Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Analytical Procedures
3. Results and Discussion
3.1. Heavy Metal Concentrations in Surface Waters
3.2. Heavy Metal Concentrations in Bottom Sediments
Related River (Country) | Analytical Method | Min–Max | Ref. | ||||
---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Ni | Cu | |||
Muchawka (Poland) | AAS | 14.4–21.3 | 9.8–13.4 | 0.1–0.8 | 2.3–8.4 | 0.7–5.2 | in study |
Liwiec (Poland) | AAS | 16.4–25.3 | 10.4–13.9 | 0.2–0.7 | 3.3–9.9 | 0.7–9.4 | |
Morawa (Czech Republic) | ICP-MS | 66–321 | 14–55 | 0.1–4.8 | n/a | 22–63 | [51] |
Odra (Poland) | ICP-MS/AAS | 333–2591 | 19–343 | 3–21.7 | 37–108 | 31–298 | [52] |
Słupia (Poland) | AAS | 14–96 | 6–244 | 0.1–0.7 | 3–14 | 2–45 | [53] |
Moji-Guacu (Brazil) | PIXE | 17–92 | 3–31 | n/a | 8–38 | 9–48 | [54] |
Tisza (Hungary) | ICP-MS | 130–570 | 18–304 | 0.2–3.7 | 64–88 | 40–137 | [55] |
Vistula (Poland) | ICP-MS | 180–860 | 28–122 | 1–8 | n/a | n/a | [56] |
Elba (Germany) | ICP-OES | 1356 | 40–172 | 3–6 | 30–90 | 62–174 | [57] |
Navasota (USA) | AAS | n/a | 18–30 | 0.2–0.4 | n/a | 16–22 | [58] |
Supraśl (Poland) | AAS | 10–67 | 3.5–35 | 0.4–1.1 | 5.4–18 | 0.8–16 | [59] |
Yellow River (China) | AAS | 58–93 | 29–37 | 217–393 | n/a | 20–55 | [60] |
Odra (Poland) | AAS | 3–35 | 1–2 | 0.6–0.99 | 7–23 | 2–28 | [61] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Skic, K.; Sokołowska, Z.; Boguta, P.; Skic, A. The effect of application of digestate and agro-food industry sludges on Dystric Cambisol porosity. PLoS ONE 2020, 15, e0238469. [Google Scholar] [CrossRef] [PubMed]
- Sirani, M.; Afzali, K.N.; Jahan, S.; Strezov, V.; Soleimani-Sardo, M. Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast. Iran. Sci. Rep. 2020, 10, 4775. [Google Scholar] [CrossRef] [Green Version]
- Szara, M.; Baran, A.; Klimkowicz-Pawlas, A.; Tarnawski, M. Ecotoxicological characteristics and ecological risk assessment of trace elements in the bottom sediments of the Rożnów reservoir (Poland). Ecotoxicology 2020, 29, 45–57. [Google Scholar] [CrossRef]
- Crompton, T.R. Determination of Metals in Natural Waters, Sediments, and Soils; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Saber, A.; Roohollah, N.; Mohammad, R.V.N.; Majid, H.; Salman, S.; Fardin, G.R.; Mohsen, M. Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran. Environ. Pollut. Bioavailab. 2021, 33, 278–291. [Google Scholar] [CrossRef]
- Su, C.C. Heavy metal and cancer Risk. Am. J Public Health Epidemiol. 2015, 1, 1019–1021. [Google Scholar]
- Michalski, R.; Jabłonska-Czapla, J.; Szopa, S.; Łyko, A.; Grygoyc, K. Variability in different antimony, arsenic and chromium species in waters and bottom sediments of three water reservoirs in Upper Silesia (Poland). Comparative study. Int. J. Environ. Anal. Chem. 2016, 96, 682–693. [Google Scholar] [CrossRef]
- Baran, A.; Tarnawski, M.; Koniarz, T. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian–Poland. Environ. Sci. Pollut. Res. 2016, 23, 17255–17268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smal, H.; Liger, S.; Wojcikowska-Kapusta, A.; Baran, S.; Urban, D.; Obroslak, R.; Pawłowski, A. Spatial distribution and risk assessment of heavy metals in bottom sediments of two small Dam reservoirs (South-East Poland). Arch. Environ. Prot. 2015, 41, 67–80. [Google Scholar] [CrossRef]
- Jabłońska, J.; Kluska, M. Dynamics of mercury content changes in snow in the heating season on the example of the city of Siedlce. Ochr. Srodowiska Zasobów Nat. 2019, 30, 19–24. [Google Scholar] [CrossRef]
- Michalski, R.; Kostecki, M.; Kernert, J.; Pecyna, J.; Jabłońska-Czapla, M.; Grygoyć, K.; Nocoń, K. Time and spatial variability in concentrations of selected metals and their species in water and bottom sediments of Dzierżno Duże (Poland). J. Environ. Sci. Health A 2019, 54, 728–735. [Google Scholar] [CrossRef]
- Aiman, U.; Mahmood, A.; Waheed, S.; Malik, R.N. Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan. Chemosphere 2016, 144, 2229–2237. [Google Scholar] [CrossRef]
- Ciążela, J.; Siepak, M. Environmental factors affecting soil metals near outlet roads in Poznań, Poland: Impact of grain size, soil depth, and wind dispersal. Environ. Monit. Assess. 2016, 188, 323. [Google Scholar] [CrossRef] [Green Version]
- Michalec, B.K.; Lenart-Boroń, A.M.; Cupak, A.K.; Wałęga, A.S. The evaluation of heavy metal content in water and sediments of small reservoirs in light of various environmental quality regulations. J. Environ. Sci. Health A 2014, 49, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Nodefarahani, M.; Aradpour, S.; Noori, R.; Qiuhong, T.; Sadegh, P.; Björn, K. Metal pollution assessment in surface sediments of Namak Lake, Iran. Environ. Sci. Pollut. Res. 2020, 27, 45639–45649. [Google Scholar] [CrossRef]
- Maghrebi, M.; Karbassi, A.; Lak, R.; Noori, R.; Sadrinasab, M. Temporal metal concentration in coastal sediment at the north region of Persian Gulf. Mar. Pollut. Bull. 2018, 135, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Torabi Kachoosangi, F.; Karbassi, A.; Sarang, A.; Roohollah, N. Sedimentation rate determination and heavy metal pollution assessment in Zariwar Lake, Iran. SN Appl. Sci. 2020, 2, 1483. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Sibal, L.N.; Espino, M.P.B. Heavy metals in lake water: A review on occurrence and analytical determination. Int. J. Environ. Anal. Chem. 2018, 98, 536–554. [Google Scholar] [CrossRef]
- Salam, M.A.; Paul, S.C.; Shaari, F.I.; Rak, A.E.; Ahmad, R.B.; Kadir, W.R. Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Cengiz, M.F.; Kilic, S.; Yalcin, F.; Kilic, M.; Yalcin, G. Evaluation of heavy metal risk potential in Bogacayi River Water (Antalya, Turkey). Environ. Monit. Assess. 2017, 189, 248–260. [Google Scholar] [CrossRef]
- Moazampour, S.R.; Nabavi, S.M.B.; Roozbahani, M.M.; Khodadadi, M. Determination of total petroleum hydrocarbons and selected heavy metal (Pb, CO, V, Ni) concentration levels in surficial sediments of the Arvand River Estuary and their impact on benthic macro invertebrates assemblages. Int. J. Environ. Anal. Chem. 2021, 103, 2841–2857. [Google Scholar] [CrossRef]
- Aboudi, M.S.; Hanafiah, M.; Khan Chowdhury, A.J. Environmental characteristics of clay and clay-based minerals. GeoloGy Ecol. Landsc. 2017, 1, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Bran, A.; Mierzwa-Hersztek, M.; Gondek, K.; Tarnawski, M.; Szara, M.; Gorczyca, O.; Koniarz, T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 2019, 41, 2893–2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, G.; Lee, J.; Gunns, T. Baseline assessment of anthropogenic change and ecological risk of an estuary bordered by an urbanized catchment and a pristine national park (Port Hacking estuary, Australia). Mar. Pollut. Bull. 2021, 162, 111822. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z. Zinc binding to fulvic acids: Assessing the impact of pH, metal concentrations and chemical properties of fulvic acids on the mechanism and stability of formed soluble complexes. Molecules 2020, 25, 1297. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Liu, Q.; Zheng, Y.; Zhou, L. Correlation patterns between magnetic parameters and heavy metals of core sediments in the Yellow River Estuary and their environmental implications. Mar. Pollut. Bull. 2020, 160, 111590. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Marsi, M.; Chappell, M.A. Potentiometric-spectroscopic evaluation of metal-ion complexes by humic fractions extracted from corn tissue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 58, 2159–2175. [Google Scholar] [CrossRef]
- Miranda, L.S.; Ayoko, G.A.; Egodawatta, P.; Hu, W.P.; Ghidan, O.; Goonetilleke, A. Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways. Sci. Total Environ. 2020, 763, 142984. [Google Scholar] [CrossRef]
- Otunola, B.O.; Ololade, O.O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. Innov. 2020, 18, 100692. [Google Scholar] [CrossRef]
- Kluska, M.; Witkowska-Krajewska, E.; Marciniuk-Kluska, A. Analysis of selected compounds in the surface water of Lake Oleckie Wielkie. Oceanol. Hydrobiol. Stud. 2014, 43, 131–137. [Google Scholar] [CrossRef]
- Walna, B.; Siepak, M. Heavy metals: Their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environ. Monit. Assess. 2012, 184, 3315–3340. [Google Scholar] [CrossRef] [PubMed]
- Kluska, M.; Krajewska, E.; Jabłonska, J.; Prukała, W. New application and analysis of (E)-azastilbenes in environmental samples. Crit. Rev. Anal. Chem. 2019, 49, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Winemiller, K.O.; Tarim, S.; Shormann, D.; Cotner, J.B. Fish assemblage structure in relation to environmental variation among Brazos River Oxbow. Trans. Am. Fish. Soc. 2011, 8487, 37–41. [Google Scholar] [CrossRef]
- Jabłońska, J.; Kluska, M. Determination of mercury content in surface waters using an environmentally non-toxic terminating electrolyte. Bull. Environ. Contam. Toxicol. 2020, 105, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Kluska, M.; Jabłońska, J.; Prukała, W.; Popiel, S. Research on the stability of biologically active (E)-azastilbene derivatives in polish rivers. Pol. J. Environ. Stud. 2021, 30, 1647–1663. [Google Scholar] [CrossRef]
- Andrzejewska, A.; Konarzewska, J.; Piątek, M.; Mikulski, M. Program Ochrony Środowiska dla Gminy Liw na Lata 2016–2019 z Perspektywą na Lata 2020–2023. Ekodialog: Warszawa, Poland, 2015; p. 139. (In Polish) [Google Scholar]
- Meitei, M.D.; Prasad, M.N.V. Bioaccumulation of nutrients and metals in sediment, water, and phoomdi from Loktak Lake (Ramsar site), northeast India: Phytoremediation options and risk assessment. Environ. Monit. Assess. 2016, 188, 329. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, Y.K. Heavy Metal Toxicity in Environment; Trivedi, A., Jaiswal, K., Pandey, B.N., Trivedi, S.P., Eds.; Environmental Monitoring and Management, Alfa Publications: New Delhi, India, 2009; pp. 137–162. [Google Scholar]
- Skorbiłowicz, E. Lead and zinc in grain fractions of bottom sediment from selected rivers. Pol. J. Environ. Stud. 2007, 16, 415–421. [Google Scholar]
- Michalski, R. Test Procedure No. PB 2. Measurement of pH in Sediments, 5th ed.; Internal Laboratory Procedure of the Institute of Environmental Engineering, Polish Academy of Sciences: Zabrze, Poland, 2016. [Google Scholar]
- ISO 10523:2008; Water Quality—Determination of pH, 2nd ed. Technical Committee ISO/TC 147/SC 2 Physical, Chemical and Biochemical Methods. ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/51994.html (accessed on 19 March 2023).
- Siebelec, S.; Siebelec, G.; Smreczak, B. Zanieczyszczenia osadów dennych rzek i zbiorników wodnych. Stud. Rap. IUNG-PIB 2015, 46, 163–181. (In Polish) [Google Scholar]
- Regulation of the Regulation Minister of maritime economy and inland navigation of 29 August 2019 on the on the requirements to be met by surface water used for supplying the public with in water intended for human consumption. J. Laws 2019, 1747. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001747 (accessed on 12 March 2023). (In Polish).
- Lis, J.; Pasieczna, A. Atlas geochemiczny Polski w skali 1: 2 500 000. Państw. Inst. Geol. 1995, 72. Available online: https://mapgeochem.pgi.gov.pl/atlas-polski/atlas-geochemiczny-polski/ (accessed on 13 March 2023).
- Skorbiłowicz, M.; Skorbiłowicz, E. Assessment of heavy metal content in botton sedimensts of River Supraśl and its tributaries. Environ. Protec. Eng. 2009, 35, 279–292. [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemiczne klasy czystości osadów wodnych. Przegląd Geol. 1988, 46, 49–54. (In Polish) [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Bábek, O.; Hilscherová, K.; Nehyba, S.; Zeman, J.; Famera, M.; Francu, J.; Holoubek, I.; MacHát, J.; Klánová, J. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years: Morava River (Danube catchment area), Czech Republic. J. Soils Sediments 2008, 8, 165–176. [Google Scholar] [CrossRef]
- Adamiec, E.; Helios-Rybicka, E. Distribution of pollutants in the Odra River system part V. Assessment of total and mobile heavy metals content in the suspended matter and sediments of the Odra River system and recommendations for river chemical monitoring. Pol. J. Environ. Stud. 2002, 11, 675–688. [Google Scholar]
- Obolewski, K.; Glińska-Lewczuk, K. Distribution of heavy metals in bottom sediments of floodplain lakes and their parent river —A case study of the Słupia. J. Elem. 2012, 18, 673–682. [Google Scholar] [CrossRef]
- Gatti, L.V.; Mozeto, A.; Artaxo, P. Trace elements in lake sediments measured by the PIXE technique. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 150, 298–305. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Braun, M.; Szaloki, I.; Baeyens, W.; Van Grieken, R.; Leermakers, M. Tracing the metal pollution history of the Tisza river through the analysis of a sediment depth profile. Water Air Soil Pollut. 2009, 200, 119–132. [Google Scholar] [CrossRef]
- Ciszewski, D.; Czajka, A. Human-induced sedimentation patterns of a channelized lowland river. Earth Surf. Process. Landf. 2015, 40, 783–795. [Google Scholar] [CrossRef]
- Heininger, P.; Höss, S.; Claus, E.; Pelzer, J.; Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 2007, 146, 64–76. [Google Scholar] [CrossRef]
- Menounou, N.; Presley, B.J. Mercury and other trace elements in sediment cores from central Texas lakes. Arch. Environ. Contam. Toxicol. 2003, 45, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Skorbiłowicz, E.; Skorbiłowicz, M. Metals in grain fractions of bottom sediments from selected rivers in north-eastern Poland. Phys. Chem. Earth 2011, 36, 567–578. [Google Scholar] [CrossRef]
- He, J.; Lü, C.; Fan, Q.; Xue, H.; Bao, J. Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environ. Earth Sci. 2011, 64, 2025–2037. [Google Scholar] [CrossRef]
- Ciążela, J.; Siepak, M.; Wojtowicz, P. Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland. Sci. Total Environ. 2017, 616–617, 996–1006. [Google Scholar] [CrossRef]
- Wardas, M. Zanieczyszczenia kadmem rzecznych osadów zlewni górnej Wisły, Kadm w środowisku problemy i metodyczne. Człow. Sr. 2000, 26, 157–168. (In Polish) [Google Scholar]
- Wiśniowska-Kielian, B.; Niemiec, M. Concentration of metals in bottom sediments of selected Dunajec tributaries (Pl). Kwart. Pol. Tow. Magnezol. 2005, 10, 435–443. (In Polish) [Google Scholar]
- Saber, A.; Roohollah, N.; Qiuhong, T.; Rabin, B.; Farhad, H.; Majid, H.; Ali, T.H.; Björn, K. Metal contamination assessment in water column and surface sediments of a warm monomictic man-made lake: Sabalan Dam Reservoir, Iran. Hydrol. Res. 2020, 51, 799–814. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
Metal | Zn | Pb | Cd | Ni | Cu |
---|---|---|---|---|---|
Class I (unpolluted) | 200 | 30 | 1 | 16 | 40 |
Class II (poorly polluted) | 500 | 100 | 3.5 | 40 | 100 |
Class III (polluted) | 1000 | 200 | 6 | 50 | 200 |
Class IV (heavily polluted) | >1000 | >200 | >6 | >50 | >200 |
Geochemical background (mg/kg DM) | |||||
73 | 15 | <0.5 | 5 | 7 |
Metal | According to the 2019 Standard (mg/L) | ||
---|---|---|---|
I Class | II Class | III Class | |
Cd | 0.005 | 0.005 | 0.005 |
Pb | 0.05 | 0.05 | 0.05 |
Cu | 0.05 | 0.05 | 0.5 |
Ni | 0.05 | 0.05 | 0.2 |
Zn | 3 | 5 | 5 |
River | Element (mg/L) | Min–Max | Mean | Median | Standard Deviation |
---|---|---|---|---|---|
Muchawka (n = 16) | June (pH = 6.94–7.26) | ||||
Cd | 0.02–0.08 | 0.05 | 0.04 | 0.17 | |
Pb | 8.5–10.6 | 9.3 | 9.6 | 1.2 | |
Cu | 0.2–1.8 | 0.7 | 0.8 | 0.7 | |
Ni | 0.3–1.1 | 0.8 | 0.7 | 1.1 | |
Zn | 15.3–20.1 | 17.6 | 17.2 | 2.4 | |
September (pH = 6.85–7.39) | |||||
Cd | 0.03–0.08 | 0.04 | 0.05 | 0.19 | |
Pb | 8.7–11.4 | 10.2 | 10.4 | 1.3 | |
Cu | 0.2–1.7 | 0.8 | 0.7 | 0.8 | |
Ni | 0.2–1.4 | 0.9 | 0.6 | 0.7 | |
Zn | 15.6–19.4 | 16.9 | 16.4 | 2.1 | |
Liwiec (n = 32) | June (pH = 6.87–7.37) | ||||
Cd | 0.03–0.06 | 0.04 | 0.04 | 0.12 | |
Pb | 9.7–12.3 | 11.1 | 10.8 | 1.1 | |
Cu | 0.3–1.6 | 0.9 | 0.7 | 0.8 | |
Ni | 0.3–1.5 | 0.9 | 0.7 | 0.6 | |
Zn | 16.4–19.6 | 17.9 | 17.5 | 2.2 | |
September (pH = 6.90–7.31) | |||||
Cd | 0.02–0.11 | 0.04 | 0.07 | 0.14 | |
Pb | 9.5–13.1 | 11.3 | 11.6 | 1.6 | |
Cu | 0.3–1.2 | 0.7 | 0.6 | 0.4 | |
Ni | 0.1–0.5 | 0.3 | 0.3 | 0.8 | |
Zn | 16.7–19.5 | 18.1 | 17.6 | 1.5 |
Bottom Sediments in River | Element (mg/kg DM) | Min–Max | Mean | Median | Standard Deviation |
---|---|---|---|---|---|
Muchawka (n = 12) | June (pH = 6.92–7.23) | ||||
Cd | 0.1–0.8 | 0.6 | 0.5 | 0.2 | |
Pb | 10.3–13.2 | 11.7 | 11.6 | 1.4 | |
Cu | 0.7–4.3 | 2.6 | 2.2 | 1.8 | |
Ni | 2.3–7.9 | 4.8 | 3.9 | 1.2 | |
Zn | 16.2–21.3 | 19.1 | 18.3 | 2.2 | |
September (pH = 6.81–7.42) | |||||
Cd | 0.1–0.6 | 0.4 | 0.3 | 0.5 | |
Pb | 9.8–13.4 | 11.5 | 10.9 | 1.3 | |
Cu | 0.9–5.2 | 2.7 | 1.4 | 2.8 | |
Ni | 3.3–8.4 | 6.2 | 5.7 | 2.6 | |
Zn | 14.4–20.8 | 17.3 | 18.1 | 2.4 | |
Liwiec (n = 32) | June (pH = 6.88–7.36) | ||||
Cd | 0.2–0.7 | 0.5 | 0.4 | 0.5 | |
Pb | 10.4–13.1 | 11.6 | 11.8 | 1.1 | |
Cu | 0.9–7.4 | 3.6 | 2.4 | 3.1 | |
Ni | 3.3–9.4 | 6.7 | 5.9 | 3.2 | |
Zn | 16.4–22.9 | 19.3 | 17.1 | 2.3 | |
September (pH = 6.91–7.34) | |||||
Cd | 0.2–0.5 | 0.4 | 0.3 | 0.6 | |
Pb | 10.6–13.9 | 12.2 | 11.8 | 1.2 | |
Cu | 0.7–9.4 | 5.7 | 4.4 | 3.3 | |
Ni | 3.9–9.9 | 8.1 | 5.9 | 3.9 | |
Zn | 19.1–25.3 | 22.1 | 21.2 | 2.1 |
Pollution Index, Cf | Degree of Contamination, Cd | Pollution |
---|---|---|
<1 | <8 | poor |
1–3 | 8–16 | moderate |
3–6 | 16–32 | significant |
≥6 | ≥32 | very strong |
Average for the River | Cf | Cd | Pollution | ||||
---|---|---|---|---|---|---|---|
Zn | Pb | Cd | Ni | Cu | |||
Muchawka (June) | 0.26 | 0.78 | 1.2 | 0.96 | 0.37 | 3.57 | poor |
Muchawka (September) | 0.24 | 0.75 | 0.8 | 1.24 | 0.39 | 3.42 | poor |
Liwiec (June) | 0.26 | 0.77 | 1 | 1.34 | 0.51 | 3.88 | poor |
Liwiec (September) | 0.30 | 0.81 | 0.8 | 1.62 | 0.81 | 4.34 | poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluska, M.; Jabłońska, J. Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water 2023, 15, 2833. https://doi.org/10.3390/w15152833
Kluska M, Jabłońska J. Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water. 2023; 15(15):2833. https://doi.org/10.3390/w15152833
Chicago/Turabian StyleKluska, Mariusz, and Joanna Jabłońska. 2023. "Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland)" Water 15, no. 15: 2833. https://doi.org/10.3390/w15152833
APA StyleKluska, M., & Jabłońska, J. (2023). Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water, 15(15), 2833. https://doi.org/10.3390/w15152833