Potential Toxic-Element Pollution in Surface Water and Its Implications for Aquatic and Human Health: Source–Pathway–Receptor Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Applying the SPR Model to the Sampling Sites in the MLM Area as a Risk Assessment Framework to Assess the Potential Risk of Pollution on Aquatic Organisms and Human Health
2.3. Water Sampling and Water Property Management
3. Data Analysis
3.1. Statistical Analysis of Water Quality Measurements
3.2. Pollution Indices
3.3. Determination of Quality Assurance and Quality Control
4. Results
4.1. Physical Water-Quality Properties
4.2. Potential Toxic Elements
4.3. Sources of Contamination of Potentially Toxic Elements in Surface Water
4.4. Pollution Indices
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
As | Arsenic |
AWQUS | Aquatic Water-Quality for Urban Streams |
Ca | Calcium |
CCME | Canadian Council of the Ministers of the Environment |
Cd | Cadmium |
Co | Cobalt |
Cr | Chromium |
Cu | Copper |
DO | Dissolved oxygen |
DWAF | Department of Water Affairs and Forestry |
EC | Electrical conductivity |
Fe | Iron |
Hg | Mercury |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
MLM | Matjhabeng Local Municipality |
Mg | Magnesium |
Mn | Manganese |
NIPI | Nemerow Integrated Pollution Index |
Pb | Lead |
PC | Principal components |
PCA | Principal component analysis |
PTE | Potentially toxic elements |
PI | Single-Factor Pollution Index |
SPR | Source–pathway–receptor |
References
- Akhtar, N.; Ishak, M.I.S.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Bessah, E.; Raji, A.O.; Taiwo, O.J.; Agodzo, S.K.; Ololade, O.O.; Strapasson, A.; Donkor, E. Assessment of Surface Waters and Pollution Impacts in Southern Ghana. Hydrol. Res. 2021, 52, 1423–1435. [Google Scholar] [CrossRef]
- Roșca, O.M.; Dippong, T.; Marian, M.; Mihali, C.; Mihalescu, L.; Hoaghia, M.; Jelea, M. Impact of Anthropogenic Activities on Water Quality Parameters of Glacial Lakes from Rodnei Mountains, Romania. Environ. Res. 2020, 182, 109136. [Google Scholar] [CrossRef] [PubMed]
- Dusengemungu, L.; Mubemba, B.; Gwanama, C. Evaluation of Heavy Metal Contamination in Copper Mine Tailing Soils of Kitwe and Mufulira, Zambia, for Reclamation Prospects. Sci. Rep. 2022, 12, 11283. [Google Scholar] [CrossRef]
- Hao, Q.; Jiang, C. Heavy Metal Concentrations in Soils and Plants in Rongxi Manganese Mine of Chongqing, Southwest of China. Acta Ecol. Sin. 2015, 35, 46–51. [Google Scholar] [CrossRef]
- Luo, G.; Han, Z.; Xiong, J.; He, Y.; Liao, J.; Wu, P. Heavy Metal Pollution and Ecological Risk Assessment of Tailings in the Qinglong Dachang Antimony Mine, China. Environ. Sci. Pollut. Res. 2020, 28, 33491–33504. [Google Scholar] [CrossRef]
- Bae, D.-Y.; Kumar, H.K.; Han, J.-H.; Kim, J.-Y.; Kim, K.-W.; Kwon, Y.-H.; An, K.-G. Integrative Ecological Health Assessments of an Acid Mine Stream and in situ Pilot Tests for Wastewater Treatments. Ecol. Eng. 2010, 36, 653–663. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J.L. Heavy Metal Contamination from Mining Sites in South Morocco: 1. Use of a Biotest to Assess Metal Toxicity of Tailings and Soils. Chemosphere 2006, 63, 802–810. [Google Scholar] [CrossRef]
- Djebbi, C.; Chaabani, F.; Font, O.; Queralt, I.; Querol, X. Atmospheric Dust Deposition on Soils Around an Abandoned Fluorite Mine (Hammam Zriba, NE Tunisia). Environ. Res. 2017, 158, 153–166. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Wang, Y.; Zhuang, D. Spatial Characteristics of Heavy Metal Pollution and the Potential Ecological Risk of a Typical Mining Area: A Case Study in China. Process Saf. Environ. Prot. 2018, 113, 204–219. [Google Scholar] [CrossRef]
- Wahl, J.J.; Maboeta, M.S.; Eijsackers, H.J.P.; Van Rensburg, L. Soil Ecological Risk Assessments of Selected South African Soils and Derivation of Soil Quality Standards. Suid-Afrik. Tydskr. Nat. Tegnol. S. Afr. J. Sci. Tech. 2013, 32, a830. [Google Scholar] [CrossRef]
- Bowker, L.N.; Chambers, D.M. In the dark shadows of the supercycle tailings failure risk & public liability reach all-time highs. Environments 2017, 4, 75. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Oboni, F.; Oboni, C. Tailings Facility Failures in 2014 and an Update on Failure Statistics. In Proceedings of the Proceedings Tailings and Mine Waste 2015, Vancouver, BC, Canada, 26–28 October 2015; pp. 25–28. Available online: https://www.riskope.com/wp-content/uploads/2015/10/Tailings-Facility-Failures-in-2014-and-an-Update-on-Failure-Statistics.pdf (accessed on 26 August 2022).
- Chryss, A.; Fourie, A.B.; Monch, A.; Nairn, D.; Seddon, K.D. Towards an Integrated Approach to Tailings Management. J. S. Afr. Inst. Min. Metal. 2012, 112, 965–969. [Google Scholar] [CrossRef]
- Glotov, V.E.; Chlachula, J.; Glotova, L.P.; Little, E. Causes and Environmental Impact of the Gold-Tailings Dam Failure at Karamken, the Russian Far East. Eng. Geol. 2018, 245, 236–247. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Miller, J.R.; Lechler, P.J. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. J. Geochem. Explor. 2001, 72, 229–250. [Google Scholar] [CrossRef]
- Islam, K.; Vilaysouk, X.; Murakami, S. Integrating Remote Sensing and Life Cycle Assessment to Quantify the Environmental Impacts of Copper-Silver-Gold Mining: A Case Study from Laos. Resour. Conser. Recycl. 2020, 154, 104630. [Google Scholar] [CrossRef]
- Lin, S.-Q.; Wang, G.-J.; Liu, W.-L.; Zhao, B.; Shen, Y.-M.; Wang, M.-L.; Li, X.-S. Regional Distribution and Causes of Global Mine Tailings Dam Failures. Metals 2022, 12, 905. [Google Scholar] [CrossRef]
- Ngure, V.; Davies, T.; Kinuthia, G.; Sitati, N.; Shisia, S.; Oyoo-Okoth, E. Concentration Levels of Potentially Harmful Elements from Gold Mining in Lake Victoria Region, Kenya: Environmental and Health Implications. J. Geochem. Explor. 2014, 144, 511–516. [Google Scholar] [CrossRef]
- Xu, D.-M.; Zhan, C.-L.; Liu, H.-X.; Lin, H.-Z. A Critical Review on Environmental Implications, Recycling Strategies, and Ecological Remediation for Mine Tailings. Environ. Sci. Pollut. Res. 2019, 26, 35657–35669. [Google Scholar] [CrossRef]
- Mehta, N.; Cocerva, T.; Cipullo, S.; Padoan, E.; Dino, G.A.; Ajmone-Marsan, F.; Cox, S.F.; Coulon, F.; De Luca, D.A. Linking Oral Bioaccessibility and Solid Phase Distribution of Potentially Toxic Elements in Extractive Waste and Soil from an Abandoned Mine Site: Case Study in Campello Monti, NW Italy. Sci. Total Environ. 2019, 651, 2799–2810. [Google Scholar] [CrossRef]
- Boente, C.; Martin-Méndez, I.; Bel-Lán, A.; Gallego, J.R. A Novel and Synergistic Geostatistical Approach to Identify Sources and Cores of Potentially Toxic Elements in Soils: An Application in the Region of Cantabria (Northern Spain). J. Geochem. Explor. 2020, 208, 106397. [Google Scholar] [CrossRef]
- Damian, G.; András, P.; Damian, F.; Turisová, I.; Iepure, G. The Role of Organo-Zeolitic Material in Supporting Phytoremediation of a Copper Mining Waste Dump. Int. J. Phytoremediation 2018, 20, 1307–1316. [Google Scholar] [CrossRef]
- Darko, G.; Boakye, K.O.; Nkansah, M.A.; Gyamfi, O.; Ansah, E.; Yevugah, L.L.; Acheampong, A.; Dodd, M. Human Health Risk and Bioaccessibility of Toxic Metals in Topsoils from Gbani Mining Community in Ghana. J. Health Pollut. 2019, 9, 190602. [Google Scholar] [CrossRef] [PubMed]
- Delil, A.D.; Köleli, N. Investigation of a Combined Continuous Flow System for the Removal of Pb and Cd from Heavily Contaminated Soil. Chemosphere 2019, 229, 181–187. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.R.; da Silva, F.R.; de Souza, C.T.; Niekraszewicz, L.; Dias, J.F.; Premoli, S.; Corrêa, D.S.; do Couto Soares, M.; Marroni, N.P.; Morgam-Martins, M.I.; et al. Evaluation of the Genotoxic Potential of Soil Contaminated with Mineral Coal Tailings on Snail Helix aspersa. Chemosphere 2015, 139, 512–517. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Machaba, H.I.; Ogombe, H.S.; Odiyo, J.O. Evaluation of Contamination of Soil by Trace Metals from Dairy Wastewater in Limpopo Province, South Africa. Pharma Chem. 2016, 8, 16–24. [Google Scholar]
- Karlsson, T.; Räisänen, M.L.; Lehtonen, M.; Alakangas, L. Comparison of Static and Mineralogical ARD Prediction Methods in the Nordic Environment. Environ. Monit. Assess. 2018, 190, 719. [Google Scholar] [CrossRef]
- Kasemodel, M.C.; Papa, T.B.R.; Sígolo, J.B.; Rodrigues, V.G.S. Assessment of the Mobility, Bioaccessibility, and ecological risk of Pb and Zn on a Dirt Road Located in a Former Mining Area—Ribeira Valley—Brazil. Environ. Monit. Assess. 2019, 191, 101. [Google Scholar] [CrossRef]
- Kaupilla, P.M.; Tarvainen, T. Improving the Environmental Properties, Utilisation and Long-Term Prediction of Mining Wastes. Geol. Surv. Finl. Bull. 2018, 408, 1–111. [Google Scholar] [CrossRef]
- Khelifi, F.; Besser, H.; Ayadi, Y.; Liu, G.; Yousaf, B.; Harabi, S.; Bedoui, S.; Zighmi, K.; Hamed, Y. Evaluation of Potentially Toxic Elements (PTEs) Vertical Distribution in Sediments of Gafsa—Metlaoui Mining Basin (Southwestern Tunisia) Using Geochemical and Multivariate Statistical Analysis Approaches. Environ. Earth Sci. 2019, 78, 53. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Cosma, P.; Rizzi, V.; Race, M. Evaluation of the Hydraulic and Hydrodynamic Parameters Influencing Photo-Catalytic Degradation of Bio-Persistent Pollutants in a Pilot Plant. Chem. Eng. Commun. 2019, 206, 1286–1296. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; Vietro, N.D. Thermodynamic and Kinetic Investigation of Heavy Metals Sorption in Packed Bed Columns by Recycled Lignocellulosic Materials from Olive Oil Production. Chem. Eng. Commun. 2019, 206, 1715–1730. [Google Scholar] [CrossRef]
- Väänänen, K.; Kauppila, T.; Mäkinen, J.; Leppänen, M.T.; Lyytikäinen, M.; Akkanen, J. Ecological Risk Assessment of Boreal Sediments Affected by Metal Mining: Metal Geochemistry, Seasonality, and Comparison of Several Risk Assessment Methods. Integr. Environ. Assess. Manag. 2016, 12, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Tsou, M.-C.; Liao, H.-T.; Hseu, Z.-Y.; Dang, W.; Hsi, H.-C.; Chien, L.-C. Influence of Soil Properties on the Bioaccessibility of Cr and Ni in Geologic Serpentine and Anthropogenically Contaminated Non-Serpentine Soils in Taiwan. Sci. Total Environ. 2020, 714, 136761. [Google Scholar] [CrossRef]
- Yang, S.; Li, P.; Liu, J.; Bi, X.; Ning, Y.; Wang, S.; Wang, P. Profiles, Source Identification and Health Risks of Potentially Toxic Metals in Pyrotechnic-Related Road Dust During Chinese New Year. Ecotoxicol. Environ. Saf. 2019, 184, 109604. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Ricciarini, M.I.; Selvaggi, R.; Cappelletti, D. Heavy Metals Bioaccumulation in Selected Tissues of Red Swamp Crayfish: An Easy Tool for Monitoring Environmental Contamination Levels. Sci. Total Environ. 2016, 559, 339–346. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Myburgh, J.G.; Ashton, P.J.; Coetzee, J.J.; Botha, A.M. Bioaccumulation of Aluminium and Iron in the Food Chain of Lake Loskop, South Africa. Ecotoxicol. Environ. Saf. 2012, 75, 134–141. [Google Scholar] [CrossRef]
- Albert, S.; Kvennefors, C.; Jacob, K.; Kera, J.; Grinham, A. Environmental Change in a Modified Catchment Downstream of a Gold Mine, Solomon Islands. Environ. Pollut. 2017, 231, 942–953. [Google Scholar] [CrossRef]
- Gao, Z. Evaluation of Heavy Metal Pollution and its Ecological Risk in One River Reach of a Gold Mine in Inner Mongolia, Northern China. Int. Biodeterior. Biodegrad. 2018, 128, 94–99. [Google Scholar] [CrossRef]
- Bouzekri, S.; El Fadili, H.; El Hachimi, M.L.; El Mahi, M.; Lotfi, E.M. Assessment of Trace Metals Contamination in Sediment and Surface Water of Quarry Lakes from the Abandoned Pb Mine Zaida, High Moulouya-Morocco. Environ. Dev. Sustain. 2020, 22, 7013–7031. [Google Scholar] [CrossRef]
- Rakotondrabe, F.; Ngoupayou, J.R.N.; Mfonka, Z.; Rasolomanana, E.H.; Abolo, A.J.N.; Ako, A.A. Water Quality Assessment in the Bétaré-Oya Gold Mining Area (East-Cameroon): Multivariate Statistical Analysis Approach. Sci. Total Environ. 2018, 610–611, 831–844. [Google Scholar] [CrossRef]
- Fisheries and Oceans Canada. Practitioners Guide to the Risk Management Framework for DFO Habitat Management Staff, Version 1.0. Habitat Management Program, Fisheries and Oceans Canada. 2013. Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/343443.pdf (accessed on 30 June 2023).
- Ballesteros, C.; Jiménez, J.A.; Viavattene, C. A Multi-Component Flood Risk Assessment in the Maresme Coast (NW Mediterranean). Nat. Hazards 2018, 90, 265–292. [Google Scholar] [CrossRef]
- Holdgate, M.W. A Perspective of Environmental Pollution; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Waldschläger, K.; Lechthaler, S.; Stauch, G.; Schüttrumpf, H. The Way of Microplastics Through the Environment—Application of the Source-Pathway-Receptor Model (Review). Sci. Total Environ. 2020, 713, 136584. [Google Scholar] [CrossRef] [PubMed]
- Wind Finder. Wind and Weather Forecast. 2018. Available online: https://www.windfinder.com/forecast/welkom (accessed on 26 August 2022).
- Water Research Commission. Quality of Domestic Water Supplies; Volume 2: Sampling Guide; Water Research Commission: Pretoria, South Africa, 2003; Available online: http://www.wrc.org.za/wp-content/uploads/mdocs/TT-117-99.pdf (accessed on 30 June 2023).
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S.K. Monitoring and Analysis of Selenium as an Emerging Contaminant in Mining Industry: A Critical Review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef] [PubMed]
- Kisten, K.; Gounden, D.; Moodley, R.; Jonnalagadda, S.B. Elemental distribution and uptake by watercress (Nasturtium aquaticum) as a function of water quality. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2015, 50, 439–447. [Google Scholar] [CrossRef]
- IBM SPSS Statistics for Windows; Version 21. IBM SPSS Statistics for Windows, Version 21.0; IBM Corp.: Armonk, NY, USA, 2012.
- Wu, J.; Teng, Y.; Lu, S.; Wang, Y.; Jiao, X. Evaluation of Soil Contamination Indices in a Mining Area of Jiangxi, China. PLoS ONE 2014, 9, e112917. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council of Ministers of the Environment. Canadian Environmental Water Quality Guidelines: Water—Aquatic Life. Publication No. 1299. 2023. Available online: https://ccme.ca/en/resources/water-aquatic-life (accessed on 30 June 2023).
- Belle, G.; Fossey, A.; Esterhuizen, L. Use of Multiple Indicators to Assess the Pollution Condition of Urban Streams: A Case Study of Bloemspruit, Free State Province, South Africa. Water Environ. J. 2020, 34, 93–105. [Google Scholar] [CrossRef]
- Department of Water Affairs and Forestry. South African Water Quality Guidelines. Volume 5: Agricultural Use: Livestock Watering, 2nd ed.; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. Available online: https://www.dws.gov.za/iwqs/wq_guide/edited/Pol_saWQguideFRESH_vol5_Livestockwatering.pdf (accessed on 28 June 2023).
- Department of Water Affairs and Forestry. South African Water Quality Guidelines. Volume 7: Aquatic Ecosystems, 2nd ed.; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. Available online: https://www.dws.gov.za/iwqs/wq_guide/edited/Pol_saWQguideFRESH_vol7_Aquaticecosystems.pdf (accessed on 28 June 2023).
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Qin, H. Bioconcentration and Translocation of Heavy Metals in the Soil-Plants System in Machangqing Copper Mine, Yunnan Province, China. J. Geochemic. Explor. 2019, 200, 159–166. [Google Scholar] [CrossRef]
- Zhao, K.; Fu, W.; Ye, Z.; Zhang, C. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China. Int. J. Environ. Res. Public Health 2015, 12, 1577–1594. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yang, M.; Mao, R.; Shao, H. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China. Sci. World J. 2014, 2014, 517020. [Google Scholar] [CrossRef] [PubMed]
- Department of Water Affairs and Forestry. South African Water Quality Guidelines. Volume 4: Agricultural Use: Irrigation, 2nd ed.; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. Available online: https://www.dws.gov.za/iwqs/wq_guide/Pol_saWQguideFRESHIrrigationvol4.pdf (accessed on 28 June 2023).
- Dey, M.; Akter, A.; Islam, S.; Dey, S.C.; Choudhury, T.R.; Fatema, K.J.; Begum, B.A. Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon 2021, 7, e08625. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gao, B.; Luo, X.; Jiao, J.; Qin, H.; Zhang, C.; Dong, Y. Health Risk Assessment of Heavy Metals in Surface Water Near a Uranium Tailing Pond in Jiangxi Province, South China. Sustainability 2018, 10, 1113. [Google Scholar] [CrossRef]
- Liang, Y.; Yi, X.; Dang, Z.; Wang, Q.; Luo, H.; Tang, J. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China. Int. J. Environ. Res. Public Health 2017, 14, 1557. [Google Scholar] [CrossRef]
- Mahlangeni, N.T.; Moodley, R.; Jonnalagadda, S.B. Heavy metal distribution in Laportea peduncularis and growth soil from the eastern parts of KwaZulu-Natal, South Africa. Environ. Monit. Assess. 2016, 188, 76. [Google Scholar] [CrossRef]
- Kumari, B.; Kumar, V.; Sinha, A.K.; Ahsan, J.; Ghosh, A.K.; Wang, H.; DeBoeck, G. Toxicology of Arsenic in Fish and Aquatic Systems. Environ. Chem. Lett. 2017, 15, 43–64. [Google Scholar] [CrossRef]
- Shah, A.I. Heavy Metal Impact on Aquatic Life and Human Health—An Over View. In Proceedings of the IAIA17 Conference Proceedings, 37th Annual Conference of the International Association for Impact Assessment, Montréal, QC, Canada, 4–7 April 2017; Available online: https://conferences.iaia.org/2017/final-papers/Shah,20Alkesh%20-%20Heavy20Metal20Impacto20on20Aquatic20Life20and20Human20Health.pdf (accessed on 28 June 2023).
- Karthikeyan, P.; Marigoudar, S.R.; Nagarjuna, A.; Sharma, K.V. Toxicity Assessment of Cobalt and Selenium on Marine Diatoms and Copepods. Environ. Chem. Ecotoxicol. 2019, 1, 36–42. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Effect of Cobalt on the Environment and Living Organisms—A Review. Appl. Ecol. Environ. Res. 2019, 17, 11419–11449. [Google Scholar] [CrossRef]
- Sun, Z.; Gong, C.; Ren, J.; Zhang, X.; Wang, G.; Liu, Y.; Ren, J.; Zhao, X.; Yu, Q.; Wang, Y.; et al. Toxicity of Nickel and Cobalt in Japanese Flounder. Environ. Pollut. 2020, 263 Pt B, 114516. [Google Scholar] [CrossRef]
- Slaninova, A.; Machova, J.; Svobodova, Z. Fish Kill Caused by Aluminium and Iron Contamination in a Natural Pond used for Fish Rearing: A Case Report. Vet. Med. 2014, 59, 573–581. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Aquatic Life Criteria—Copper. 2017. US EPA. Available online: https://www.epa.gov/wqc/aquatic-life-criteria-copper (accessed on 30 June 2023).
- Hogstrand, C.; Wood, C.M. The Physiology and Toxicology of Zinc in Fish. In Toxicology of Aquatic Pollution: Physiological, Molecular and Cellular Approaches; Cambridge University Press: Cambridge, UK, 2010; pp. 61–84. [Google Scholar] [CrossRef]
- World Health Organization. A Global Overview of National Regulations and Standards for Drinking-Water Quality. Geneva. 2018. Available online: https://apps.who.int/iris/handle/10665/272345 (accessed on 28 June 2023).
- Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Copper and Copper Nanoparticles Toxicity and Their Impact on Basic Functions in the Body. Bratisl. Med. J. 2019, 120, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Lee, V.R. Cobalt Toxicity; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/36508548/ (accessed on 1 August 2022).
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
Sampling Point Identification | Lentic or Lotic System | Source (Water) Origin and Characteristics | Source of Potential Contamination | Pathway of Potential Contamination | Receptor of Potential Contamination through Source Use |
---|---|---|---|---|---|
S1 Toe seepage trench (28.01895 °S, 026.81354 °E) | Lotic | Toe seepage from gold tailing facility. | Tailing facility, Harmony mine, water treatment plant, and landfill site. | Groundwater, surface water, i.e., Sand River. A possible aerial dispersion. | Irrigation of crops, borehole use, communities, and terrestrial and aquatic ecosystems. |
S2 Dam (28.00199 °S, 026.68741°E) | Lentic | Wastewater effluent discharge point from the Theronia Wastewater treatment plant. Saline dam. | Wastewater effluent. | Into Flamingo Pan, surface water, and groundwater. A possible aerial dispersion. | Borehole use, communities (recreational use at Flamingo Pan), and terrestrial and aquatic ecosystems. |
S3 Flamingo Pan (27.99623 °S, 026.68496 °E) | Lentic | Saline natural dam. Wastewater effluent from the Theronia Wastewater treatment plant. Important bird biodiversity and conservation area. | Wastewater effluent. | From S2. Surface water, groundwater. A possible aerial dispersion. | Boreholes for domestic use, communities using the pan for recreational use, and terrestrial and aquatic ecosystems. |
S4 Flamingo Lake (27.99614 °S, 026.69608 °E) | Lentic | Saline natural. Dam used for recreation. Important bird area. Stormwater inflow from nearby residential areas. Inflow from nearby legacy gold tailing facility. Inflow and seepage from wastewater treatment facility. | Stormwater and legacy gold mining tailing seepage. | Ground and surface water. A possible aerial dispersion. | Community-consuming fish caught in the dam. Aquatic and terrestrial ecosystems. |
S5 Toe seepage dam (27.97519 °S, 026.67041 °E) | Lentic | Toe-seepage-containment dam from gold tailing facility. | Legacy gold tailing facility. | Surface and groundwater. Migrating into Ganspan and the Sand River. A possible aerial dispersion. | Boreholes, irrigation of crops, schools, and general spiritual and recreational activities of the inflow water sources. |
S6 Voëlpan | Lentic | Natural pan. Inflow from stormwater. | Nearby mining discard facilities and mining activities. | Surface and groundwater. A possible aerial dispersion. | Domestic water source, boreholes, and aquatic and terrestrial ecosystems |
S7 Witpan (28.00191 °S, 026.76025 °E) | Lentic | Natural pan. Inflow from stormwater, rainfed. | Nearby legacy and active mining activities, industrial activities, and stormwater inflow from surrounding areas. | Surface and groundwater. A possible aerial dispersion. | Domestic water source, borehole use, and aquatic and terrestrial ecosystems. |
S8 Sand River (28.11.755 °S, 026.71919 °E) | Lotic | Natural river system. | Legacy and active mining activities and tailings facilities; residential, agricultural, industrial, and wastewater effluent, including storm water. | Surface and groundwater. A possible aerial dispersion. | Domestic water source, boreholes, irrigation of crops, and agricultural water use. Terrestrial and aquatic ecosystems. Recreational and spiritual community use. |
S9 Dam (28.12449 °S, 026.78390 °E) | Lentic | Irrigation dam from the water treatment facility. | Contaminated river water. | Ground and surface water. A possible aerial dispersion. | Irrigation of crops. Borehole water use. |
S10 Vet River (28.12659 °S, 026.73249 °E) | Lotic | Natural river system. | Legacy and active mining activities and tailing facilities; residential, agricultural, industrial, and wastewater effluent, including stormwater. | Surface and groundwater. A possible aerial dispersion. | Domestic water source, boreholes, irrigation of crops, and agricultural water use. Terrestrial and aquatic ecosystems. Recreational and spiritual and community use. |
S11 Sand River (28.07710 °S, 026.45457 °E) | Lotic | Natural river system. | Legacy and active mining activities and tailing facilities; residential, agricultural, industrial, and wastewater effluent, including stormwater. | Surface and groundwater. A possible aerial dispersion. | Domestic water source, boreholes, irrigation of crops, and agricultural water use. Terrestrial and aquatic ecosystems. Recreational and spiritual and community use. |
S12 Irrigation Canal (28.15707 °S, 026.40068 °E) | Lotic | Artificially created irrigation canal. | Legacy and activity mining; residential, industrial, and agricultural footprint. | Surface and groundwater. A possible aerial dispersion. | Agricultural irrigation of crops. Aquatic and terrestrial ecosystems. |
S13 Vet River (28.14454 °S, 026.41808 °E) | Lotic | Natural river system. | Legacy and activity mining; residential, industrial, and agricultural footprint. | Surface and groundwater. A possible aerial dispersion. | Agricultural irrigation, borehole water use. Spiritual and recreational activities. Fish consumption by communities. |
S14 Rietspruit Dam (28.01989 °S, 026.99482 °E) | Lentic | Inflow from Rietspruit. | Legacy and activity mining; residential, industrial, and agricultural footprint. | Surface and groundwater. A possible aerial dispersion. | Agricultural irrigation, borehole water use. Spiritual and recreational activities. Fish consumption by communities. |
S15 Sand River (27.77143 °S, 026.64635 °E) | Lotic | Natural river system. | Legacy and activity mining; residential, industrial, and agricultural footprint. | Surface and groundwater. A possible aerial dispersion. | Agricultural irrigation, borehole water use. Spiritual and recreational activities. Fish consumption by communities. |
Properties | pH | Temperature (°C) | EC (µs/cm) | Turbidity (NTU) | DO (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Limit 1 | 6.5–9.0 | – | ≤1000 | – | 6.5–9.5 | |||||
Limit 2 | 5.5–9.0 | ≥5 ≤ 25 | ≤1000 | ≤5.6 | 6.5–9.5 | |||||
Site/ Season | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter |
S1 | 6.60 | 8.71 | 23.00 | 14.00 | 12.30 | 1036.00 * | 18.50 * | 9.51 * | 6.80 | 7.53 |
S2 | 7.69 | 8.85 | 23.70 | 14.50 | 7.60 | 1060.00 * | 45.50 * | 30.00 * | 4.00 * | 7.46 |
S3 | 9.25 * | 10.11 * | 25.50 * | 14.00 | 146.70 | 171.20 | 32.70 * | 23.90 * | 12.29 * | 8.88 |
S4 | 8.66 | 9.58 * | 24.30 | 14.40 | 32.10 | 28.30 | 16.40 * | 14.80 * | 7.32 | 9.11 |
S5 | 4.00 * | 4.32 * | 23.70 | 14.60 | 100.60 | 78.80 | 7.70 | 1.08 | 7.68 | 8.53 |
S6 | 8.18 | 8.64 | 24.60 | 14.20 | 200.00 | 241.00 | 168.00 * | 57.60 * | 18.92 * | 10.40 * |
S7 | 7.95 | 7.90 | 26.40 * | 13.40 | 16.40 | 1407.00 * | 24.70 * | 14.90 * | 6.78 | 4.07 * |
S8 | 7.63 | 8.80 | 24.60 | 12.60 | 11.70 | 650.00 | 5.77 * | 24.60 * | 6.07 * | 7.67 |
S9 | 8.03 | 8.63 | 24.00 | 12.60 | 1.50 | 1557.00 * | 175.00 * | 150.00 * | 7.37 | 9.32 |
S10 | 7.75 | 7.42 | 22.40 | 10.80 | 4.00 | 342.00 | 295.00 * | 90.80 * | 0.13 * | 7.33 |
S11 | 7.74 | 9.08 * | 24.60 | 12.83 | 13.10 | 1074.00 * | 9.06 * | 8.36 * | 6.28 * | 12.77 * |
S12 | 8.21 | 8.24 | 23.90 | 11.40 | 4.50 | 467.00 | 107.00 * | 52.10 * | 6.80 | 8.23 |
S13 | 7.71 | 8.03 | 24.50 | 13.00 | 14.30 | 1197.00 * | 5.59 * | 70.50 * | 0.74 * | 0.16 * |
S14 | 7.43 | 8.43 | 25.20 * | 12.60 | 3.70 | 167.40 | 78.40 * | 179.00 * | 0.16 * | 7.66 |
S15 | 8.43 | 9.12 * | 25.50 * | 10.40 | 25.20 | 1354.00 * | 22.80 * | 11.20 * | 14.24 * | 12.77 * |
Maximum | 9.25 | 10.11 | 26.40 | 14.60 | 200.00 | 1557.00 | 295.00 | 179.00 | 18.92 | 12.77 |
Minimum | 4.00 | 4.32 | 22.40 | 10.80 | 1.50 | 28.30 | 5.77 | 1.08 | 0.13 | 0.16 |
Mean | 7.68 | 8.39 | 24.39 | 13.02 | 39.58 | 722.04 | 67.47 | 49.22 | 7.04 | 8.13 |
Standard deviation | 1.18 | 1.31 | 1.02 | 1.33 | 60.27 | 539.84 | 84.63 | 53.62 | 5.12 | 3.08 |
Percentage compliance | 87 | 67 | 73 | 100 | 100 | 53 | 0 | 0.06 | 40 | 67 |
Student’s t tests of seasonal variation | ||||||||||
Mean difference | 0.71 | 11.19 | −682.46 | 18.25 | −1.09 | |||||
95% Confidence intervals | Lower | −1.02 | 10.45 | −999.12 | −20.31 | −3.43 | ||||
Upper | −0.36 | 12.29 | 366.90 | 56.81 | 1.25 | |||||
t | −4.39 | 26.52 | −4.62 | 1.01 | −0.99 | |||||
p value | 0.001 | 0.0001 | 0.0001 | 0.327 | 0.337 |
Metals | As | Co | Cu | Fe | Ni | Se | Zn | Ca | Mg | ||
---|---|---|---|---|---|---|---|---|---|---|---|
limit 1 | 0.05 | 1.8 | 6.4 | 0.3 | 150 | – | 0.3 | – | – | ||
limit 2 | ≤10 | – | ≤0.3 | – | – | ≤0.2 | – | – | – | ||
limit 3 | 0.1 | 0.05 | 0.2 | 5.0 | 0.2 | 0.02 | 1.0 | ||||
Sites | Names | Seasons | |||||||||
S1 | Toe Seepage Trench | Summer | 2.5 (0.12) * | 2.5 (0.12) * | ND | ND | ND | 35.0 (3.69) * | ND | 39,000 (16) | 13,520 (10) |
Winter | ND | ND | 1.5 (0.04) * | ND | ND | 11.3 (1.25) * | 0.07 (0.01) | 1603 (14) | 188 (5) | ||
S2 | Dam | Summer | 20.0 (0.69) * | 2.5 (0.36) * | ND | ND | ND | 42.5 (4.66) * | ND | 38,025 (18) | 11,485 (5) |
Winter | ND | ND | 1.5 (0.03) * | ND | ND | 28.5 (3.10) * | 0.3 (0.03) | 1896 (7) | 104 (3) | ||
S3 | Flamingo Pan | Summer | ND | 2.5 (0.54) * | ND | ND | ND | 20.0 (2.30) * | ND | 36,650 (15) | 66,875 (8) |
Winter | ND | ND | 1.5 (0.04) * | ND | ND | ND | ND | 1937 (6) | 4378 (11) | ||
S4 | Flamingo Lake | Summer | 17.5 (1.35) * | 2.5 (0.63) * | ND | ND | 4.6 (1.03) * | 30.0 (3.50) * | ND | 26,200 (13) | 23,017.5 (5) |
Winter | ND | ND | 1.5 (0.03) * | 2.7 (0.10) * | ND | ND | ND | 1078 (1) | 829 (8) | ||
S5 | Toe Seepage Dam | Summer | 0 (0) | 22.5 (1.99) * | 60.0 (9.82) * | ND | ND | 32.5 (4.02) * | 5.4 (1.50) * | 250,000 (23) | 125,600 (14) |
Winter | ND | 2.5 (0.10) * | 2.9 (0.15) * | ND | ND | 12.0 (1.07) * | 12.6 (0.73) * | 10,643 (29) | 3326 (11) | ||
S6 | Voëlpan | Summer | 15.0 (1.59) * | 30.0 (1.58) * | 5.0 (1.53) * | ND | ND | ND | ND | 277,500 (23) | 92,875 (14) |
Winter | ND | ND | 1.5 (0.02) * | 0.04 (0.01) * | ND | ND | ND | 16,567 (9) | 6296 (7) | ||
S7 | Witpan | Summer | 5.0 (1.02) * | 2.5 (0.36) * | 2.5 (1.08) * | ND | ND | 15.0 (1.23) * | ND | 34,675 (13) | 11,797 (10) |
Winter | ND | ND | 1.5 (0.07) * | ND | ND | 14.5 (0.52) * | 2.6 (0.53) * | 3311 (7) | 209 (3) | ||
S8 | Sand River | Summer | 0 (0) | 2.5 (0.78) * | 25.0 (2.06) * | ND | ND | ND | ND | 32,000 (16) | 12,985 (10) |
Winter | ND | ND | 1.5 (0.02) * | 7.1 (0.05) * | ND | ND | 0.03 (0.01) | 959 (6) | 119 (8) | ||
S9 | Dam | Summer | 2.5 (0.58) * | 25 (1.72) * | 30.0 (3.98) * | 2780.0 (6) * | ND | 47.5 (3.21) * | ND | 14,030 (11) | 4915 (6) |
Winter | ND | ND | 1.4 (0.02) * | 20.2 (3.97) * | ND | 11.0 (0.96) * | 0.7 (0.08) * | 189 (2) | ND | ||
S10 | Vet River | Summer | 5.0 (1.58) * | 2.5 (0.25) * | ND | 82.5 (3.00) * | ND | 42.5 (5.88) * | ND | 9890 (13) | 3985 (5) |
Winter | ND | ND | 1.45 (0.02) * | 15.4 (0.32) * | ND | 25.1 (0.50) * | 0.4 (0.02) * | 747 (4) | ND | ||
S11 | Sand River | Summer | ND | ND | 30.0 (4.00) * | ND | ND | ND | ND | 33,050 (13) | 10,780 (6) |
Winter | ND | ND | 1.46 (0.01) * | 3.2 (0.22) * | ND | ND | 0.5 (0.01) * | 1572 (7) | 311 (3) | ||
S12 | Irrigation Canal | Summer | 12.5 (1.02) * | 5.0 (1.00) * | ND | ND | ND | 25.0 (2.7) * | ND | 10,467.5 (13) | 3595 (8) |
Winter | ND | ND | 1.44 (0.01) * | 3.4 (0.53) * | ND | 15.6 (0.18) * | 0.6 (0.02) * | 1004 (3) | ND | ||
S13 | Vet River | Summer | 7.5 (0.54) * | 2.5 (1.04) * | ND | ND | ND | ND | ND | 44,000 (14) | 16,030 (7) |
Winter | ND | ND | 1.48 (0.03) * | 9.1 (0.01) * | ND | 12.9 (2.15) * | 0.2 (0.04) | 1508 (3) | 166 (3) | ||
S14 | Rietspruit Dam | Summer | 5.0 (0.23) * | 2.5 (0.06) * | ND | 1277.5 (5) * | ND | 27.5 (2.82) * | ND | 10,270 (12) | 4020 (3) |
Winter | ND | ND | 1.47 (0.04) * | 20.8 (3.28) * | ND | 24.7 (1.41) * | 2.5 (0.29) * | 1051 (5) | ND | ||
S15 | Sand River | Summer | 25.0 (1.07) * | 2.5 (0.09) * | ND | ND | ND | 20.1 (3.62) * | ND | 49,875 (14) | 32,100 (10) |
Winter | ND | ND | 1.49 (0.02) * | 5.6 (0.52) * | ND | ND | 0.4 (0.03) * | 1921 (8) | 616 (3) |
Potentially Harmful Elements | Mean | Mean Difference | 95% Confidence Interval of the Difference | t | p Value | ||
---|---|---|---|---|---|---|---|
Summer | Winter | Lower | Upper | ||||
As | 0.36 | 0.00 | 0.36 | 0.19 | 0.54 | 4.17 | 0.0001 |
Cd | −27.84 | 0.00 | −27.84 | −51.71 | −3.98 | −2.35 | 0.023 |
Pb | −0.53 | 0.00 | −0.53 | −0.77 | −0.29 | −4.46 | 0.0001 |
Co | 7.23 | 0.16 | 7.06 | −3.41 | 17.54 | 1.35 | 0.181 |
Cr | −0.40 | 0.00 | −0.40 | −0.59 | −0.22 | −4.38 | 0.0001 |
Cu | 0.12 | 1.60 | −1.48 | −1.62 | −1.33 | −20.04 | 0.0001 |
Fe | −19.51 | 5.85 | −25.36 | −45.08 | −5.65 | −2.59 | 0.01 |
Ni | 7.76 | 0.00 | 7.76 | −12.13 | 27.65 | 0.786 | 0.43 |
Se | 0.50 | 10.41 | −9.91 | −12.95 | −6.86 | −6.56 | 0.001 |
Zn | 9.21 | 1.43 | 7.78 | −18.12 | 33.69 | 0.60 | 0.54 |
Ca | 2837.64 | 3203.56 | −365.92 | −1 654.67 | 922.83 | −0.57 | 0.57 |
Mg | 1734.69 | 1107.27 | 627.42 | −17.20 | 1 272.04 | 1.96 | 0.05 |
Potentially Harmful Elements | Component | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
As | −0.219 | −0.587 | 0.075 | 0.663 |
Pb | −0.077 | 0.765 | −0.505 | 0.082 |
Co | 0.977 | −0.153 | 0.122 | −0.032 |
Cr | −0.102 | 0.952 | −0.240 | 0.020 |
Cu | 0.988 | −0.075 | 0.115 | −0.043 |
Fe | −0.137 | 0.790 | 0.374 | 0.009 |
Ni | 0.992 | −0.057 | 0.059 | −0.038 |
Se | 0.192 | −0.056 | 0.945 | −0.017 |
Zn | 0.994 | −0.027 | 0.070 | −0.034 |
Ca | 0.611 | −0.619 | −0.175 | 0.084 |
Mg | 0.032 | 0.145 | −0.060 | 0.940 |
Eigenvalues | 4.853 | 2.607 | 1.407 | 1.196 |
Percentage of total variance | 44.116 | 23.701 | 12.787 | 10.868 |
Percentage of cumulative variance | 44.116 | 67.816 | 80.603 | 91.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belle, G.; Schoeman, Y.; Oberholster, P. Potential Toxic-Element Pollution in Surface Water and Its Implications for Aquatic and Human Health: Source–Pathway–Receptor Model. Water 2023, 15, 3100. https://doi.org/10.3390/w15173100
Belle G, Schoeman Y, Oberholster P. Potential Toxic-Element Pollution in Surface Water and Its Implications for Aquatic and Human Health: Source–Pathway–Receptor Model. Water. 2023; 15(17):3100. https://doi.org/10.3390/w15173100
Chicago/Turabian StyleBelle, Gladys, Yolandi Schoeman, and Paul Oberholster. 2023. "Potential Toxic-Element Pollution in Surface Water and Its Implications for Aquatic and Human Health: Source–Pathway–Receptor Model" Water 15, no. 17: 3100. https://doi.org/10.3390/w15173100