The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed
Abstract
:1. Introduction
2. Study Area
2.1. Area Orientation
2.2. River System
3. Materials and Methods
3.1. General Procedure
3.2. Materials
3.2.1. Rainfall Data
3.2.2. Water Level Data
3.2.3. Topography Data
3.3. Modeling and Simulation
3.3.1. HEC-RAS Simulation and Flood Event Selection
3.3.2. Artificial Neural Network (ANN)
4. Results
4.1. Flood Inundation Height
4.2. Variable Correlation
4.3. Neural Network Model
4.4. Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Botzen, W.J.W.; Deschenes, O.; Sanders, M. The Economic Impacts of Natural Disasters: A Review of Models and Empirical Studies. Rev. Environ. Econ. Policy 2019, 13, 167–188. [Google Scholar] [CrossRef]
- Convertino, M.; Annis, A.; Nardi, F. Information-theoretic portfolio decision model for optimal flood management. Environ. Model. Softw. 2019, 119, 258–274. [Google Scholar] [CrossRef]
- Panahi, M.; Jaafari, A.; Shirzadi, A.; Shahabi, H.; Rahmati, O.; Omidvar, E.; Lee, S.; Bui, D.T. Deep learning neural networks for spatially explicit prediction of flash flood probability. Geosci. Front. 2021, 12, 101076. [Google Scholar] [CrossRef]
- Davenport, F.V.; Burke, M.; Diffenbaugh, N.S. Contribution of historical precipitation change to US flood damages. Proc. Natl. Acad. Sci. USA 2021, 118, e2017524118. [Google Scholar] [CrossRef] [PubMed]
- Jamali, B.; Bach, P.M.; Deletic, A. Rainwater harvesting for urban flood management—An integrated modelling framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef] [PubMed]
- Munoz, S.E.; Giosan, L.; Therrell, M.D.; Remo, J.W.F.; Shen, Z.; Sullivan, R.M.; Wiman, C.; O’donnell, M.; Donnelly, J.P. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 2018, 556, 95–98. [Google Scholar] [CrossRef]
- Chen, Y.; Syvitski, J.P.M.; Gao, S.; Overeem, I.; Kettner, A.J. Socio-economic Impacts on Flooding: A 4000-Year History of the Yellow River, China. AMBIO 2012, 41, 682–698. [Google Scholar] [CrossRef]
- Indonesian National Board for Disaster Management (BNPB). BNPB Verifikasi 5.402 Kejadian Bencana Sepanjang Tahun 2021-BNPB 2022. Available online: https://bnpb.go.id/Berita/Bnpb-Verifikasi-5-402-Kejadian-Bencana-Sepanjang-Tahun-20212022 (accessed on 14 August 2023).
- Rohmat, F.I.W.; Sa’Adi, Z.; Stamataki, I.; Kuntoro, A.A.; Farid, M.; Suwarman, R. Flood modeling and baseline study in urban and high population environment: A case study of Majalaya, Indonesia. Urban Clim. 2022, 46, 101332. [Google Scholar] [CrossRef]
- Junnaedhi, I.D.G.A.; Riawan, E.; Suwarman, R.; Hadi, T.W.; Lubis, A.; Trilaksono, N.J.; Rahayu, R.; Kombara, P.; Waskito, R.; Oktora, H.E.; et al. Majalaya Flood Early Warning System: A Community Based Approach. IOP Conf. Series Earth Environ. Sci. 2017, 71, 012013. [Google Scholar] [CrossRef]
- Schwertner, K.; Zlateva, P.; Velev, D. Digital technologies of industry 4.0 in management of natural disasters. In ACM International Conference Proceeding Series, Proceedings of the 2nd International Conference on E-Commerce, E-Business and E-Government, Hong Kong, China, 13–15 June 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Stamataki, I.; Shahid, S.; Zaher, M.; Yaseen, M.; Yusop, Z. Spatiotemporal Rainfall Projection in Majalaya basin, West Java, Indonesia under CMIP6 Scenarios. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Rohmat, F.I.W.; Stamataki, I.; Sa’adi, Z.; Fitriani, D. Flood analysis using HEC-RAS: The case study of Majalaya, Indonesia under the CMIP6 projection. EGU22 2022. [Google Scholar] [CrossRef]
- Irawan, M.F.; Hidayat, Y.; Tjahjono, B. Penilaian Bahaya dan Arahan Mitigasi Banjir di Cekungan Bandung. J. Ilmu Tanah dan Lingkung. 2018, 20, 1–6. [Google Scholar] [CrossRef]
- Jones, P. Formalizing the Informal: Understanding the Position of Informal Settlements and Slums in Sustainable Urbanization Policies and Strategies in Bandung, Indonesia. Sustainability 2017, 9, 1436. [Google Scholar] [CrossRef]
- Wen, Y.; Schuur, T.; Vergara, H.; Kuster, C. Effect of Precipitation Sampling Error on Flash Flood Monitoring and Prediction: Anticipating Operational Rapid-Update Polarimetric Weather Radars. J. Hydrometeorol. 2021, 22, 1913–1929. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. 2018, 558, 275–289. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Adler, R.F.; Kubota, T.; Ushio, T. Evaluation of GSMaP Precipitation Estimates over the Contiguous United States. J. Hydrometeorol. 2010, 11, 566–574. [Google Scholar] [CrossRef]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N.; et al. GSMaP Passive Microwave Precipitation Retrieval Algorithm: Algorithm Description and Validation. J. Meteorol. Soc. Jpn. 2009, 87A, 119–136. [Google Scholar] [CrossRef]
- Priyambodoho, B.A.; Kure, S.; Yagi, R.; Januriyadi, N.F. Flood inundation simulations based on GSMaP satellite rainfall data in Jakarta, Indonesia. Prog. Earth Planet. Sci. 2021, 8, 34. [Google Scholar] [CrossRef]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A.B.; Choy, S.; Sun, C. A Two-Step Approach to Blending GSMaP Satellite Rainfall Estimates with Gauge Observations over Australia. Remote Sens. 2022, 14, 1903. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Burnama, N.S.; Rohmat, F.I.W.; Farid, M.; Wijayasari, W. Utilization of quantile mapping method using cumulative distribution function (CDF) to calibrated satellite rainfall GSMaP in Majalaya watershed. IOP. Conf. Ser. Earth Environ. Sci. 2023, 1165, 012006. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Paz, S.M.; Willems, P. Uncovering the strengths and weaknesses of an ensemble of quantile mapping methods for downscaling precipitation change in Southern Africa. J. Hydrol. Reg. Stud. 2022, 41, 101104. [Google Scholar] [CrossRef]
- Farid, M.; Pratama, M.I.; Kuntoro, A.A.; Adityawan, M.B.; Rohmat, F.I.W.; Moe, I.R. Flood Prediction due to Land Cover Change in the Ciliwung River Basin. Int. J. Technol. 2022, 13, 356. [Google Scholar] [CrossRef]
- Garrote, J. Free Global DEMs and Flood Modelling—A Comparison Analysis for the January 2015 Flooding Event in Mocuba City (Mozambique). Water 2022, 14, 176. [Google Scholar] [CrossRef]
- Namara, W.G.; Damisse, T.A.; Tufa, F.G. Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 1449–1460. [Google Scholar] [CrossRef]
- Farid, M.; Mano, A.; Udo, K. Distributed flood model for urbanization assessment in a limited-gauged river basin. WIT Trans. Ecol. Environ. 2011, 146, 83–94. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.; Dwarakish, G. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; Rana, I.A.; Feldmeyer, D. The effect of spatial proximity to cities on rural vulnerability against flooding: An indicator based approach. Ecol. Indic. 2020, 118, 106704. [Google Scholar] [CrossRef]
- Hagen, J.S.; Cutler, A.; Trambauer, P.; Weerts, A.; Suarez, P.; Solomatine, D. Development and evaluation of flood forecasting models for forecast-based financing using a novel model suitability matrix. Prog. Disaster Sci. 2020, 6, 100076. [Google Scholar] [CrossRef]
- Tamiru, H.; Dinka, M.O. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. J. Hydrol. Reg. Stud. 2021, 36, 100855. [Google Scholar] [CrossRef]
- Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.-Y. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Barron, A. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 1993, 39, 930–945. [Google Scholar] [CrossRef]
- Cybenko, G.; Cybenkot, G. Approximation by superpositions of a sigmoidal function Approximation by Superpositions of a Sigmoidal Function*. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- De Ryck, T.; Lanthaler, S.; Mishra, S. On the approximation of functions by tanh neural networks. Neural Netw. 2021, 143, 732–750. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Prediction of storm surge and coastal inundation using Artificial Neural Network—A case study for 1999 Odisha Super Cyclone. Weather. Clim. Extremes 2019, 23, 100196. [Google Scholar] [CrossRef]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Wu, W.; Dandy, G.C.; Maier, H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw. 2014, 54, 108–127. [Google Scholar] [CrossRef]
- Nwanganga, F.; Chapple, M. Practical Machine Learning in R.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- O’Neill, E.; Brereton, F.; Shahumyan, H.; Clinch, J.P. The Impact of Perceived Flood Exposure on Flood-Risk Perception: The Role of Distance. Risk Anal. 2016, 36, 2158–2186. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rana, I.A.; Ali, A.; Najam, F.A. Flood risk perception and communication: The role of hazard proximity. J. Environ. Manag. 2022, 316, 115309. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Priscillia, S.; Schillaci, C.; Lipani, A. Flood susceptibility assessment using artificial neural networks in Indonesia. Artif. Intell. Geosci. 2021, 2, 215–222. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Desalegn, H.; Mulu, A. Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon 2021, 7, e05865. [Google Scholar] [CrossRef]
- Syariman, P.; Ginting, S. Peringatan Dini Banjir Berbasis Data Hidrologi Telemetri di DAS Citarum Hulu. J. Tek. Hidraul. 2011, 2, 254. [Google Scholar]
- Kardhana, H.; Valerian, J.R.; Rohmat, F.I.W.; Kusuma, M.S.B. Improving Jakarta’s Katulampa Barrage Extreme Water Level Prediction Using Satellite-Based Long Short-Term Memory (LSTM) Neural Networks. Water 2022, 14, 1469. [Google Scholar] [CrossRef]
- Kyselý, J.; Beranová, R. Climate-change effects on extreme precipitation in central Europe: Uncertainties of scenarios based on regional climate models. Theor. Appl. Clim. 2008, 95, 361–374. [Google Scholar] [CrossRef]
- Rosenzweig, B.R.; Cantis, P.H.; Kim, Y.; Cohn, A.; Grove, K.; Brock, J.; Yesuf, J.; Mistry, P.; Welty, C.; McPhearson, T.; et al. The Value of Urban Flood Modeling. Earth’s Futur. 2021, 9, e2020EF001739. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.C.; Sembiring, E.; Muntalif, B.S.; Suendo, V. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere 2019, 224, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Arifin, A.; Ramdhan, A.M.; Suwarman, R.; Irawan, D.E.; Hutasoit, L.M.; Puradimaja, D.J. Estimation of 3D hydraulic conductivity distribution of unconfined aquifer using the geostatistical method and its relation to water quality and flooding in Upper Citarum River. IOP Conf. Series: Mater. Sci. Eng. 2021, 1098, 052013. [Google Scholar] [CrossRef]
River | Area (km2) |
---|---|
Citangkurak | 1.29 |
Cipalemahan | 7.69 |
Cihampelas | 3.47 |
Cikaro | 30.95 |
Cisunggalah | 45.83 |
Citarum | 165.09 |
Total | 207 |
Data Name | Data Year | Source |
---|---|---|
Majalaya area DEM | 2018 | DEMNAS (Indonesian National DEM data) from BIG |
River bathymetry | 2018 | Primary survey data |
Flood event boundaries | 2018 | Crowdsourced data |
RBI land cover map | 2006 | BIG |
Satellite rainfall | 2014–2022 | JAXA (Japan Aerospace Exploration Agency) |
Rain gauge precipitation | 2014–2022 | BMKG (Indonesian Meteorology, Climatology, and Geophysics Agency) |
Citarum River discharge | 2017–2022 | BBWS Citarum (Citarum River Authority) |
No. | X (m) | Y (m) | Rainfall (Hourly) | Distance to Inflow (m) | Distance to River (m) | Elevation (m) | Inundation Height Prediction (m) |
---|---|---|---|---|---|---|---|
1 | 805,914.90 | 9,223,578.28 | 5.64 | 3044.16 | 14.66 | 662.15 | 0.83 |
2 | 806,487.38 | 9,222,003.97 | 6.87 | 1472.41 | 6.90 | 666.47 | 0.69 |
3 | 806,000.78 | 9,223,492.41 | 31.23 | 2959.83 | 37.49 | 662.44 | 0.80 |
4 | 805,829.03 | 9,219,799.95 | 4.50 | 169.87 | 883.42 | 675.69 | 0.75 |
5 | 805,628.67 | 9,219,599.58 | 9.33 | 438.76 | 621.37 | 676.03 | 0.30 |
6 | 804,455.09 | 9,218,855.36 | 4.73 | 891.40 | 480.27 | 672.05 | 2.66 |
7 | 804,340.60 | 9,220,143.43 | 47.84 | 1487.54 | 7.29 | 670.08 | 1.85 |
8 | 806,458.75 | 9,221,889.48 | 8.08 | 1360.26 | 91.94 | 666.00 | 0.96 |
9 | 806,258.39 | 9,222,175.72 | 7.83 | 1660.24 | 53.87 | 666.00 | 0.72 |
10 | 805,027.57 | 9,218,111.14 | 2.80 | 27.39 | 345.42 | 683.87 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burnama, N.S.; Rohmat, F.I.W.; Farid, M.; Kuntoro, A.A.; Kardhana, H.; Rohmat, F.I.W.; Wijayasari, W. The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed. Water 2023, 15, 3026. https://doi.org/10.3390/w15173026
Burnama NS, Rohmat FIW, Farid M, Kuntoro AA, Kardhana H, Rohmat FIW, Wijayasari W. The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed. Water. 2023; 15(17):3026. https://doi.org/10.3390/w15173026
Chicago/Turabian StyleBurnama, Nabila Siti, Faizal Immaddudin Wira Rohmat, Mohammad Farid, Arno Adi Kuntoro, Hadi Kardhana, Fauzan Ikhlas Wira Rohmat, and Winda Wijayasari. 2023. "The Utilization of Satellite Data and Machine Learning for Predicting the Inundation Height in the Majalaya Watershed" Water 15, no. 17: 3026. https://doi.org/10.3390/w15173026