Design of Ecological Flow (E-Flow) Considering Watershed Status Using Watershed and Physical Habitat Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Dataset
2.3. Hydrological Modeling
2.3.1. SWAT Description
2.3.2. PHABSIM Description
3. Results
3.1. SWAT Calibration and Validation
3.2. Flow Duration Analysis Based on the SWAT Simulation Result
3.3. Results of Field Surveys for Selecting Dominant Fish Species and Constructing HSI
3.4. PHABSIM Simulation and Estimation of E-Flow
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, J.S.; Jang, S.J.; Song, I.H. Estimation of an optimum ecological stream flow in the Banbyeon Stream using PHABSIM—Focused on Zacco platypus and Squalidus chankaensis tsuchigae. J. Korean Soc. Agric. Eng. 2020, 62, 51–62. [Google Scholar] [CrossRef]
- Prkash, S. Impact of climate change on aquatic ecosystem and its biodiversity: An overview. IJBI 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Pan, B.; Yuan, J.; Zhang, X.; Wang, Z.; Chem, J.; Lu, J.; Yang, W.; Li, Z.; Zhao, N.; Xu, M. A review of ecological restoration technique in fluvial rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Qi, W.; Wang, D.; Lin, H.; Wu, X.; Wang, D.; Bai, Y.; Qu, J. Dam construction alters planktonic microbial predator-prey communities in the urban reaches of the Yangtze River. Water Res. 2023, 230, 119575. [Google Scholar] [CrossRef] [PubMed]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Jung, C.G.; Lee, J.W.; Ahn, S.R.; Hwang, S.J.; Kim, S.J. Assessment of ecological streamflow for maintaining good ecological water environment. J. Korean Soc. Agric. Eng. 2016, 58, 1–12. [Google Scholar] [CrossRef]
- Woo, S.Y.; Kim, Y.W.; Kim, W.J.; Kim, S.H.; Kim, S.J. Development of water quality and aquatic ecosystem model for Andong Lake using SWAT-WET. J. Korea Water Resour. Assoc. 2021, 54, 719–730. [Google Scholar] [CrossRef]
- Hu, X.; Zuo, D.; Xu, Z.; Huamg, Z.; Liu, Z.; Han, Y.; Bi, Y. Response of macroinvertebrate community to water quality factors and aquatic ecosystem health assessment in a typical river in Beijing, China. Environ. Res. 2022, 212, 113474. [Google Scholar] [CrossRef]
- Greco, M.; Arbia, F.; Giampietro, R. Definition of ecological flow using IHA and IARI as an operative procedure for water management. Environments 2021, 8, 77. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream flow regimes for fish, wildlife, recreation and related environmental resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- King, J.M.; Tharme, M.S.; De Viliers, M.S. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology; Water Research Commission: Pretoria, South Africa, 2008; pp. 1–364. [Google Scholar]
- Poff, N.L.; Zimmerman, J.K. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Verma, R.K.; Pandey, A.; Verma, S.; Mishra, S.K. A review of environmental flow assessment studies in India with implementation enabling factors and constraints. Ecohydrol. Hydrobiol. 2023; in press. [Google Scholar] [CrossRef]
- Leone, M.; Gentile, F.; Porto, A.L.; Ricci, G.F.; De Girolamo, A.M. Ecological flow in southern Europe: Status and trends in non-perennial rivers. J. Environ. Manag. 2023, 342, 118097. [Google Scholar] [CrossRef] [PubMed]
- Bovee, K.D. Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology; National Ecology Center, Division of Wildlife and Contaminant Research, Fish and Wildlife Service: Washington, DC, USA, 1986.
- Bovee, K.D.; Lamb, B.L.; Bartholow, J.M.; Stalnaker, C.B.; Taylor, J. Stream Habitat Analysis Using the Instream Flow Incremental Methodology; US Geological Survey: Washington, DC, USA, 1998.
- Gore, J.A.; Crawford, D.J.; Addison, D.S. An analysis of artificial riffles and enhancement of benthic community diversity by physical habitat simulation (PHABSIM) and direct observation. River Res. Appl. 1998, 14, 69–77. [Google Scholar] [CrossRef]
- Kang, H.S.; Hur, J.W. Aquatic ecosystem and habitat improvement alternative in Hongcheon River using fish community. J. Korean Soc. Agric. Eng. 2012, 32, 331–343. [Google Scholar] [CrossRef]
- Ministry of Environment. Notification of Instream FLOW Status; Ministry of Environment: Sejong, Republic of Korea, 2018.
- Jain, V.; Karnatak, N.; Raj, A.; Shekhar, S.; Bajracharya, B.; Jain, S. Hydrogeomorphic advancements in river science for water security in India. Water Secur. 2022, 16, 100118. [Google Scholar] [CrossRef]
- Mahapatra, S.; Jha, M.K. Environmental flow estimation for regulated rivers under data-scarce condition. J. Hydrol. 2022, 614, 128569. [Google Scholar] [CrossRef]
- Shinozaki, Y.; Shirakawa, N. A legislative framework for environmental flow implementation: 30-years operation in Japan. River Res. Appl. 2021, 37, 1323–1332. [Google Scholar] [CrossRef]
- Oueslati, O.; De Girolamo, A.M.; Abouabdilah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; De Girolamo, A.M.; Barca, E.; Ielpo, P.; Rulli, M. Characterising the hydrological regime of an ungauged temporary river system: A case study. Environ. Sci. Pollut. Res. 2017, 24, 13950–13966. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region. A Blueprint to Safeguard Europe’s Water Resource; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Leone, M.; Gentile, F.; Porto, A.L.; Ricci, G.F.; De Girolamo, A.M. Setting an ecological flow regime in a Mediterranean basin with limited data availability: The Locone River case study (S-E Italy). Ecohydrol. Hydrobiol. 2023, 23, 346–360. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. Sci. Total Environ. 2016, 540, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Piniewski, M.; Bieger, K.; Mehdi, B. Advancements in Soil and Water Assessment Tool (SWAT) for ecohydrological modelling and application. Ecohydrol. Hydrobiol. 2019, 19, 179–181. [Google Scholar] [CrossRef]
- Casper, A.F.; Dixon, B.; Earls, J.; Gore, J.A. Linking a spatially explicit watershed model (SWAT) with an in-stream fish habitat model (PHABSIM): A case study of setting minimum flows and levels in a low gradient, sub-tropical river. River Res. Appl. 2011, 27, 269–282. [Google Scholar] [CrossRef]
- Lee, J.Y.; Woo, S.Y.; Kim, Y.W.; Kim, S.J.; Pyo, J.C.; Cho, K.H. Dynamic calibration of phytoplankton blooms using the modified SWAT model. J. Clean Prod. 2022, 343, 131005. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.G.; Woo, S.Y.; Kim, W.J.; Kim, S.J. Evaluation of water quality interaction by dam and weir operation using SWAT in the Nakdong River Basin of South Korea. Sustainability 2022, 12, 6845. [Google Scholar] [CrossRef]
- MOLIT Nakdong River Basic Plan Report; Ministry of Land Infrastructure and Transport: Sejong, Republic of Korea, 2009.
- Nash, J.E.; Sutcliffe, J.V. River forecasting using conceptual models: Part 1-a discussion of principles. J. Hydrol. 1970, 10, 280–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool Theoretical Documentation: Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2009. [Google Scholar]
- Waddle, T. PHABSIM for Windows User’s Manual and Exercises; US Geological Survey: Washington, DC, USA, 2011.
- Stalnaker, C.B.; Lamb, B.L.; Henriksen, J.; Bovee, K.; Bartholow, J. The Instream Flow Incremental Methodology: A Primer for IFIM; Biological Report 29; US Department of the Interior, National Biological Service: Washington, DC, USA, 1995.
- Wolman, M.G. A cycle of erosion and sedimentation in urban river channels. Geogr. Ann. Ser. A Phys. Geogr. 1967, 49, 385–395. [Google Scholar] [CrossRef]
- Hammer, T.R. Stream channel enlargement due to urbanization. Water Resour. Res. 1972, 8, 1530–1540. [Google Scholar] [CrossRef]
- Bledsoe, B.; Watson, C. Effects of urbanization on channel instability. J. Am. Water Resour. Assoc. 2001, 37, 255–270. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, K.J.; Kang, H.S. Response of fish community to building block methodology mimicking natural flow regime patterns in Nakdong River in South Korea. Sustainability 2022, 14, 3587. [Google Scholar] [CrossRef]
- Washington Department of Fish and Wildfire (WDFW). Comprehensive Management Plan for Puget Sound Chinook: Harvest Management Component; Northwest Indian Fisheries Commission: Olympia, Greece; Washington, DC, USA, 2004.
- Schneider, M.; Noack, M.; Gebler, T.; Kpecki, L. Handbook for the Habitat Simulation Model CASiMiR; Schneider & Jorde Ecological Engineering GmbH and University of Stuttgart Institute of Hydraulic Engineering: Stuttgart, Germany, 2010. [Google Scholar]
- Jung, S.H.; Jang, J.Y.; Choi, S.U. Physical habitat modeling in Dalcheon stream using fuzzy logic. J. Korea Water Resour. Assoc. 2012, 45, 229–242. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, T.; Shao, D.; Yang, W. Fuzzy logic method for evaluating habitat suitability in an Estuary affected by land reclamation. Wetlands 2014, 36, 19–30. [Google Scholar] [CrossRef]
- Jang, K.H.; Park, Y.K.; Kim, K.O.; Chung, M. A comparative study on assessment model of ecological flow rate considering instream flow incremental methodology. J. KSET 2017, 18, 604–616. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Yang, Z.; Wieprecht, S.; Zhang, S.; Wu, Y. Evaluating the ecological influence of hydraulic project: A review of aquatic habitat suitability models. Renew. Sust. Energ. Rev. 2017, 68, 748–762. [Google Scholar] [CrossRef]
- Sedighkia, M.; Abdoli, A.; Datta, B. Optimizing monthly ecological flow regime by a coupled fuzzy physical habitat simulation-genetic algorithm method, Environ. Syst. Decis. 2021, 41, 425–436. [Google Scholar] [CrossRef]
- Ouellet, V.; Mocq, J.; El Adlouni, S.E.; Krause, S. Improve performance and robustness of knowledge-based fuzzy logic habitat models. Environ. Modell. Softw. 2021, 144, 105138. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; An, R.; Yan, Z.; Yang, Y.; Tuo, Y. Evaluating the impact of power station regulation on the suitability of drifting spawning fish habitat based on the fuzzy evaluation method. Sci. Total Environ. 2023, 866, 161327. [Google Scholar] [CrossRef] [PubMed]
- Mouton, M.A.; Schneider, M.; Depestele, J.; Goethals, P.L.M.; De Pauw, N. Fish habitat modelling as a tool for river management. Ecol. Eng. 2007, 29, 305–315. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.S. A review of river habitat assessments and applications. Acta Hydrobiol. Sin. 2020, 44, 670–684. [Google Scholar] [CrossRef]
- Kim, Y.W.; Byeon, S.D.; Park, J.S.; Woo, S.Y.; Kim, S.J. Evaluation of applicability of linkage modeling using PHABIM and SWAT. J. Korea Water Resour. Assoc. 2021, 54, 819–833. [Google Scholar] [CrossRef]
- Wolter, C.; Bischoff, A. Seasonal changes of fish diversity in the main channel of the large lowland River Oder. River Res. Appl. 2021, 17, 595–608. [Google Scholar] [CrossRef]
- Helms, B.S.; Schoonover, J.E.; Feminella, J.W. Assessing influences of hydrology, physicochemistry, and habitat on stream fish assemblages across a changing landscape. J. Am. Water Resour. Assoc. 2009, 45, 157–169. [Google Scholar] [CrossRef]
- Kim, I.K.; Arnhold, S.; Ahn, S.R.; Le, Q.B.; Kim, S.J.; Park, S.J.; Koellner, T. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environ. Modell. Softw. 2019, 122, 103982. [Google Scholar] [CrossRef]
- Ahn, S.R.; Kim, S.J. Assessment of watershed health, vulnerability, and resilience for determining protection and restoration priorities. Environ. Modell. Softw. 2019, 122, 103926. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, K.; Kim, Y.; Park, H.; Lee, J.W.; Kim, S.J.; Chae, Y. Spatial assessment of water-use vulnerability under future climate and socioeconomic scenarios within a River Basin. J. Water Resour. Plan. Manage.-ASCE. 2020, 146, 05020011. [Google Scholar] [CrossRef]
- Woo, S.Y.; Kim, S.J.; Lee, J.W.; Kim, S.H.; Kim, Y.W. Evaluating the impact of inter-basin water transfer on water quality in the recipient river basin with. Sci. Total Environ. 2021, 776, 05020011. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Shen, Z. Assessment of the impacts of land use change on non-point source loading under future climate scenario using the SWAT model. Water 2021, 13, 874. [Google Scholar] [CrossRef]
- Abuhay, W.; Gashaw, T.; Tsegaye, W. Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model. J. Agric. Food Res. 2023, 12, 100535. [Google Scholar] [CrossRef]
- Uniyal, B.; Kosatica, E.; Koellner, T. Spatial and temporal variability of climate change impacts on ecosystem services in small agricultural catchments using the Soil and Water Assessment Tool (SWAT). Sci. Total Environ. 2023, 875, 162520. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.Y.; Chung, G.J.; Lee, J.W.; Kim, S.J. Evaluation of watershed scale aquatic ecosystem health by SWAT modeling and random forest technique. Sustainability 2019, 11, 3397. [Google Scholar] [CrossRef]
Streamflow gauging station (GD) | River width (m) | Channel width (m) | Average streamflow (m3/s) | Bed structure (%) | Roughness coefficient | |||
Rock | Gavel | Sand | Silt | |||||
400–440 | 120–230 | 51.0 | 0 | 5 | 95 | 0 | 0.025 |
Parameter | Definition | Range | Default | Adjusted Value | ||
---|---|---|---|---|---|---|
ADD | IHD | GD | ||||
CN2 | SCS curve number for moisture condition | 35 to 98 | Given by HRUs | 77 | 69 | 67 |
CH_N(2) | Manning’s “n” value for main channel | 0.01 to 0.3 | 0.04 | 0.05 | 0.05 | 0.05 |
CH_K(2) | Effective hydraulic conductivity in main channel alluvium (mm/h) | −0.01 to 500 | 0 | 0 | 2 | 0 |
ESCO | Soil evaporation compensation coefficient | 0 to 1 | 0.95 | 0.3 | 0.3 | 0.2 |
CANMX | Maximum canopy storage | 0 to 100 | 0 | 0 | 7 | 0 |
SOL_AWC | Available water capacity of the soil layer (mmH2O/mm soil) | 0 to 1 | Given by HRUs | 0.16 | 0.22 | 0.35 |
SOL_K | Saturated hydraulic conductivity (mm/h) | 0 to 2000 | Given by HRUs | 35.8 | 23.9 | 29.2 |
GW_DELAY | Delay time for aquifer recharge (days) | 0 to 500 | 31 | 200 | 200 | 200 |
GWQMN | Threshold water level in shallow aquifer for base flow (mm) | 0 to 5000 | 1000 | 500 | 3000 | 500 |
ALPHA_BF | Base flow recession constant | 0 to 1 | 0.048 | 0.2 | 0.7 | 0.048 |
RES_ESA | Reservoir surface area when the reservoir is filled to emergency spillway (ha) | - | - | 5617 | 2640 | - |
RES_EVOL | Volume of water needed to fill the reservoir to the emergency spillway (ha) | - | - | 124,800 | 595,000 | - |
RES_PSA | Reservoir surface area when the reservoir is filled to the principal spillway (104 m3) | - | - | 5384 | 2771 | - |
RES_PVOL | Volume of water needed to fill the reservoir to the principal spillway (104 m3) | - | - | 121,642 | 56,558 | - |
RES_VOL | Initial reservoir volume (104 m3) | - | - | 58,289.7 | 23,612.1 | - |
Year | ADD | IHD | GD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | RMSE (mm/Day) | PBIAS (%) | R2 | NSE | RMSE (mm/Day) | PBIAS (%) | R2 | NSE | RMSE (mm/Day) | PBIAS (%) | |
Cal. | 0.73 | 0.70 | 1.36 | −13.0 | 0.58 | 0.47 | 1.85 | −37.3 | 0.56 | 0.53 | 0.60 | −2.2 |
Val. | 0.75 | 0.72 | 1.95 | −17.0 | 0.65 | 0.57 | 3.32 | −25.7 | 0.46 | 0.42 | 1.33 | −3.2 |
Avg. | 0.74 | 0.71 | 1.62 | −14.9 | 0.61 | 0.51 | 2.51 | −32.1 | 0.52 | 0.48 | 0.92 | −2.7 |
Species | Survey | Total | RA (%) | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | ||||
Cyprinidae | Rhodeus uyekii | 1 | 1 | 0.5 | |||
Pungtungia herzi | 1 | 2 | 2 | 1 | 6 | 3.0 | |
Hemibarbus labeo | 2 | 1 | 3 | 1.5 | |||
Pseudogobio esocinus | 4 | 5 | 10 | 2 | 21 | 10.3 | |
Microphysogobio yaluensis | 1 | 1 | 2 | 1.0 | |||
Zacco platypus | 24 | 21 | 42 | 23 | 110 | 54.2 | |
Opsarichthys uncirostris | 1 | 2 | 3 | 1.5 | |||
Cypriniformes | Misgurnus anguillicaudatus | 1 | 1 | 0.5 | |||
Cobitis hankugensis | 3 | 20 | 11 | 34 | 16.7 | ||
Centropomidae | Coreoperca herzi | 1 | 1 | 0.5 | |||
Odontobutidae | Odontobutis platycephala | 1 | 2 | 3 | 1.5 | ||
Gobiidae | Rhinogobius brunneus | 7 | 2 | 9 | 18 | 8.9 | |
Number of species | 40 | 33 | 88 | 42 | 203 | ||
Number of individuals | 6 | 6 | 9 | 8 | 12 |
Dominant Species | Number of Individuals | HSI | ||
---|---|---|---|---|
Depth (m) | Velocity (m/s) | Substrate Size * | ||
Zacco platypus | 110 | 0.4~0.6 | 0.3~0.5 | 2.0~3.0 |
Hydraulic Factors | Mid-Range Flow (Q185) | Dry Conditions (Q275) | ||||
---|---|---|---|---|---|---|
Obs. (36.5 m3/s) | Sim. (36.0 m3/s) | Diff. | Cal. (23.8 m3/s) | Sim. (23.8 m3/s) | Diff. | |
Water surface elevation (m) | 60.35 | 60.23 | −0.12 | 60.11 | 60.11 | 0.0 |
Velocity (m/s) | 0.53 | 0.50 | −0.03 | 0.46 | 0.42 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-W.; Lee, J.-W.; Woo, S.-Y.; Lee, J.-J.; Hur, J.-W.; Kim, S.-J. Design of Ecological Flow (E-Flow) Considering Watershed Status Using Watershed and Physical Habitat Models. Water 2023, 15, 3267. https://doi.org/10.3390/w15183267
Kim Y-W, Lee J-W, Woo S-Y, Lee J-J, Hur J-W, Kim S-J. Design of Ecological Flow (E-Flow) Considering Watershed Status Using Watershed and Physical Habitat Models. Water. 2023; 15(18):3267. https://doi.org/10.3390/w15183267
Chicago/Turabian StyleKim, Yong-Won, Ji-Wan Lee, So-Young Woo, Jong-Jin Lee, Jun-Wook Hur, and Seong-Joon Kim. 2023. "Design of Ecological Flow (E-Flow) Considering Watershed Status Using Watershed and Physical Habitat Models" Water 15, no. 18: 3267. https://doi.org/10.3390/w15183267