Vertical and Hybrid Constructed Wetlands as a Sustainable Technique to Improve Domestic Wastewater Quality
Abstract
:1. Introduction
2. Pollutants in Domestic Wastewater
2.1. Heavy Metals Pollutants Occurrence in Domestic Wastewater
2.2. Organic Pollutants, N and P Occurrence in Domestic Wastewater
3. Constructed Wetland Types
3.1. Vertical Flow Constructed Wetlands (VFCWs)
3.2. Hybrid Constructed Wetland (HCW)
4. Removal of Organic and Inorganic Pollutants from Domestic Wastewater by VFCW and HCW-Meta-Analysis
4.1. Data Collection and Analysis
4.2. Results and Discussion
4.2.1. The Effect of the Interaction between Method, Plant, and Substrate on the Pollutant’s Removal-Efficiency
4.2.2. The Efficacy of the Method Used on Pollutant Removal
4.2.3. The Efficient Removal of Pollutants by Different Plant Species Used in Two Different CWs
4.2.4. The Efficient Removal of Pollutants by Different Substrates Used in Two Different CWs
5. Mechanisms Involved in Pollutant Removal from Domestic Wastewater Using VFCWs Technology
6. Effects of Environmental Parameters on the Removal of Pollutants Using VFCWs
Substrates Used in VFCW
Clogging Problem Facing CWs
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Hameed, M.; Moradkhani, H.; Ahmadalipour, A.; Moftakhari, H.; Abbaszadeh, P.; Alipour, A. A Review of the 21st Century Challenges in the Food-Energy-Water Security in the Middle East. Water 2019, 11, 682. [Google Scholar] [CrossRef]
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). J. Environ. Manag. 2021, 283, 111986. [Google Scholar] [CrossRef]
- Fahad, A.; Radin Mohamed, R.M.S.; Saphira, M.; Radhi, B.; Al-Sahari, M. Wastewater and its Treatment Techniques: An Ample Review. Indian J. Sci. Technol. 2019, 12, 13. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Merayo, N.; Prinsen, P.; Luque, R.; Blanco, A.; Zhao, M. A review on greywater reuse: Quality, risks, barriers and global scenarios. Rev. Environ. Sci. Biotechnol. 2019, 18, 77–99. [Google Scholar] [CrossRef]
- Mara, D. What is Domestic Wastewater and Why Treat It? In Domestic Wastewater Treatment in Developing Countries; Routledge: London, UK, 2004; pp. 1–293. [Google Scholar]
- Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Kim, H.K.; Jang, T.I.; Kim, S.M.; Park, S.W. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci. 2014, 73, 2377–2383. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply Res. Technol. 2020, 69, 99–112. [Google Scholar] [CrossRef]
- Ali, Z.; Mohammad, A.; Riaz, Y.; Quraishi, U.M.; Malik, R.N. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int. J. Phytoremediation 2018, 20, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Khan, D.K.; Santra, S.C. An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bull. Environ. Contam. Toxicol. 2008, 80, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Amoatey, P.; Bani, R. Wastewater Management. In Waste Water—Evaluation and Management; Sebastián, F., Einschlag, G., Eds.; IntechOpen: London, UK, 2011; pp. 379–398. [Google Scholar]
- Huong, M.; Costa, D.T.; Van Hoi, B. Enhanced removal of nutrients and heavy metals from domestic-industrial wastewater in an academic campus of Hanoi using modified hybrid constructed wetlands. Water Sci. Technol. 2020, 82, 1995–2006. [Google Scholar] [CrossRef]
- Gangaraju, G.; Balakrishn, K.; Uma, R.; Shah, K. Introduction to Conventional Wastewater Treatment Technologies: Limitations and Recent Advances. In Advances in Wastewater Treatment I; Gandh, V., Shah, K.L., Eds.; Materials Research Foundations: Millersville, PA, USA, 2021; Volume 91, pp. 1–36. [Google Scholar]
- Pabbati, R.; Jhansi, V.; Reddy, K. Conventional Wastewater Treatment Processes. In Advances in the Domain of Environmental Biotechnology; Maddela, N.R., Cruzatty, L.C.G., Chakraborty, S., Eds.; Environmental and Microbial Biotechnology; Springer: Singapore, 2021; pp. 455–479. [Google Scholar]
- Thalla, A.K.; Devatha, C.P.; Anagh, K.; Sony, E. Performance evaluation of horizontal and vertical flow constructed wetlands as tertiary treatment option for secondary effluents. Appl. Water Sci. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yava, I.; Unay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environ. Sci. Pollut. Res. Int. 2019, 26, 11662–11673. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Gao, B.; Sun, Y.; Zhang, M.; Sharma, S.K. Use of Industrial and Agricultural Waste in Removal of Heavy Metals Present in Water. In Heavy Metals in Water; The Royal Society of Chemistry: London, UK, 2014; pp. 281–295. [Google Scholar]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: A Review. In Proceedings of the Taal2007: The 12th World Lake Conference: 965-980, Jaipur, Rajasthan, India, 28 October – 2 November 2007. [Google Scholar]
- Seidel, K. Neue Wege zur Grundwasseranreicherung in Krefeld, Vol. II. Hydrobotanische Reinigungsmethode. GWF Wasser/Abwasser 1965, 30, 831–833. [Google Scholar]
- Qasaimeh, A.; AlSharie, H.; Masoud, T. A Review on Constructed Wetlands Components and Heavy Metal Removal from Wastewater. J. Environ. Prot. 2015, 6, 710–718. [Google Scholar] [CrossRef]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Nageeb, M. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen: London, UK, 2013. [Google Scholar]
- Patil, P.D.; Bhange, V.P.; Shende, S.S.; Ghorpade, P.S. Greywater characterization of an Indian household and potential treatment for reuse. Water-Energy Nexus 2022, 5, 1–7. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed wetlands for greywater recycle and reuse: A review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, I.N.; Ahammed, M.M. Quantity and quality characteristics of greywater: A review. J. Environ. Manag. 2020, 261, 110266. [Google Scholar] [CrossRef]
- Drozdova, J.; Raclavska, H.; Raclavsky, K.; Skrobankova, H. Heavy metals in domestic wastewater with respect to urban population in Ostrava, Czech Republic. Water Environ. J. 2019, 33, 77–85. [Google Scholar] [CrossRef]
- Khanam, K.; Patidar, S.K. Greywater characteristics in developed and developing countries. Mater. Today Proc. 2022, 57, 1494–1499. [Google Scholar] [CrossRef]
- Pidou, M.; Avery, L.; Stephenson, T.; Jeffrey, P.; Parsons, S.A.; Liu, S.; Memon, F.A.; Jefferson, B. Chemical solutions for greywater recycling. Chemosphere 2008, 71, 147–155. [Google Scholar] [CrossRef]
- Eriksson, E.; Donner, E. Metals in greywater: Sources, presence and removal efficiencies. Desalination 2009, 248, 271–278. [Google Scholar] [CrossRef]
- UN-Habitat; WHO. Progress on Wastewater Treatment—Global Status and Acceleration Needs for SDG Indicator 6.3.1; United Nations HumanSettlements Programme (UN-Habitat); World Health Organization (WHO): Geneve, Switzerland, 2021.
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Singh Sankhla, M.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy Metals Contamination in Water and their Hazardous Effect on Human Health-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Singh, J.; Kaur, P.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, P.; Wang, G.; Wang, J.; Zhang, Y.; Wang, S.; Yang, K.; Du, C.; Chen, H. A review on the removal of heavy metals and metalloids by constructed wetlands: Bibliometric, removal pathways, and key factors. World J. Microbiol. Biotechnol. 2021, 37, 157. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Hussain, S.; Javed, K.; Khan, A.; Shahjahan, M. The Sources, Toxicity, Determination of Heavy Metals and Their Removal Techniques from Drinking Water. World J. Appl. Chem. 2020, 5, 34–40. [Google Scholar] [CrossRef]
- Singovszka, E.; Balintova, M.; Junakova, N. The impact of heavy metals in water from abandoned mine on human health. SN Appl. Sci. 2020, 2, 934. [Google Scholar] [CrossRef]
- Odinga, C.A.; Swalaha, F.M.; Otieno, F.A.O.; Ranjith, K.R.; Bux, F. Investigating the efficiency of constructed wetlands in the removal of heavy metals and enteric pathogens from wastewater. Environ. Technol. Rev. 2013, 2, 1–16. [Google Scholar] [CrossRef]
- Rai, P.K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ. Technol. Innov. 2019, 15, 100393. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Al Enezi, G.; Hamoda, M.F.; Fawzi, N. Heavy metals content of municipal wastewater and sludges in Kuwait. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2004, 39, 397–407. [Google Scholar] [CrossRef]
- Aonghusa, C.N.; Gray, N.F. Laundry detergents as a source of heavy metals in Irish domestic wastewater. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2002, 37, 1–6. [Google Scholar] [CrossRef]
- Hargreaves, A.J.; Constantino, C.; Dotro, G.; Cartmell, E.; Campo, P. Fate and removal of metals in municipal wastewater treatment: A review. Environ. Technol. Rev. 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Othman, Y.A.; Al-Assaf, A.; Tadros, M.J.; Albalawneh, A. Heavy Metals and Microbes Accumulation in Soil and Food Crops Irrigated with Wastewater and the Potential Human Health Risk: A Metadata Analysis. Water 2021, 13, 3405. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F.; Forghani, G. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ. Monit. Assess. 2008, 141, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef]
- Akpor, O.; Otohinoyi, D.; Olaolu, T.; Aderiye, J. Pollutants in Wastewater Effluents: Impacts and Remediation Processes. Int. J. Environ. Res. Earth Sci. 2014, 3, 50–59. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands, Subsurface Flow. In Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008; pp. 748–764. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Constructed Wetlands Classification. In Vertical Flow Constructed Wetlands; Stefanakis, A., Akratos, C.S., Tsihrintzis, V.A., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 17–25. [Google Scholar]
- Bohorquez, E.; Paredes, D.; Arias, C.A. Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: Effect of different design and operational parameters. Environ. Technol. 2017, 38, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Greenway, M.; Tonderski, K.; Brix, H.; Mander, Ü. Constructed Wetlands for Wastewater Treatment. In Wetlands and Natural Resource Management; Verhoeven, J.T.A., Beltman, B., Bobbink, R., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 190, pp. 69–96. [Google Scholar]
- Wang, H.X.; Xu, J.L.; Sheng, L.X.; Liu, X.J. A Review of Research on Substrate Materials for Constructed Wetlands. Mater. Sci. Forum 2018, 913, 917–929. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. VFCW Types. In Vertical Flow Constructed Wetlands; Stefanakis, A., Akratos, C.S., Tsihrintzis, V.A., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 27–38. [Google Scholar]
- Sharma, G.; Priya; Brighu, U. Performance Analysis of Vertical Up-flow Constructed Wetlands for Secondary Treated Effluent. Agric. Agric. Sci. Proc. 2014, 10, 110–114. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. On-site treatment of domestic wastewater using a small-scale horizontal subsurface flow constructed wetland. Water Sci. Technol. 2010, 62, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Kantawanichkul, S.; Sattayapanich, S.; van Dien, F. Treatment of domestic wastewater by vertical flow constructed wetland planted with umbrella sedge and Vetiver grass. Water Sci. Technol. 2013, 68, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.B.; Austin, D.; Liu, L.; Dong, R.J. Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecol. Eng. 2011, 37, 948–954. [Google Scholar] [CrossRef]
- Perdana, M.C.; Sutanto, H.B.; Prihatmo, G. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment. IOP Conf. Ser. Earth Environ. Sci. 2018, 148, 012025. [Google Scholar] [CrossRef]
- Chang, J.J.; Wu, S.Q.; Dai, Y.R.; Liang, W.; Wu, Z.B. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol. Eng. 2012, 44, 152–159. [Google Scholar] [CrossRef]
- Dębska, A.; Jóźwiakowski, K.; Gizińska-Górna, M.; Pytka, A.; Marzec, M.; Sosnowska, B.; Pieńko, A. The Efficiency of Pollution Removal from Domestic Wastewater in Constructed Wetland Systems with Vertical Flow with Common Reed and Glyceria Maxima. J. Ecol. Eng. 2015, 16, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.B.; Gao, X.R.; Wu, P.T.; Li, W.; Bai, X.; Sun, M.; Wang, A. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels. J. Clean. Prod. 2019, 208, 649–655. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Hellal, M.S. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. 2012, 47, 209–213. [Google Scholar] [CrossRef]
- Morari, F.; Giardini, L. Municipal wastewater treatment with vertical flow constructed wetlands for irrigation reuse. Ecol. Eng. 2009, 35, 643–653. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef]
- Wu, H.; Fan, J.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresour. Technol. 2015, 176, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.H.; Ouyang, Y.; Lou, Q.A.; Yang, F.L.; Chen, Y.; Zhu, W.L.; Luo, S.M. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 2010, 36, 1083–1088. [Google Scholar] [CrossRef]
- Korkusuz, E.; Bekl, M.; Glu, I.O.; Dem, G. Treatment Eciencies of the Vertical Flow Pilot-Scale Constructed Wetlands for Domestic Wastewater Treatment. Turk. J. Eng. Environ. Sci. 2004, 28, 333–344. [Google Scholar]
- Wang, M.; Zhang, D.-Q.; Dong, J.; Tan, S. Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: A review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S. Performance assessment of horizontal and vertical surface flow constructed wetland system in wastewater treatment using multivariate principal component analysis. Ecol. Eng. 2018, 116, 121–126. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleb, E.; Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M. Phytoremediation in Constructed Wetlands. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 243–263. [Google Scholar]
- Yalcuk, A.; Ugurlu, A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour. Technol. 2009, 100, 2521–2526. [Google Scholar] [CrossRef] [PubMed]
- Raphael, O.D.; Ojo, S.I.A.; Ogedengbe, K.; Eghobamien, C.; Morakinyo, A.O. Comparison of the performance of horizontal and vertical flow constructed wetland planted with Rhynchospora corymbosa. Int. J. Phytoremediation 2019, 21, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci. Total Environ. 2018, 645, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.X.; Carvalho, K.Q.; Passig, F.H.; Borges, A.C.; Filippe, T.C.; Azevedo, J.C.R.; Nagalli, A. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. Sci. Total Environ. 2018, 630, 1365–1373. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. In Encyclopedia of Ecology (second Edition). Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 14–21. [Google Scholar]
- Saeed, T.; Alam, M.K.; Miah, M.J.; Majed, N. Removal of heavy metals in subsurface flow constructed wetlands: Application of effluent recirculation. Environ. Sustain. Ind. 2021, 12, 100146. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Ye, F.X.; Li, Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol. Eng. 2009, 35, 1043–1050. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hofmann, O.; Harrington, R. Performance Evaluation of Integrated Constructed Wetlands Treating Domestic Wastewater. Water Air Soil. Poll. 2010, 210, 435–451. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments. Bioresour. Technol. 2011, 102, 967–974. [Google Scholar] [CrossRef]
- Chan, S.Y.; Tsang, Y.F.; Chua, H.; Sin, S.N.; Cui, L.H. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area. Bioresour. Technol. 2008, 99, 3774–3781. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, K.; Zhang, Z.; Shang, X.; Wu, F. Waste Brick as Constructed Wetland Fillers to Treat the Tail Water of Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 2020, 104, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elela, S.; Hellal, M.; Elekhnawy, M. Phytoremediation of municipal wastewater for reuse using three pilot-scale HFCW under different HLR, HRT, and vegetation: A case study from Egypt. Desalination Water Treat. 2019, 140, 80–90. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. A small-size vertical flow constructed wetland for on-site treatment of household wastewater. Ecol. Eng. 2012, 44, 337–343. [Google Scholar] [CrossRef]
- Vymazal, J.; Kropfelova, L. A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecol. Eng. 2011, 37, 90–98. [Google Scholar] [CrossRef]
- Vymazal, J.; Brix, H.; Cooper, P.; Haberl, R.; Perfler, R.; Laber, J. Removal mechanisms and types of constructed wetlands. In Constructed Wetlands for Wastewater Treatment Europe; Vymazal, J., Brix, H., Cooper, P., Green, M., Haberl, R., Eds.; Backhuys Publisher: Leiden, The Netherlands, 1998; pp. 17–66. [Google Scholar]
- Arivoli, A.; Mohanraj, R.; Seenivasan, R. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ. Sci. Pollut. Res. Int. 2015, 22, 13336–13343. [Google Scholar] [CrossRef]
- Dan, A.; Oka, M.; Fujii, Y.; Soda, S.; Ishigaki, T.; Machimura, T.; Ike, M. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci. Total Environ. 2017, 584–585, 742–750. [Google Scholar] [CrossRef]
- Hafeznezami, S.; Kim, J.L.; Redman, J. Evaluating Removal Efficiency of Heavy Metals in Constructed Wetlands. J. Environ. Eng. 2012, 138, 475–482. [Google Scholar] [CrossRef]
- Kamarudzaman, A.N.; Aziz, R.A.; Jalil, M.F.A. Removal of Heavy Metals from Landfill Leachate Using Horizontal and Vertical Subsurface Flow Constructed Wetland Planted with Limnocharis flava. Int. J. Civ. Environ. Eng. 2011, 11, 85–91. [Google Scholar]
- Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Pollut. 2010, 158, 3447–3461. [Google Scholar] [CrossRef] [PubMed]
- Norton, S.A. Removal Mechanisms in Constructed Wastewater Wetlands [Internet]. IDC White Paper. 2007. Available online: https://docplayer.net/150839300-Removal-mechanisms-in-constructed-wastewaterwetlands-stephen-norton.html (accessed on 10 September 2023).
- Zhou, Y.; Gu, T.; Yi, W.; Zhang, T.; Zhang, Y. The release mechanism of heavy metals from lab-scale vertical flow constructed wetlands treating road runoff. Environ. Sci. Pollut. Res. Int. 2019, 26, 16588–16595. [Google Scholar] [CrossRef]
- Mohammed, A.; Babatunde, A.O. Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol. Model. 2017, 354, 62–71. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.Q.; Mander, U. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 1–31. [Google Scholar] [CrossRef]
- El-Agroudy, A. Investigation of Constructed Wetlands Capability to Remove Mercury from Contaminated Waters. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 1999. [Google Scholar]
- Liao, S.W.; Chang, N.L. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J. Aquat. Plant Manag. 2004, 42, 60–68. [Google Scholar]
- Verma, R.; Suthar, S. Lead and cadmium removal from water using duckweed—Lemna gibba L.: Impact of pH and initial metal load. Alex. Eng. J. 2015, 54, 1297–1304. [Google Scholar] [CrossRef]
- Haberl, R.; Grego, S.; Langergraber, G.; Kadlec, R.; Cicalini, A.R.; Martins-Dias, S.; Novais, J.; Aubert, S.; Gerth, A.; Thomas, H.; et al. Constructed Wetlands for the Treatment of Organic Pollutants. J. Soils Sediments 2003, 3, 109–124. [Google Scholar] [CrossRef]
- Qin, R.; Chen, H. The procession of constructed wetland removal mechanism of pollutants. In Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China, 15–16 October 2016. [Google Scholar]
- Gajewska, M.; Skrzypiec, K.; Jóźwiakowski, K.; Mucha, Z.; Wójcik, W.; Karczmarczyk, A.; Bugajski, P. Kinetics of pollutants removal in vertical and horizontal flow constructed wetlands in temperate climate. Sci. Total Environ. 2020, 718, 137371. [Google Scholar] [CrossRef] [PubMed]
- Silviya, L.; Bogdana, K. Nutrients and Organic Matter Removal in a Vertical-Flow Constructed Wetland. In Applied Bioremediation; Yogesh, B.P., Prakash, R., Eds.; IntechOpen: Rijeka, Croatia, 2013; Chapter 4. [Google Scholar]
- Rajan, R.; Sudarsan, J.S.; Nithiyananantham, S. Microbial population in constructed wetlands—Review of recent advancements for water treatment. Environ. Eng. Res. 2018, 24, 181–190. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. Types of Constructed Wetlands for Wastewater Treatment. In Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Alloway, B.J., Trevors, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 14, pp. 121–202. [Google Scholar]
- Hu, S.; Zhu, H.; Bañuelos, G.; Shutes, B.; Wang, X.; Hou, S.; Yan, B. Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review. Int. J. Environ. Res. Public. Health 2023, 20, 3876. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zhang, C. Study on Phosphorus Removal Pathway in Constructed Wetlands with Thermally Modified Sepiolite. Sustainability 2022, 14, 12535. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A. The use of Vertical Flow Constructed Wetlands in Wastewater Treatment. Water Resour. Manag. 2017, 31, 3245–3270. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mayes, W.M.; Whitby, P.; Rogerson, M. Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants. J. Environ. Manag. 2019, 243, 30–38. [Google Scholar] [CrossRef]
- Yadav, A.K.; Kumar, N.; Sreekrishnan, T.R.; Satya, S.; Bishnoi, N.R. Removal of chromium and nickel from aqueous solution in constructed wetland: Mass balance, adsorption-desorption and FTIR study. Chem. Eng. J. 2010, 160, 122–128. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, J.C.; He, S.; Zhou, W. Enhancement of a constructed wetland water treatment system for selenium removal. Sci. Total Environ. 2020, 714, 136741. [Google Scholar] [CrossRef]
- Gandy, C.J.; Davis, J.E.; Orme, P.H.A.; Potter, H.A.B.; Jarvis, A.P. Metal removal mechanisms in a short hydraulic residence time subsurface flow compost wetland for mine drainage treatment. Ecol. Eng. 2016, 97, 179–185. [Google Scholar] [CrossRef]
- Yadav, A.K.; Abbassi, R.; Kumar, N.; Satya, S.; Sreekrishnan, T.R.; Mishra, B.K. The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility. Chem. Eng. J. 2012, 211, 501–507. [Google Scholar] [CrossRef]
- Barya, M.P.; Gupta, D.; Shukla, R.; Thakur, T.K.; Mishra, V.K. Phytoremediation of Heavy Metals from Mixed Domestic Sewage through Vertical-Flow Constructed Wetland Planted with Canna indica and Acorus calamus. Curr. World Environ. 2020, 15, 430–440. [Google Scholar] [CrossRef]
- Mustapha, H.I.; van Bruggen, J.J.A.; Lens, P.N.L. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. Int. J. Phytoremediation 2018, 20, 44–53. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Vohla, C.; Koiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, U. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, X.; Zheng, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environ. Sci. Pollut. Res. Int. 2015, 22, 12982–12991. [Google Scholar] [CrossRef]
- Healy, M.G.; Rodgers, M.; Mulqueen, J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresour. Technol. 2007, 98, 2268–2281. [Google Scholar] [CrossRef]
- Chyan, J.M.; Senoro, D.B.; Lin, C.J.; Chen, P.J.; Chen, I.M. A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips. Int. Biodeterior. Biodegrad. 2013, 85, 638–645. [Google Scholar] [CrossRef]
- Blanco, I.; Molle, P.; Saenz de Miera, L.E.; Ansola, G. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Res. 2016, 89, 355–365. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, T.; Zhang, D. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater. 2008, 153, 300–308. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Bhuptawat, H.K.; Chaudhari, S. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol. 2006, 97, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Luo, S.; Yu, B.; Zhang, T.; Li, J.; Zhang, Y. A comparative analysis for the development and recovery processes of different types of clogging in lab-scale vertical flow constructed wetlands. Environ. Sci. Pollut. Res. Int. 2018, 25, 24073–24083. [Google Scholar] [CrossRef]
- Langergraber, G.; Haberl, R.; Laber, J.; Pressl, A. Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Sci. Technol. 2003, 48, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Melián, J.A.H.; Rodríguez, A.J.M.; Araña, J.; Díaz, O.G.; Henríquez, J.J.G. Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecol. Eng. 2010, 36, 891–899. [Google Scholar] [CrossRef]
- Yeh, T.Y.; Wu, C. Pollutant removal within hybrid constructed wetland systems in tropical regions. Water Sci. Technol. 2009, 59, 233–240. [Google Scholar] [CrossRef]
- Cui, L.H.; Liu, W.; Zhu, X.Z.; Ma, M.; Huang, X.H.; Xia, Y.Y. Performance of hybrid constructed wetland systems for treating septic tank effluent. J. Environ. Sci. 2006, 18, 665–669. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masharqa, A.; Al-Tardeh, S.; Mlih, R.; Bol, R. Vertical and Hybrid Constructed Wetlands as a Sustainable Technique to Improve Domestic Wastewater Quality. Water 2023, 15, 3348. https://doi.org/10.3390/w15193348
Masharqa A, Al-Tardeh S, Mlih R, Bol R. Vertical and Hybrid Constructed Wetlands as a Sustainable Technique to Improve Domestic Wastewater Quality. Water. 2023; 15(19):3348. https://doi.org/10.3390/w15193348
Chicago/Turabian StyleMasharqa, Asmaa, Sharaf Al-Tardeh, Rawan Mlih, and Roland Bol. 2023. "Vertical and Hybrid Constructed Wetlands as a Sustainable Technique to Improve Domestic Wastewater Quality" Water 15, no. 19: 3348. https://doi.org/10.3390/w15193348
APA StyleMasharqa, A., Al-Tardeh, S., Mlih, R., & Bol, R. (2023). Vertical and Hybrid Constructed Wetlands as a Sustainable Technique to Improve Domestic Wastewater Quality. Water, 15(19), 3348. https://doi.org/10.3390/w15193348