Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Set-Up
2.3. Studied Wastewaters
2.3.1. Real Hospital Wastewater
2.3.2. Synthetic Hospital Wastewater
2.4. Experimental Design
2.5. Analytical Techniques
2.5.1. Pharmaceuticals
2.5.2. Other Parameters
2.5.3. Toxicity
2.5.4. Disinfection Tests
3. Results and Discussion
3.1. Optimisation of EO Treatment
3.2. Optimisation of O3 Treatment
3.3. Sequential and Simultaneous Combination of EO and O3
3.4. Validation with Real Hospital Wastewater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812. [Google Scholar] [CrossRef]
- Rapti, I.; Kosma, C.; Albanis, T.; Konstantinou, I. Solar photocatalytic degradation of inherent pharmaceutical residues in real hospital WWTP effluents using titanium dioxide on a CPC pilot scale reactor. Catal. Today 2022, in press. [Google Scholar] [CrossRef]
- Kooijman, G.; De Kreuk, M.K.; Houtman, C.; Van Lier, J.B. Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures. J. Water Process Eng. 2020, 34, 101161. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Lucas, D.; Barceló, D. Full-Scale Plants for Dedicated Treatment of Hospital Effluents. In Hospital Wastewaters. The Handbook of Environmental Chemistry; Verlicchi, P., Ed.; Springer: Cham, Switzerland, 2018; Volume 60. [Google Scholar] [CrossRef]
- Pinheiro, M.; Martins, I.; Raimundo, J.; Caetano, M.; Neuparth, T.; Santos, M.M. Stressors of emerging concern in deep-sea environments: Microplastics, pharmaceuticals, personal care products and deep-sea mining. Sci. Total Environ. 2023, 876, 162557. [Google Scholar] [CrossRef]
- Mackuľak, T.; Černanský, S.; Fehér, M.; Birošová, L.; Gál, M. Pharmaceuticals, drugs, and resistant microorganisms—Environmental impact on population health. Curr. Opin. Environ. Sci. Health 2019, 9, 40–48. [Google Scholar] [CrossRef]
- Available online: https://publications.europa.eu/en/publication-detail/-/publication/a90868de-d1f9-11e4-9de8-01aa75ed71a1 (accessed on 1 March 2019).
- Chávez, A.M.; Ribeiro, A.R.; Moreira, N.F.F.; Silva, A.M.T.; Rey, A.; Álvarez, P.M.; Beltrán, F.J. Removal of Organic Micropollutants from a Municipal Wastewater Secondary Effluent by UVA-LED Photocatalytic Ozonation. Catalysts 2019, 9, 472. [Google Scholar] [CrossRef]
- Bláha, M.; Grabicová, K.; Shaliutina, O.; Kubec, J.; Randák, T.; Zlábek, V.; Buric, M.; Veselý, L. Foraging behaviour of top predators mediated by pollution of psychoactive pharmaceuticals and effects on ecosystem stability. Sci. Total Environ. 2019, 662, 655–661. [Google Scholar] [CrossRef]
- Li, S.; Ondon, B.S.; Ho, S.H.; Li, F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Environ. Res. 2023, 219, 115132. [Google Scholar] [CrossRef]
- Ivanová, L.; Fáberová, M.; Mackulak, T.; Grabic, R.; Bodík, I. Estimation of amount of selected pharmaceuticals sorbed onto digested sludge from wastewater treatment plant Bratislava Petrzalka. Environ. Res. 2017, 155, 31–35. [Google Scholar] [CrossRef]
- Azzam, M.I.; Ezzat, S.M.; Othman, B.A. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci. 2021, 31, 109–121. [Google Scholar] [CrossRef]
- Duarte, A.C.; Rodrigues, S.; Afonso, A.; Nogueira, A.; Coutinho, P. Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals 2022, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Katagiri, M.; Sekizuka, T.; Kuroda, M.; Watanabe, M. Inactivation of Bacteria and Residual Antimicrobials in Hospital Wastewater by Ozone Treatment. Antibiotics 2022, 11, 862. [Google Scholar] [CrossRef] [PubMed]
- Checa, M.; Beltrán, F.J.; Rivas, F.J.; Cordero, E. On the role of a graphene oxide/titania catalyst, visible LED and ozone in removing mixtures of pharmaceutical contaminants from water and wastewater. Environ. Sci. Water Res. Technol. 2020, 6, 2352–2364. [Google Scholar] [CrossRef]
- Dao, K.C.; Yang, C.C.; Chen, K.F.; Tsai, Y.P. Recent Trends in Removal Pharmaceuticals and Personal Care Products by Electrochemical Oxidation and Combined Systems. Water 2020, 12, 1043. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Z.; Shen, C.; Xu, Y. Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Water Sci. Technol. 2020, 81, 2221–2231. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Mijaylova-Nacheva, P.; Avilés-Flores, M. Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere 2018, 192, 142–151. [Google Scholar] [CrossRef]
- Elkacmi, R.; Bennajah, M. Advanced oxidation technologies for the treatment and detoxification of olive mill wastewater: A general review. J. Water Reuse Desalination 2019, 9, 463–505. [Google Scholar] [CrossRef]
- Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B-Environ. 2020, 273, 119051. [Google Scholar] [CrossRef]
- Guo, H.; Niu, H.Y.; Wang, W.J.; Wu, Y.; Xiong, T.; Chen, Y.R.; Su, C.Q.; Niu, C.G. Schottky barrier height mediated Ti3C2 MXene based heterostructure for rapid photocatalytic water disinfection: Antibacterial efficiency and reaction mechanism. Sep. Purif. Technol. 2023, 312, 123412. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmad, J.; Flora, S.J.S. Application of advanced oxidation processes and toxicity assessment of transformation products. Environ. Res. 2018, 167, 223–233. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Toxicity changes of wastewater during various advanced oxidation processes treatment: An overview. J. Clean. Prod. 2021, 315, 128202. [Google Scholar] [CrossRef]
- Clària, J. Los nuevos antiinflamatorios. Med. Integral 2001, 38, 175–183. [Google Scholar]
- Bonilla, L.; Garcia, A. Fàrmacs, Així Ens Mediquem Els Catalans/Fármacos, Como Nos Medicamos Los Catalanes. 20 February 2022. Available online: https://interactius.ara.cat/es/asi-nos-medicamos-los-catalanes (accessed on 12 June 2023).
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Vatistas, N. Electrocatalytic Properties of BDD Anodes: Its Loosely Adsorbed Hydroxyl Radicals. Int. J. Electrochem. 2012, 2012, 507516. [Google Scholar] [CrossRef]
- Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical detection and removal of pharmaceuticals in waste Waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- García-Gómez, C.; Drogui, P.; Zaviska, F.; Seyhi, B.; Gortáres-Moroyoqui, P.; Buelna, G.; Neira-Sáenz, C.; Estrada-Alvarado, M.; Ulloa-Mercado, R.G. Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. J. Electroanal. Chem. 2014, 732, 1–10. [Google Scholar] [CrossRef]
- Guitaya, L.; Azaïs, A.; Zaviska, F.; Drogui, P.; Blais, J.F.; Gourich, B. Electrochemical Oxidation as Treatment for Contaminated Wastewaters by Carbamazepine: Process Optimization Through Response Surface Methodology. Water Air Soil Pollut. 2017, 228, 384. [Google Scholar] [CrossRef]
- Lourinho, G.; Brito, P.S.D. Electrolytic Treatment of Swine Wastewater: Recent Progress and Challenges. Waste Biomass 2021, 12, 553–576. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency, Office of Water Washington, D.C., 832-F-99-063 September 1999. Wastewater Technology Fact Sheet Ozone Disinfection. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/ozon.pdf (accessed on 15 April 2023).
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2012, 1248, 104–121. [Google Scholar] [CrossRef]
- Medel, A.; Treviño-Reséndez, J.; Brillas, E.; Meas, Y.; Sirés, I. Contribution of cathodic hydroxyl radical generation to the enhancement of electro-oxidation process for water decontamination. Electrochim. Acta 2020, 331, 135382. [Google Scholar] [CrossRef]
- Guzmán-Duque, F.L.; Palma-Goyes, R.E.; González, I.; Peñuela, G.; Torres-Palma, R.A. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. J. Hazard. Mater. 2014, 278, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Kul, S.; Boncukcuŏglu, R.; Erdem Yilmaz, A.; Ali Fil, B. Treatment of Olive MillWastewater with Electro-Oxidation Method. J. Electrochem. Soc. 2015, 162, G41–G47. [Google Scholar] [CrossRef]
- Nielsen, U.; Hastrup, C.; Klausen, M.M.; Pedersen, B.M.; Kristensen, G.H.; Jansen, J.L.; Bak, S.N.; Tuerk, J. Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2. Water Sci. Technol. 2013, 67, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Mussa, Z.H.; Al-Qaim, F.F. Electrochemical degradation of 10,11-dihydro-10-hydroxy carbamazepine as the main metabolite of carbamazepine. Environ. Sci. Pollut. Res. 2023, 30, 50457–50470. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, S.K.; Price, W.E.; Kang, J.; Fujioka, T.; Nghiem, L.D. Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalination Water Treat. 2016, 57, 29340–29351. [Google Scholar] [CrossRef]
- Illés, E.; Szabó, E.; Takács, E.; Wojnárovits, L.; Dombi, A.; Gajda-Schrantz, K. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity. Sci. Total Environ. 2014, 472, 178–184. [Google Scholar] [CrossRef]
- Kharel, S.; Stapf, M.; Miehe, U.; Ekblad, M.; Cimbritz, M.; Falås, P.; Nilsson, J.; Sehlén, R.; Bregendahl, J.; Bester, K. Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments. Sci. Total Environ. 2021, 759, 143989. [Google Scholar] [CrossRef]
- Adil, S.; Maryam, B.; Kim, E.J.; Dulova, E. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study. Environ. Res. 2020, 189, 109889. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Combination of ozonation and electrolysis process to enhance elimination of thirty structurally diverse pharmaceuticals in aqueous solution. J. Hazard. Mater. 2019, 368, 281–291. [Google Scholar] [CrossRef]
- Bergmann, M.H. Electrochemical disinfection–State of the art and tendencies. Curr. Opin. Electrochem. 2021, 28, 100694. [Google Scholar] [CrossRef]
- Sanchis, S.; Gali, D.; Salab, V.; Gomez, P.; Pinedo, J.; Donato, J.; Berlanga, J.G.; Garcia-Montaño, J. Advanced hybrid electro-oxidation & O3 technology for water reuse in the fruit and vegetable process industry. Water Sci. Technol. 2021, 84, 1159. [Google Scholar] [CrossRef] [PubMed]
- Mir-Tutusaus, J.A.; Jaén-Gil, A.; Barceló, D.; Buttiglieri, G.; Gonzalez-Olmos, R.; Rodriguez-Mozaz, S.; Caminal, G.; Sarrà, M. Prospects on coupling UV/H2O2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. Sci. Total Environ. 2021, 773, 145374. [Google Scholar] [CrossRef] [PubMed]
- Thalla, A.K.; Vannarath, A.S. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ. Monit. Assess. 2020, 192, 193. [Google Scholar] [CrossRef]
- Kosjek, T.; Andersen, H.R.; Kompare, B.; Ledin, A.; Heath, E. Fate of Carbamazepine during Water Treatment. Environ. Sci. Technol. 2009, 43, 6256–6261. [Google Scholar] [CrossRef]
- Escolà Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR). Water Res. 2015, 83, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Falås, P.; Longrée, P.; la Cour Jansen, J.; Siegrist, H.; Hollender, J.; Joss, A. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Res. 2013, 47, 4498–4506. [Google Scholar] [CrossRef]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C.S. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef]
- Onesios, K.; Yu, J.; Bouwer, E. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation 2009, 20, 441–466. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010, 29, 79–89. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, Z.; Yan, H.; Xu, M.; Cao, K.F.; Mao, Y.; Chen, X.; Hu, H.Y. Identification of significant live bacterial community shifts in different reclaimed waters during ozone and chlorine disinfection. Sci. Total Environ. 2023, 896, 165199. [Google Scholar] [CrossRef]
- Can, W.; Yao-Kun, W.; Qing, Z.; Min, J. Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects. Chem. Eng. J. 2014, 243, 1–6. [Google Scholar] [CrossRef]
- Rathinavelu, S.; Divyapriya, G.; Joseph, A.; Nambi, I.M.; Muthukrishnan, A.B.; Jayaraman, G. Inactivation behavior and intracellular changes in Escherichia coli during electro-oxidation process using Ti/Sb–SnO2/PbO2 anode: Elucidation of the disinfection mechanism. Environ. Res. 2022, 210, 112749. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Qi, L.; Liu, G.; Zhang, Y.; Fan, Q.; Wang, H. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems. J. Environ. Sci. 2017, 55, 224–235. [Google Scholar] [CrossRef] [PubMed]
Parameter | Analytical Method | HWWTP | Discharge Limit * | |
---|---|---|---|---|
(Units) | Inlet | Outlet | ||
pH | Potentiometry | 6.96 ± 0.07 | 6.96 ± 0.09 | 5.5–9 |
TSS
(mg L−1) | UNE-EN 872:2005 | 216.22 ± 82.48 | 14.17 ± 3.63 | 25 |
BOD5 (mg O2 L−1) | SM 5210 B (APHA 1992) | 275.95 ± 106.24 | <30 | 6 |
COD
(mg O2 L−1) | UNE 77004:2002 | 643.67 ± 196.69 | 45.1 ± 17.64 *** | 30 |
BOD5/COD | 0.43 | - | ||
Turbidity
(NTU) | UNE-EN ISO 7027:2001 | 190.12 ± 67.05 | 7.88 ± 3.69 | - |
TOC
(mg C L−1) | UNE-EN 1484:1998 | 54.12 ± 12.1 | 11.89 ± 2.5 | - |
EC
(µS cm−1) | Conductometry | 1107.06 ± 43.88 | 761.56 ± 54.74 | 1000 |
Chlorides
(mg Cl− L−1) | IC | 150.63 ± 2.28 | 131.89 ± 18.09 | 200 |
Sulphates
(mg SO4−2 L−1) | IC | 33.79 ± 10.37 | 37.98 ± 8.87 | 250 |
Phosphates
(mg PO4−3 L−1) | IC | 9.83 ± 3.34 | 5.58 ± 3.84 *** | 0.7 |
Total phosphorus
(mg P L−1) | ICP-MS | 6.4–10 | 3.6–10 *** | 0.4 |
N-Nitrate
(mg N-NO3− L−1) | IC | <0.1 | 10.84 ± 10.53 | 50 |
N-Nitrite
(mg N-NO2− L−1) | IC | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.03 |
Total Iron
(mg Fe L−1) | ICP-MS | 1.25 ± 0.8 | 0.21 ± 0.022 | 2 |
Fluorides
(mg F− L−1) | IC | <0.1 | <0.1 | NCA-MA ** |
Elemental Analysis | HWWTP | ||
---|---|---|---|
(Units) | Influent | Effluent | Discharge Limit * |
B (mg L−1) | <1 | <1 | 2 |
Al (mg L−1) | 1.3 ± 1.08 | 1.09 ± 1.09 ** | 1 |
P (mg L−1) | <10 | <10 | 10 |
Cr IV (mg L−1) | <0.02 | <0.02 | 0.2 |
Mn (mg L−1) | 0.03 ± 0.017 | 0.02 ± 0.007 | 1 |
Fe (mg L−1) | 1.25 ± 0.8 | 0.21 ± 0.02 | 2 |
Ni (mg L−1) | <0.01 | <0.01 | 2 |
Cu (mg L−1) | <0.05 | <0.05 | 0.2 |
Zn (mg L−1) | <0.05 | 0.3 ± 0.3 | 3 |
As (mg L−1) | <0.5 | <0.5 | 0.5 |
Se (mg L−1) | <0.3 | <0.3 | 0.03 |
Cd (mg L−1) | <0.05 | <0.05 | 0.1 |
Sn (mg L−1) | <0.02 | <0.02 | 10 |
Ba (mg L−1) | 0.02 ± 0.02 | 0.15 ± 0.11 | 1 |
Hg (mg L−1) | <0.01 | <0.01 | 0.05 |
Pb (mg L−1) | <0.1 | <0.1 | 0.2 |
EO Optimisation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Anode | Cathode | Voltage | Recirculation Flowrate | [C0] | Contaminant | T | tR | D | Vt | Electrolyte | |
ID EXP. | (V) | (L min−1) | (mg L−1) | °C | Min | mm | L | ||||
Effect of the cathode (model contaminant: CBZ) | |||||||||||
E1 | BDD | Stainless steel | 10 | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | // |
E2 | BDD | Pt | 10 | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | |
Effect of voltage (model contaminant: CBZ) | |||||||||||
E3 | BDD | optimal | 10 | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | // |
E4 | BDD | optimal | 20 | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | // |
E5 | BDD | optimal | 40 | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | // |
Validation of the operational conditions for the removal of selected pharmaceuticals | |||||||||||
E6 | BDD | optimal | optimal | 1 | 1 | LZP | 25 | 120 | 6 | 1 | // |
E7 | BDD | optimal | optimal | 1 | 1 | KTP | 25 | 120 | 6 | 1 | // |
E8 | BDD | optimal | optimal | 1 | 1 | E-CBZ | 25 | 120 | 6 | 1 | // |
E9 | BDD | optimal | optimal | 1 | 1 each | MIXTURE | 25 | 120 | 6 | 1 | // |
Effect of electrolytes | |||||||||||
E10 | BDD | optimal | optimal | 1 | 1 | CBZ | 25 | 120 | 6 | 1 | MgSO4 |
E11 | BDD | optimal | optimal | 1 | 1 | LZP | 25 | 120 | 6 | 1 | Na2SO4 |
E12 | BDD | optimal | optimal | 1 | 1 | LZP | 25 | 120 | 6 | 1 | K2SO4 |
O3 Optimisation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Feed Source | Gas Pressure | QR | QA | O3 Production Rate | Recirculation Flowrate | [C0] | Contaminant | T | tR | Vt | |
ID EXP | (Bar) | (L min−1) | (L min−1) | (g h−1) | (L min−1) | (mg L−1) | °C | Min | L | ||
E13 | AIR | 0.5–1 | 0.5→3 | 2 | 5 | 0 | 1 | CBZ | 25 | 120 | 1 |
E14 | O2 | 0.5–1 | 3 | 2 | 5 | 0 | 1 | CBZ | 25 | 120 | 1 |
E15 | O2 | 0.5–1 | 1.5 | 2 | 5 | 0 | 1 | CBZ | 25 | 120 | 1 |
E16 | O2 | 0.5–1 | 1.5 | 2 | 5 | 0 | 1 | LZP | 25 | 120 | 1 |
E17 | O2 | 0.5–1 | 1.5→3 | 2 | 5 | 0 | 1 | E-CBZ | 25 | 120 | 1 |
E18 | O2 | 0.5–1 | 3 | 2 | 5 | 0 | 1 | KTP | 25 | 120 | 1 |
E19 | O2 | 0.5–1 | 3 | 2 | 5 | 0 | 1 each | MIXTURE | 25 | 120 | 1 |
Parameter | |
---|---|
Column and pre-column | Thermo Scientific™ Dionex™ IonPac™ AG11 and AS11 |
Flow | 1 mL min−1 |
Injection volume | 25 µL |
Mobile phase and gradient | A. Ultrapure water/B. NaOH 100 mM |
0–15 min: 90% A and 10% B | |
5–35 min: Gradient 10% B to 50% B | |
Detection | Conductimetric detector |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audino, F.; Arboleda, J.; Petrovic, M.; Cudinach, R.G.; Pérez, S.S. Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment. Water 2023, 15, 3180. https://doi.org/10.3390/w15183180
Audino F, Arboleda J, Petrovic M, Cudinach RG, Pérez SS. Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment. Water. 2023; 15(18):3180. https://doi.org/10.3390/w15183180
Chicago/Turabian StyleAudino, Francesca, Judith Arboleda, Mira Petrovic, Ricard García Cudinach, and Sonia Sanchis Pérez. 2023. "Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment" Water 15, no. 18: 3180. https://doi.org/10.3390/w15183180