Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.1.1. Distributed Radiocesium Prediction Model
2.1.2. Sedimentation at the Dam
2.1.3. Erosion and Sedimentation in the Floodplain
2.2. Computational Conditions
2.2.1. Computational Domain and Period
2.2.2. Input Data
2.2.3. Decontamination Work and Resumption of Agriculture
3. Results and Discussion
3.1. Model Validation
3.2. Evaluation of the Impacts of Decontamination Work and Resumption of Agriculture
3.3. Overall Evaluation of the Fukushima Coastal River Basins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aoyama, M.; Tsumune, D.; Inomata, Y.; Tateda, Y. Mass balance and latest fluxes of radiocesium derived from the Fuku-shi-ma accident in the western North Pacific Ocean and coastal regions of Japan. J. Environ. Radioact. 2020, 217, 106206. [Google Scholar] [CrossRef]
- Otosaka, S.; Kamidaira, Y.; Ikenoue, T.; Kawamura, H. Distribution, dynamics, and fate of radiocesium derived from FDNPP accident in the ocean. J. Nucl. Sci. Technol. 2021, 59, 409–423. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2020/2021 Report Volume 2: Sources, Effects and Risks of Ionizing Radiation. United Nations, New York, 2021. Available online: https://www.unscear.org/unscear/publications/2020_2021_2.html (accessed on 11 April 2023).
- Kusakabe, M.; Takata, H. Temporal trends of 137Cs concentration in seawaters and bottom sediments in coastal waters around Japan: Implications for the Kd concept in the dynamic marine environment. J. Radioanal. Nucl. Chem. 2020, 323, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Takata, H. Environmental recovery from 137Cs contamination in Japanese coastal waters shown by comparison of temporal distributions with European seas. J. Environ. Radioact. 2022, 251–252, 106961. [Google Scholar] [CrossRef]
- Kusakabe, M.; Inatomi, N.; Takata, H.; Ikenoue, T. Decline in radiocesium in seafloor sediments off Fukushima and nearby prefectures. J. Oceanogr. 2017, 73, 529–545. [Google Scholar] [CrossRef]
- Otosaka, S. Processes affecting long-term changes in 137Cs concentration in surface sediments off Fukushima. J. Oceanogr. 2017, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Kamidaira, Y.; Uchiyama, Y.; Kawamura, H.; Kobayashi, T.; Otosaka, S. A modeling study on the oceanic dispersion and sedimentation of radionuclides off the coast of Fukushima. J. Environ. Radioact. 2021, 238–239, 106724. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Tokunaga, N.; Aduma, K.; Kamidaira, Y.; Tsumune, D.; Iwasaki, T.; Yamada, M.; Tateda, Y.; Ishimaru, T.; Ito, Y.; et al. A storm-induced flood and associated nearshore dispersal of the river-derived suspended 137Cs. Sci. Total Environ. 2022, 816, 151573. [Google Scholar] [CrossRef]
- Suzuki, S.; Amano, Y.; Enomoto, M.; Matsumoto, A.; Morioka, Y.; Sakuma, K.; Tsuruta, T.; Kaeriyama, H.; Miura, H.; Tsumune, D.; et al. Temporal variability of 137Cs concentrations in coastal sediments off Fukushima. Sci. Total Environ. 2022, 831, 154670. [Google Scholar] [CrossRef]
- Ministry of the Environment (MOE). Environmental Remediation (in Japanese). Available online: http://josen.env.go.jp/ (accessed on 11 April 2023).
- Taniguchi, K.; Onda, Y.; Smith, H.G.; Blake, W.; Yoshimura, K.; Yamashiki, Y.; Kuramoto, T.; Saito, K. Transport and redistribution of radiocesium in Fukushima fallout through rivers. Environ. Sci. Technol. 2019, 53, 12339–12347. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Kuramoto, T.; Onda, Y. Monthly Fluxes of 134Cs and 137Cs in the Rivers Located in the 80 km Radius from TEPCO’s Fukushima Daiichi Nuclear Power Plant; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba: Tsukuba, Japan, 2020. [Google Scholar] [CrossRef]
- Sakuma, K.; Nakanishi, T.; Yoshimura, K.; Kurikami, H.; Nanba, K.; Zheleznyak, M. A modeling approach to estimate the 137Cs discharge in rivers from immediately after the Fukushima accident until 2017. J. Environ. Radioact. 2019, 208, 106041. [Google Scholar] [CrossRef]
- Ikenoue, T.; Shimadera, H.; Nakanishi, T.; Kondo, A. Thirty-year simulation of environmental fate of 137Cs in the Abukuma River basin considering the characteristics of 137Cs behavior in land uses. Sci. Total Environ. 2023, 876, 162846. [Google Scholar] [CrossRef]
- Feng, B.; Onda, Y.; Wakiyama, Y.; Taniguchi, K.; Hashimoto, A.; Zhang, Y. Persistent impact of Fukushima decontamination on soil erosion and suspended sediment. Nat. Sustain. 2022, 5, 879–889. [Google Scholar] [CrossRef]
- Pratama, M.A.; Yoneda, M.; Shimada, Y.; Matsui, Y.; Yamashiki, Y. Future projection of radiocesium flux to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 2015, 5, 8408. [Google Scholar] [CrossRef]
- Iwasaki, T.; Nabi, M.; Shimizu, Y.; Kimura, I. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River. J. Environ. Radioact. 2015, 139, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Yamaguchi, M.; Kurikami, H.; Yui, M.; Onishi, Y. Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene 2014, 5, 22–31. [Google Scholar] [CrossRef]
- Liu, X.; Machida, M.; Kurikami, H.; Kitamura, A. Long-term simulations of radiocesium discharge in watershed with improved radioesium wash-off model: Applying the model to Abukuma River basin of Fukushima. J. Environ. Radioact. 2019, 203, 135–146. [Google Scholar] [CrossRef]
- Nakanishi, T.; Ohyama, T.; Hagiwara, H.; Sakuma, K. Impact of extreme typhoon events on the fluvial discharge of particulate radiocesium in Fukushima Prefecture. J. Coast. Res. 2021, 114, 310–314. [Google Scholar] [CrossRef]
- Sakuma, K.; Kitamura, A.; Malins, A.; Kurikami, H.; Machida, M.; Mori, K.; Tada, K.; Kobayashi, T.; Tawara, Y.; Tosaka, H. Characteristics of radio-cesium transport and discharge between different basins near to the Fukushima Dai-ichi Nuclear Power Plant after heavy rainfall events. J. Environ. Radioact. 2017, 169–170, 130–150. [Google Scholar] [CrossRef]
- Takata, H.; Wakiyama, Y.; Niida, T.; Igarashi, Y.; Konoplev, A.; Inatomi, N. Importance of desorption process from Abukuma River’s suspended particles increasing dissolved 137Cs in coastal water during river-flood caused by typhoons. Chemosphere 2021, 281, 130751. [Google Scholar] [CrossRef]
- Yamashiki, Y.; Onda, Y.; Smith, H.G.; Blake, W.H.; Wakahara, T.; Igarashi, Y.; Matsuura, Y.; Yoshimura, K. Initial flux of sediment-associated radiocesium to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 2014, 4, 3714. [Google Scholar] [CrossRef] [Green Version]
- Kojiri, T.; Hamaguchi, T.; Ode, M. Assessment of global warming impacts on water resources and ecology of a river basin in Japan. J. Hydro-Environ. Res. 2008, 1, 164–175. [Google Scholar] [CrossRef]
- Hayashi, S.; Tsuji, H. Role and effect of a dam on migration of radioactive cesium in a river catchment after the Fukushima Daiichi Nuclear Power Plant Accident. Glob. Environ. Res. 2020, 24, 105–113. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Actual Situation and Countermeasures for Radiocesium at Ogaki Dam (in Japanese). Available online: https://www.maff.go.jp/tohoku/osirase/higai_taisaku/oogaki_kekka/attach/pdf/index-5.pdf (accessed on 11 April 2023).
- Revel, N.M.T.K.; Ranasiri, L.P.G.R.; Rathnayake, R.M.C.R.K.; Pathirana, K.P.P. Estimation of Sediment Trap Efficiency in Reservoirs—An Experimental Study. Eur. Int. J. Sci. Technol. 2015, 2, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Siyam, A.M. Reservoir Sedimentation Control. Ph.D. Thesis, University of Bristol, Bristol, UK, 2000. [Google Scholar]
- Konoplev, A.; Golosov, V.; Wakiyama, Y.; Takase, T.; Yoschenko, V.; Yoshihara, T.; Parenyuk, O.; Cresswell, A.; Ivanov, M.; Carradine, M.; et al. Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration. J. Environ. Radioact. 2018, 186, 22–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, T.; Sato, S.; Matsumoto, T. Temporal change in radiocesium deposition on the Fukushima floodplain. Radiat. Prot. Dosim. 2019, 184, 311–314. [Google Scholar] [CrossRef]
- Clark, L.A.; Wynn, T.M. Methods for determining streambank critical shear stress and soil erodibility: Implications for erosion rate predictions. Trans. ASABE 2007, 50, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; U.S. Department of Agriculture Agriculture Handbook No. 537; United States Department of Agriculture: Washington, DC, USA, 1978.
- Rubey, W.W. Settling velocity of gravel, sand and silt particles. Am. J. Sci. 1933, 25, 325–338. [Google Scholar] [CrossRef]
- Kato, H.; Onda, Y.; Gao, X.; Sanada, Y.; Saito, K. Reconstruction of a Fukushima accident-derived radiocesium fallout map for environmental transfer studies. J. Environ. Radioact. 2019, 210, 105996. [Google Scholar] [CrossRef] [PubMed]
- Fukushima Prefecture. Fukushima Prefecture Comprehensive Information System for River Basins (In Japanese). Available online: https://kaseninf.pref.fukushima.jp (accessed on 11 April 2023).
- Ministry of Land, Infrastructure, Transport and Tourism (MLIT). Disaster Information for River. Available online: https://www.river.go.jp/e/ (accessed on 11 April 2023).
- Kurokawa, K.; Nakao, A.; Tsukada, H.; Mampuku, Y.; Yanai, J. Exchangeability of 137Cs and K in soils of agricultural fields after decontamination in the eastern coastal area of Fukushima. Soil Sci. Plant Nutr. 2019, 65, 401–408. [Google Scholar] [CrossRef]
- Ministry of the Environment (MOE). Decontamination Guidelines. Available online: http://josen.env.go.jp/en/policy_document/pdf/decontamination_guidelines_2nd.pdf (accessed on 11 April 2023).
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Earthquake Reconstruction Office Newsletter (In Japanese). Available online: https://www.maff.go.jp/tohoku/osirase/higai_taisaku/sinsai_tayori.html (accessed on 11 April 2023).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. J. Am. Water Resour. Assoc. 2007, 43, 5. [Google Scholar] [CrossRef]
- Otosaka, S.; Kato, Y. Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant accident in seabed sediments: Initial deposition and inventories. Environ. Sci. Proc. Imp. 2014, 16, 978–990. [Google Scholar] [CrossRef] [PubMed]
Land Uses | Decrease Rate (%) | References |
---|---|---|
Croplands and paddy fields in Special Decontamination Areas | 80 | [38] |
Croplands and paddy fields outside Special Decontamination Areas | 50 | [39] |
Urban lands | 100 | [39] |
Forest areas (organic soil) | 100 | [39] |
Observatory | Observed (m3 s−1) | Calculated (m3 s−1) | RSR (−) | |PBIAS| (%) | NSE (−) |
---|---|---|---|---|---|
Nakamura | 2.87 | 3.14 | 0.56 | 9.7 | 0.69 |
Ojimadazeki | 2.52 | 4.57 | 0.72 | 58.5 | 0.47 |
Haramachi | 5.95 | 7.34 | 0.62 | 23.4 | 0.62 |
Odaka | 0.98 | 0.92 | 0.54 | 5.8 | 0.71 |
Kawahata | 2.21 | 2.01 | 0.43 | 8.7 | 0.82 |
Ukedo | 6.53 | 6.01 | 0.61 | 8.0 | 0.63 |
Takase | 9.86 | 12.1 | 0.55 | 22.7 | 0.7 |
Kuma | 2.92 | 3.73 | 0.48 | 28.1 | 0.77 |
Tomioka | 1.69 | 2.07 | 0.71 | 22.9 | 0.5 |
Nakakabeya | 20.92 | 25.51 | 0.58 | 22.0 | 0.66 |
Matsubara | 18.3 | 21.43 | 0.71 | 17.1 | 0.49 |
River Name | Supply (TBq) | Ratio (%) |
---|---|---|
Ukedo | 13.8 | 2.2 |
Kuma | 6.2 | 4.5 |
Niida | 4.5 | 2.0 |
Maeda | 2.4 | 2.7 |
Tomioka | 2.1 | 4.4 |
Natsui | 1.6 | 3.3 |
Kido | 1.2 | 2.4 |
Mano | 1.0 | 2.1 |
Odaka | 1.0 | 3.5 |
Uda | 0.6 | 4.9 |
Ide | 0.4 | 3.2 |
Ota | 0.3 | 0.5 |
Same | 0.2 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikenoue, T.; Shimadera, H.; Nakanishi, T.; Kondo, A. Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities. Water 2023, 15, 2734. https://doi.org/10.3390/w15152734
Ikenoue T, Shimadera H, Nakanishi T, Kondo A. Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities. Water. 2023; 15(15):2734. https://doi.org/10.3390/w15152734
Chicago/Turabian StyleIkenoue, Tsubasa, Hikari Shimadera, Takahiro Nakanishi, and Akira Kondo. 2023. "Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities" Water 15, no. 15: 2734. https://doi.org/10.3390/w15152734
APA StyleIkenoue, T., Shimadera, H., Nakanishi, T., & Kondo, A. (2023). Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities. Water, 15(15), 2734. https://doi.org/10.3390/w15152734