | 167.9 | 103.9 | 36.2 | 8.0 |
Min | 2.2 | 18.8 | 2.9 | 9.0 | 5.1 |
Max | 40.3 | 167.9 | 103.9 | 56.3 | 12.5 |
Mean | 20.9 | 59.7 | 38.5 | 29.9 | 8.4 |
SD | 10.9 | 46.0 | 31.8 | 14.2 | 2.2 |
Median | 17.0 | 45.3 | 21.0 | 28.0 | 8.2 |
Diagnostic Ratio | Pyrogenic Origin | Petrogenic Origin | May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | Accident Point |
---|---|---|---|---|---|---|---|---|
LMW/HMW a | <1 | >1 | 0.05–0.37 | 0.10–0.26 | 0.06–0.62 | 0.13–5.10 | 0.29–1.22 | 0.31–0.92 |
IP/IP + BgP b | >0.2 | <0.2 | 0.55–0.68 | 0.58–0.64 | 0.15–0.81 | 0.40–0.90 | 0.70–0.77 | N.D |
MP/P c | <1 | >2 | 1.42–4.55 | 1.55–4.69 | 0.85–2.60 | 0.11–5.52 | 0.49–10.5 | 1.46–3.11 |
Pyrogenic index d | >0.8 | <0.223 | 0.18–2.76 | 0.33–1.63 | 0.20–0.62 | 0.12–0.99 | 0.09–0.28 | 0.07–0.18 |
Diagnostic Ratio | May 2014 | August 2014 | November 2014 | February 2015 | May 2015 | Accident Point |
---|---|---|---|---|---|---|
C2-DBT/C2-Phe a | 0.11–1.27 | 0.13–2.03 | 0.27–1.34 | 0.12–2.26 | 0.49–1.49 | 0.63–1.68 |
C3-DBT/C3-Phe b | 0.16–1.23 | 0.39–1.48 | 0.20–0.58 | 0.20–0.44 | 0.08–1.28 | 0.55–0.91 |
Compound | SQG, ng/g dw. | PAHs, ng/g dw. | Sites with PAHs Concentration above the ERL or ERM | |||
---|---|---|---|---|---|---|
ERL | ERM | Min | Max | Between ERL and ERM | Above ERM | |
Naphthalene | 160 | 2100 | 21.9 | 54.6 | ||
Acenaphthylene | 44 | 640 | N.D. | 2.3 | ||
Acenaphthene | 16 | 500 | N.D. | 9.9 | ||
Fluorene | 19 | 540 | N.D. | 12.9 | ||
Dibenzothiophene | 190 | 1200 | 3.9 | 7.9 | ||
Phenanthrene | 240 | 1500 | 46.4 | 73.0 | ||
Anthracene | 85 | 1100 | 4.8 | 11.9 | ||
Fluoranthene | 600 | 5100 | 43.6 | 113.6 | ||
Pyrene | 665 | 2600 | 31.9 | 84.5 | ||
Benzo[a]anthracene | 60 | 1600 | 4.0 | 34.3 | ||
Chrysene | 380 | 2800 | 7.5 | 48.7 | ||
Benzo[a]pyrene | 430 | 1600 | N.D. | 52.6 | ||
Indeno(1,2,3-CD)pyrene | 240 | 950 | N.D. | N.D. | ||
Dibenz(a,h)anthracene | 63 | 260 | N.D. | N.D. | ||
Denzo[ghi]perylene | 85 | 330 | N.D. | N.D. | ||
2-Methylanphthalene | 70 | 670 | N.D. | N.D. | ||
1-Methylanphthalene | 85 | 800 | N.D. | N.D. | ||
C2-naphthalenes | 150 | 1450 | 85.6 | 197.8 | St. A | |
C1-phenanthrenes | 170 | 2000 | 74.6 | 190.1 | St. A, B | |
C2-phenanthrenes | 200 | 2500 | 233.6 | 379.7 | St. A, B, C, D, E, F | |
C1-dibenzothiophenes | 85 | 600 | 31.0 | 51.6 | ||
Total | 4022 | 44,792 | 588.8 | 1325.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, B.; Jeong, H.; Oh, J.; Paek, K.; Paeng, W.; Lee, J.; Cho, C.; Cho, H. Variations in Polycyclic Aromatic Hydrocarbon Contamination Values in Subtidal Surface Sediment via Oil Fingerprinting after an Accidental Oil Spill: A Case Study of the Wu Yi San Oil Spill, Yeosu, Korea. Water 2023, 15, 279. https://doi.org/10.3390/w15020279
Min B, Jeong H, Oh J, Paek K, Paeng W, Lee J, Cho C, Cho H. Variations in Polycyclic Aromatic Hydrocarbon Contamination Values in Subtidal Surface Sediment via Oil Fingerprinting after an Accidental Oil Spill: A Case Study of the Wu Yi San Oil Spill, Yeosu, Korea. Water. 2023; 15(2):279. https://doi.org/10.3390/w15020279
Chicago/Turabian StyleMin, Byeongkyu, Huiho Jeong, Juhye Oh, Kyejin Paek, Woohyun Paeng, Jonghyeok Lee, Chonrae Cho, and Hyeonseo Cho. 2023. "Variations in Polycyclic Aromatic Hydrocarbon Contamination Values in Subtidal Surface Sediment via Oil Fingerprinting after an Accidental Oil Spill: A Case Study of the Wu Yi San Oil Spill, Yeosu, Korea" Water 15, no. 2: 279. https://doi.org/10.3390/w15020279
APA StyleMin, B., Jeong, H., Oh, J., Paek, K., Paeng, W., Lee, J., Cho, C., & Cho, H. (2023). Variations in Polycyclic Aromatic Hydrocarbon Contamination Values in Subtidal Surface Sediment via Oil Fingerprinting after an Accidental Oil Spill: A Case Study of the Wu Yi San Oil Spill, Yeosu, Korea. Water, 15(2), 279. https://doi.org/10.3390/w15020279