Estimation of Streamflow Depletion Caused by Groundwater Withdrawal in the Bokhacheon Watershed in South Korea Using the Modified SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Model Modification
3. Model Setup
3.1. Watershed Delineation and Spatial Maps
3.2. Hydrometeorological Data
3.3. Water Use Data
3.4. Baseline Scenario
4. Results and Discussion
4.1. Model Calibration
4.2. Streamflow Depletion Caused by Groundwater Withdrawal
4.3. Impacts of Groundwater Withdrawal on Hydrological Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glover, R.E.; Balmer, G.G. River depletion from pumping a well near a river. Trans. Am. Geophys. Union. 1954, 35, 468–470. [Google Scholar] [CrossRef]
- Hantush, M.S. Wells near streams with semipervious beds. J. Geophys. Res. 1965, 70, 2829–2838. [Google Scholar] [CrossRef]
- Hunt, B. Unsteady stream depletion from ground water pumping. Ground Water 1999, 37, 98–102. [Google Scholar] [CrossRef]
- Singh, S.K. Rate and volume of stream depletion due to pumping. J. Irrig. Drain. Eng. 2000, 126, 336–338. [Google Scholar] [CrossRef]
- Butler, J.J., Jr.; Zlotnik, V.A.; Tsou, M.-S. Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream. Ground Water 2001, 39, 651–659. [Google Scholar] [CrossRef]
- Hunt, B. Stream Depletion in a Two-Layer Leaky Aquifer System. J. Hydrogen Eng. 2009, 14, 895–903. [Google Scholar] [CrossRef]
- Ward, N.D.; Lough, H. Stream depletion from pumping a semiconfined aquifer in a two-layer leaky aquifer system. J. Hydrogen Eng. 2011, 16, 955–959. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; Techniques of Water Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 1988; Book 6, Chapter A1; p. 528.
- Sophocleous, M.; Koussis, A.; Martin, J.L.; Perkins, S.P. Evaluation of simplified stream-aquifer depletion models for water rights administration. Ground Water 1995, 33, 579–588. [Google Scholar] [CrossRef]
- Nyholm, T.; Rasmussen, K.R.; Christensen, S. Estimation of stream flow depletion and uncertainty from discharge measurements in a small alluvial stream. J. Hydrol. 2003, 274, 129–144. [Google Scholar] [CrossRef]
- Zume, J.; Tarhule, A. Simulating the impacts of groundwater pumping on stream-aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol. J. 2008, 16, 797–810. [Google Scholar] [CrossRef]
- Werner, A.D.; Gallagher, M.R.; Weeks, S.W. Integrated surface-subsurface modelling of Sandy Creek and Pioneer Valley aquifers, north-eastern Australia. In Proceedings of the NZHS-IAH-NZSSS 2005 Conference: Where Waters Meet; Acworth, I., Macky, G., Merrick, N., Eds.; New Zealand Hydrological Society (NZHS): Auckland, New Zealand, 2005. [Google Scholar]
- Werner, A.D.; Gallagher, M.R.; Weeks, S.W. Regional-scale, fully coupled modelling of stream-aquifer interaction in a tropical catchment. J. Hydrol. 2006, 328, 497–510. [Google Scholar] [CrossRef]
- Said, A.; Stevens, D.K.; Sehlke, G. Estimating water budget in a regional aquifer using HSPF-MODFLOW integrated model. J. Am. Water Resour. Assoc. 2005, 41, 55–66. [Google Scholar] [CrossRef]
- Perkins, S.P.; Sophocleous, M. Development of a comprehensive watershed model applied to study stream yield under drought conditions. Ground Water 1999, 37, 418–426. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT- MODFLOW model. J. Hydrogen 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Liu, W.; Park, S.; Bailey, R.T.; Navarro, E.M.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Jensen, J.B.; et al. Comparing SWAT with SWAT-MODFLOW hydrological simulations when assessing the impacts of groundwater abstractions for irrigation and drinking water. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–51. [Google Scholar]
- Osmana, A.I.A.; Ahmed, A.N.; Chow, M.F.; Huang, Y.F.; El-Shafie, A. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain. Shams. Eng. J. 2021, 12, 1545–1556. [Google Scholar]
- Wee, W.J.; Chong, K.L.; Ahmed, A.N.; Malek, M.B.A.; Huang, U.F.; Sherif, M.; Elshafie, A. Application of augmented bat algorithm with artificial neural network in forecasting river inflow in Malaysia. Appl. Water Sci. 2023, 13, 30. [Google Scholar] [CrossRef]
- Osman, A.I.A.; Ahmed, A.N.; Huang, Y.F.; Kumar, P.; Birima, A.H.; Sherif, M.; Sefelnasr, A.; Ebraheemand, A.A.; El-Shafie, A. Past, present and perspective methodology for groundwater modeling based machine learning approaches. Arch. Comput. Methods Eng. 2022, 29, 1–17. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Say, K.N. Artificial Intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 2015, 530, 829–844. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool: Theoretical Documentation; USDA-ARS Grassland, Soil, and Water Research Laboratory, Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2005; Version 2005.
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Wang, Y.; Brubaker, K. Implementing a nonlinear groundwater model in the soil and water assessment tool (SWAT). Hydrol. Process. 2014, 28, 3388–3403. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, N.W.; Lee, J.; Sophocleou, M. Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: Application to Mihocheon watershed, South Korea. Hydrogeol. J. 2010, 18, 1253–1264. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.G.; Allen, P.; Chen, X. Baseflow simulation using SWAT model in an inland river basin in Tianshan mountains, Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 1259–1267. [Google Scholar] [CrossRef]
- Gan, R.; Luo, Y. Using the nonlinear aquifer storage–discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China. Hydrol. Earth Syst. Sci. 2013, 17, 3577–3586. [Google Scholar] [CrossRef]
- Pfannerstill, M.; Guse, B.; Fohrer, N. A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrol. Process. 2014, 28, 5599–5612. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Dietrich, J. Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer. Hydrol. Process. 2018, 32, 939–953. [Google Scholar] [CrossRef]
- Xin, J.; Chansheng, H.; Lanhui, Z.; Baoqing, Z. Simulation in a large, arid Endorheic River Watershed in Northwest China. Chin. Geogr. Sci. 2018, 28, 47–60. [Google Scholar]
- Jayakody, P.; Parajuli, P.B.; Sassenrath, G.F.; Ouyang, Y. Relationships between water table and model simulated ET. Groundwater 2014, 52, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, C.; Kim, S.; Kim, S. Assessment of climate change impact on future groundwater-level behavior using SWAT groundwater-consumption function in Geum River Basin of South Korea. Water 2019, 11, 949. [Google Scholar] [CrossRef]
Meteorological Data | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm/y) | 1445.9 | 2051.0 | 1613.7 | 1447.9 | 751.0 | 797.9 | 882.3 | 1030.5 | 1412.4 | 926.7 |
Average daily air temperature (°C) | 11.1 | 11.0 | 11.1 | 11.4 | 11.9 | 12.4 | 12.7 | 11.7 | 11.7 | 12.3 |
Average daily relative humidity (%) | 69.1 | 66.8 | 64.4 | 66.0 | 62.8 | 62.4 | 62.6 | 62.1 | 64.5 | 66.9 |
Average daily wind speed (m/s) | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.4 | 1.3 | 1.4 | 1.4 | 1.3 |
Average daily solar radiation (MJ/m2) | 11.6 | 12.4 | 13.7 | 13.5 | 13.5 | 13.8 | 13.5 | 14.1 | 14.2 | 13.4 |
Parameters | Explanation | Calibrated Value |
---|---|---|
CN2 | NRCS runoff curve number for moisture condition II | −10% of default value |
SURLAG | Surface runoff lag time | 0.5 |
EPCO | Plant water uptake compensation factor | 0.5 |
ESCO | Soil evaporation compensation factor | 0.8 |
GWDELAY | Groundwater delay to the water table | 3.1 days |
ALPHA_BF | Baseflow alpha factor for recession curve | 0.01 |
GWQMN | Threshold water depth to occur goundwater flow occurs | 50 mm |
CH_N | Channel Manning’s n value | 0.04 |
Scenarios | Hydrological Components (mm/y) | ||||||
---|---|---|---|---|---|---|---|
Surq | Latq | Gwq | Perc | SW | ET | Yield | |
With groundwater withdrawal | 315.8 (9.3%) | 23.7 (3.1%) | 322.4 (23.5%) | 441.6 (6.0%) | 83.9 (4.5%) | 502.3 (4.3%) | 660.0 (−9.8%) |
Without groundwater withdrawal | 289.0 | 23.0 | 421.2 | 416.5 | 80.3 | 481.5 | 731.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, J.-E.; Chung, I.-M. Estimation of Streamflow Depletion Caused by Groundwater Withdrawal in the Bokhacheon Watershed in South Korea Using the Modified SWAT Model. Water 2023, 15, 3336. https://doi.org/10.3390/w15193336
Lee J, Lee J-E, Chung I-M. Estimation of Streamflow Depletion Caused by Groundwater Withdrawal in the Bokhacheon Watershed in South Korea Using the Modified SWAT Model. Water. 2023; 15(19):3336. https://doi.org/10.3390/w15193336
Chicago/Turabian StyleLee, Jeongwoo, Jeong-Eun Lee, and Il-Moon Chung. 2023. "Estimation of Streamflow Depletion Caused by Groundwater Withdrawal in the Bokhacheon Watershed in South Korea Using the Modified SWAT Model" Water 15, no. 19: 3336. https://doi.org/10.3390/w15193336
APA StyleLee, J., Lee, J.-E., & Chung, I.-M. (2023). Estimation of Streamflow Depletion Caused by Groundwater Withdrawal in the Bokhacheon Watershed in South Korea Using the Modified SWAT Model. Water, 15(19), 3336. https://doi.org/10.3390/w15193336