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Abstract: Fluctuations in reservoir water levels exert a strong triggering effect on landslides along
reservoir banks, constituting a long-term concern in the safe operation of hydroelectric projects and in
the prevention and management of geological disasters. While existing research has investigated the
impact of periodic water level changes on the deformation of reservoir bank landslides, observation
and detection of such deformation are challenging, with noticeable gaps in understanding how
these deformations respond to water level changes during the water impoundment period. To
address this, our study targets the Baihetan Reservoir, leveraging 567 ascending and descending
LiCSAR data and LiCSBAS (the small-baseline subset within LiCSAR) technology to construct a
time series of ground deformations in the study area from 2019 to 2023. The TLCC (Time Lag
Cross Correlation) model was employed to examine the time-lag response pattern of reservoir bank
landslide deformations to reservoir water level changes during the impoundment period. Our
findings indicate a clear time-lag response in reservoir bank landslide deformations to water level
changes during the impoundment process. The rise in water levels emerged as a primary factor
influencing the instability of reservoir bank landslides. During the half-year impoundment period
of the Baihetan Reservoir, a time lag of 5–7 days was observed between landslide deformations and
increases in water levels, with landslides on the eastern and western banks exhibiting differing
time-lag response patterns. Our study illuminates the time-lag effect between water level changes
during reservoir impoundment and reservoir bank landslide deformation monitoring. By proposing
a quantitative analysis methodology utilizing LiCSBAS technology and the TLCC model, our findings
can inform decision-making in the field of disaster prevention and reduction in reservoir engineering.

Keywords: reservoir bank landslide deformation monitoring; LiCSBAS technology; TLCC model;
lag effect; Baihetan Hydropower Station

1. Introduction

Reservoir bank landslides have been confirmed as a common geological disaster
phenomenon during the construction and operation of water conservancy and hydropower
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facilities [1–3]. A wide variety of reservoir bank landslides, with varying degrees of sliding
and diverse manifestations, have been reported in the reservoir areas of hydropower
stations under construction or already built worldwide [2,4]. The main factors for the
instability of reservoir bank landslides comprise rainfall, reservoir water regulation, or a
detrimental combination of the two [5]. Once unstable, they can trigger a series of secondary
disasters, damage regional ecosystems, destroy dam bodies and power generation facilities
in the reservoir area, and seriously jeopardize the normal operation of hydropower stations
and the safety of lives and property of upstream and downstream residents [5–7]. For
instance, historical cases such as the landslide at the Malpasset Dam in France in 1959,
the Vajont slide in Italy in 1963, and the Zhouqu landslide in Gansu Province, China in
2010, among others, serve as stark reminders of such potential catastrophes [8,9]. Reservoir
bank landslides show a strong response to reservoir water storage and regulation, and the
deformation of landslides displays a certain delay in response to water level variations,
such that human judgments on the movement state of the landslide and predictions on the
timing of disaster arising from instability can be affected [10–12]. Accordingly, monitoring
the deformation trend of reservoir bank landslides in the reservoir area of hydropower
stations, and analyzing the lag effect of the reservoir water level on their deformation, turns
out to be a vital aspect of ensuring the safe operation of large-scale water conservancy and
hydropower facilities.

Under the effect of the complex terrain and special climatic conditions of the mountain-
ous areas around the reservoir bank of hydropower stations, reservoir bank landslides are
generally characterized by high and remote locations, strong concealment, as well as mas-
sive potential damage [5,13]. Compared to conventional methods, such as precise leveling
measurement, the Global Navigation Satellite System (GNSS), and optical remote sensing
technology [1,13], Synthetic Aperture Radar Interferometry (InSAR) technology stands out.
The inability of these conventional techniques to facilitate large-scale identification and
deformation monitoring is a significant limitation. On the other hand, InSAR technology
offers several unique advantages [14]. Primarily, InSAR is capable of wide-range and
round-the-clock operations, regardless of the weather conditions. Moreover, it provides
stability, high dynamics, precision, and resolution. Owing to these distinct attributes,
InSAR has been employed extensively in various fields. Specifically, it has been used
in urban ground deformation monitoring [15]. Additionally, it has aided in earthquake
analysis [16], volcanic disaster monitoring [17], glacier displacement monitoring [18], and
landslide deformation monitoring [11,13]. Each of these applications demonstrates the
versatile utility of InSAR technology. InSAR technology employs multi-temporal radar
data from repeated orbit observations to detect targets in the interferogram that are capable
of providing stable and reliable phase observation values. The time series phase of the
interferometric point is analyzed under the condition of phase unwrapping, suggesting
the ground time series deformation information; the deformation monitoring accuracy can
reach the level of centimeters or even millimeters [13,19,20]. A wide variety of SAR satellites
equipped with different bands have been attempted worldwide since the launch of the first
L-band SAR satellite, Seasat-A, by NASA in 1978 [21]. With the continuous development
of multi-mode, short revisit period, and high-resolution SAR satellites, considerable data
have been presented for the theoretical research and application of radar interferometric
measurements [14]. Following the free and open radar data from the Earth observation
satellite Sentinel-1A/B based on the Copernicus program (Global Monitoring for Environ-
ment and Security, GMES) of the European Space Agency over the past few years [22,23],
the rich data sources give InSAR technology unique advantages and enormous potential in
reservoir bank landslide disaster monitoring. However, large-scale reservoir bank landslide
deformation monitoring comprises acquiring, storing, and preprocessing considerable
radar data, and inverting a series of time-series parameters, such that a large quantity of
processing time is consumed, and high-performance computer and storage space are re-
quired [24]. Additionally, due to the special geographical environment and natural climatic
conditions where the reservoir bank landslides are located, the application of InSAR tech-
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nology in detecting and monitoring reservoir bank landslide deformation will be prone to
atmospheric delay errors and phase unwrapping errors [13,24]. Consequently, the accuracy
of landslide deformation monitoring results is notably affected, such that a huge challenge
is posed to large-scale reservoir bank landslide deformation monitoring. On that basis,
Morishta et al. [24]. proposed an open-source InSAR time series analysis method for the
automated Sentinel-1 InSAR processor—LiCSBAS (Small Baseline Subset with LiCSAR).
LiCSBAS technology is capable of effectively solving the problem of large-scale monitoring
requiring considerable processing time while overcoming atmospheric delay errors and
control phase unwrapping errors [24,25], thus serving as a novel method for large-scale
reservoir bank landslide deformation monitoring.

In general, reservoir bank landslides are affected by reservoir water storage and regu-
lation [26]. Analyzing the lagged response of reservoir bank landslides to reservoir water
level variations in conjunction with deformation characteristics takes on critical significance
in ensuring the safe operation of water conservancy and hydropower facilities, protecting
the life and property safety of upstream and downstream residents in the reservoir area,
and contributing to global disaster prevention and reduction efforts. As revealed by numer-
ous case studies on reservoir bank landslide monitoring, most reservoir bank landslides,
especially those in large hydropower station reservoir areas, primarily occur in the middle
and later stages of reservoir water storage, or even a period of time after the periodic
variations in reservoir water levels [26–32]. The above-mentioned phenomena suggest
that compared with variations in reservoir water levels, the deformation characteristics
or overall instability phenomena of reservoir bank landslides exhibit lag effects. Existing
research on the lag effect of reservoir bank landslides has placed a major focus on the
following aspects: (1) chart visualization analysis methods [26], which analyze the lag
effect by visualizing the deformation time series and reservoir water variations; (2) physical
process models [27], which simulate the coupling relationship between reservoir water vari-
ations and deformation characteristics from the perspective of the physical mechanism of
landslide deformation, using a combination of water-soil factors and geotechnical engineer-
ing; (3) function model methods (e.g., the cross-correlation function model, the regression
model, and the set pair analysis model [28–30]), calculating the directionality between
the deformation time series of reservoir bank landslides and reservoir water level change
signals and subsequently determining the degree of lag correlation between the respective
phase. However, chart visualization analysis methods can only provide simple qualitative
analysis of the lag effect, lacking quantitative data for corroboration. Physical process
models have complex parameters and data are difficult to obtain, severely limiting the ap-
plication of the above-described models. Compared with the above two methods, function
models can effectively simulate the degree of correlation between nonlinear time series
deformation and reservoir water level variations, analyzing the lag effect of reservoir bank
landslide deformation [28]. Nevertheless, function models are dependent on the historical
deformation data of reservoir bank landslides. However, due to the challenges in observing
and detecting deformation in reservoir bank landslides, existing studies have primarily
focused on the effects of periodic water level changes on these deformations. However,
research remains significantly lacking concerning the response patterns of reservoir bank
landslide deformations to water level fluctuations during the water storage period.

The Baihetan Hydropower Station, located on the second tier of the cascade develop-
ment (Wudongde–Baihetan–Xiluodu–Xiangjiaba) of the mainstream section of the lower
Jinsha River (Figure 1a), is the second largest hydropower project in the world after the
Three Gorges Dam. It holds an extremely important position in terms of power gener-
ation, flood control, sand blocking, improving downstream navigation conditions, and
developing reservoir navigation [33]. Baihetan Hydropower Station began to store water
in April 2021, with the reservoir water level rising from 660 m to 825 m, an increase of
165 m. The highest water level during operation is 825 m, and the lowest water level
is 765 m, with a water level difference of 60 m. The Baihetan reservoir area spans ma-
jor active fault zones such as the Zemu River Fault Zone and the Xiaojiang Fault Zone
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(Figure 1a). The river valley is deeply cut, the terrain is fragmented, and the construction is
intense [13,33]. Meanwhile, water level variations caused by water storage will—to varying
degrees—cause erosion, exfoliation, collapse, and landslides, resulting in reservoir bank
deformation [10,34]. These conditions pose a serious threat to the safety of the hydropower
station’s infrastructure and the life and property of residents upstream and downstream.
Thus, there is an urgent need to adopt an efficient and feasible method to monitor the
movement trend of reservoir bank landslides after the storage of water in the Baihetan
reservoir area and effectively analyze its lag effects.
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Figure 1. Overview of the Research Area. ((a) represents the distribution of altitude, faults, and
elevation in the research area, (b) represents the administrative divisions to which the research
area belongs, (c) represents the geological lithology of the research area, and (d) represents the
geological ages of the research area. The elevation data were freely obtained through online access at
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (accessed on 20 March 2023), while
the geological data were retrieved through the online shared service platform of the National Earth
System Science Data Center of China at http://www.geodata.cn/data/ (accessed on 20 March 2023)).

Given the issues that currently exist in the monitoring of reservoir bank landslide de-
formation and the analysis of lag effects, there is a lack of in-depth research on the time-lag
response pattern of reservoir bank landslide deformation to water level changes during the
water storage period. Therefore, this study proposes a method that combines the LiCSBAS
(the small-baseline subset within LiCSAR) and TLCC (Time Lag Cross Correlation) technol-
ogy models to monitor the deformation trend of reservoir bank landslides after the water
storage in Baihetan Reservoir and quantitatively analyze the time-lag response pattern of
reservoir bank landslides during the water storage period. Initially, the LSM (Layover and
Shadow Map) algorithm and the R index are utilized to conduct radar visibility analysis on
the ascending and descending track data of the research area, identifying areas of geometric
distortion such as shadows, layovers, and foreshortening. Following this, the LiCSBAS
technology is employed to procure long time-series deformation information from 2019
to 2022 in the Baihetan Reservoir area. Based on the results of the analysis of the spatial
distribution characteristics and temporal evolution laws of surface deformation, the TLCC
model is used to quantitatively analyze the lag effect of reservoir bank landslides in the
Baihetan Reservoir. Finally, the study delves further into the factors contributing to the
lag effect of reservoir bank landslides from a multi-factor perspective. The findings aim
to facilitate effective analysis of the time-lag response pattern of reservoir bank landslide
deformation during the water storage period and provide scientific evidence for the moni-
toring and early warning of reservoir bank landslide disasters in large-scale hydropower
engineering projects.

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.geodata.cn/data/
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2. Study Area and Data
2.1. Overview of the Study Area
2.1.1. Location of the Study Area

The Baihetan Hydropower Station reservoir area on the mainstream section of the
lower Jinsha River (26◦34′47.99′′~27◦20′52.79′′ N, 102◦47′13.20′′~103◦08′24.18′′ E) was
taken as the research area in this study (Figure 1a). The research area was located at the
border of Sichuan and Yunnan provinces, spanning Butuo County, Qiaojia County, Ningnan
County, Huidong County, Huize County, and Dongchuan District (Figure 1b), and it was
distributed in a belt shape along the south–north flow of the Jinsha River. The research
area was approximately 207.41 km long and 8.52 km wide, with a total area of 1767.13 km2,
located in the northeastern part of the Hengduan Mountains and the southeastern edge of
the Qinghai–Tibet Plateau, pertaining to the low-latitude plateau at the Sichuan–Yunnan
border [35].

2.1.2. Topography and Terrain

The Baihetan Reservoir area pertains to the high mountain and plateau geomorpho-
logic units of southwestern Sichuan and northeastern Yunnan. The river valley shape of the
reservoir bank refers to a wide and gentle “U” shape, with an asymmetric distribution on
both sides of the bank slope. The lowest altitude was 545 m, the highest altitude reached
3589 m, and the relative height difference was 3044 m. The slopes on both sides of the
reservoir bank were relatively flat at altitudes below 900 m, generally 10◦~30◦, and steeper
above 900 m, roughly 30◦~50◦. Floodplains, river islands, terraces, and highlands have
been extensively distributed in the region, mainly comprising river erosion landforms,
tectonic landforms, and glacial erosion landforms, with deep valleys and severe weathering
and erosion [13,33].

2.1.3. Hydrological and Meteorological Conditions

The Baihetan Reservoir area belongs to the subtropical plateau monsoon climate,
with distinct wet and dry seasons and coinciding rain and heat. Under the effect of the
alternating control of the southeastern oceanic monsoon and the polar continental monsoon,
the average annual rainfall reached 822.7 mm, the average annual temperature was 21.0 ◦C,
the annual evaporation was 2529.3 mm, the annual radiation was 135.5 kcal/cm2, the
annual average sunshine duration reached 2134.2 h [35], the mountain climate features
were prominent, and the vertical climate difference turned out to be significant.

The Baihetan Reservoir area is characterized by abundant precipitation, and the
water system has been arranged in a feathered pattern, with robust main streams, short
tributaries symmetrically distributed on both sides, mainly including the Jinsha River, Yili
River, Niulan River, and Heishui River, and other Yangtze River systems [35]. After the
reservoir is filled with water, the slopes will undergo long-term soaking of reservoir water,
rising and falling water levels, river erosion, and alternating wet and dry cycles, such that
a certain degree of slip deformation will be caused, and geological disasters are likely to
be triggered.

2.1.4. Stratigraphy and Lithology

The Baihetan reservoir area is located in the low-latitude plateau of Sichuan and
Yunnan. The strata have been well developed and cover a wide distribution of weak
strata, interlayered soft and hard strata, and loose bodies. In general, the exposed strata
comprise the Quaternary series (gravel mixed soil, silt, and clay), Permian (basalt, lime-
stone, and sandstone), Carboniferous (dolomite, limestone, and shale), Devonian (lime-
stone, dolomite, and sandstone), Silurian (mudstone, sandstone, and shale), Ordovician
(dolomite and sandstone), Cambrian (limestone, sandstone, and shale), Sinian (dolomite,
sandstone, and shale), as well as Pre-Sinian (slate, phyllite, marble, slate, and limestone)
strata (Figure 1c,d) [13,33,35].
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2.1.5. Active Tectonics

The Baihetan reservoir area is located in the fold fault zone of the Yunnan–Guizhou–
Sichuan–Hubei depression, the northwestern part of the South China fold system, and the
southwestern part of the Yangtze quasi-platform. It is characterized by developed fault
structures, strong tectonic movements, and frequent earthquakes. In general, the region
is characterized by the presence of active fault zones (e.g., the Zemu River fault zone and
the Xiaojiang fault zone), both of which display an approximate north–south trend and
left–lateral slip components [33]. The rock and soil bodies in the fault zone are broken, and
the joints and fissures are well developed, thus contributing to the occurrence of geological
disasters (e.g., landslides, collapses, and debris flows).

2.2. Data Set
2.2.1. LiCSAR Data

The main data set employed in this study to monitor the surface deformation trend of
the Baihetan reservoir area was the open-source InSAR data—LiCSAR system products
released by the Center for Earthquake, Volcano, and Tectonic Observation and Modeling
(COMET), with the free access of https://comet.nerc.ac.uk/COMET-LiCS-portal/ (ac-
cessed 15 March 2023). The LiCSAR system was based on large-scale interferometric
processing of Sentinel-1 data globally, which has been primarily adopted to monitor the
temporal evolution and spatial distribution of surface deformation. The LiCSAR system
can automatically provide wrapped and unwrapped interferograms, coherence estimation
maps, time series, and other products with a resolution of 0.001 degrees (WGS-84 coordi-
nate system) [24,25]. The differential interferometric data provided by the LiCSAR system
platform were processed using the InSAR data processing software GAMMA and Sna-
phu. Data preprocessing and differential interferometry processing were performed using
GAMMA software, while phase unwrapping was performed with Snaphu software [24].
The LiCSAR system employs innovative algorithms, processing, and storage solutions to
reduce data processing time and required computer disk space. In accordance with priority
areas (updated monthly, weekly, or in real-time) [25], LiCSAR products are continuously
updated at a certain frequency, providing a new method for large-scale reservoir bank
landslide deformation monitoring.

To acquire the long-time series deformation results of the Baihetan reservoir area,
567 LiCSAR data obtained from differential interferometric measurements were selected in
this study based on Sentinel-1 data from July 2019 to April 2022. Each data set includes
an unwrapped differential interferogram, coherence map, and corresponding DEM image
of the area. Among them, 238 ascending orbit data (Frame: 026A_06324_131313) and
329 descending orbit data (Frame: 062D_06231_131313) were used. Table 1 lists the detailed
information on the LiCSAR data.

Table 1. LiCSAR data parameters.

Orbit Frame Data Time Phase Number of Images Imaging Mode Wave Wavelength/cm

Ascending 026A_06324_131313 1 July 2019–27 April 2022 238 IW C 5.6
Descending 062D_06231_131313 3 July 2019–17 April 2022 329 IW C 5.6

2.2.2. Auxiliary Data

The auxiliary data comprised the following: (1) Generic Atmospheric Correction
Online Service for InSAR (GACOS), GACOS are the atmospheric correction data provided
by the team of Professor Zhenhong Li at Newcastle University, used for atmospheric
correction of tropospheric noise [36]. These data can be obtained online at http://www.
gacos.net/ (accessed 15 March 2023). (2) DEM data; the DEM data uses the digital elevation
model with a spatial resolution of 30 m from the Japan Aerospace Exploration Agency’s
ALOS WORLD 3D. They were adopted to calculate elevation, slope, aspect, curvature, and
to remove the effect of terrain phase. They can be obtained online at https://www.eorc.

https://comet.nerc.ac.uk/COMET-LiCS-portal/
http://www.gacos.net/
http://www.gacos.net/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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jaxa.jp/ALOS/en/aw3d30/data/index.htm (accessed 20 March 2023). The elevation, slope,
and aspect are calculated using ArcGIS 10.8.1 software with the DEM of the study area
as input data. (3) High-resolution Google imagery (Google Earth) is available online at
http://www.google.cn/intl/zh-CN/earth/ (accessed 30 March 2023). The data acquired
from Google Earth are used to annotate the study area and to overlay the acquired InSAR
deformation results for analysis. Table 2 lists the detailed information on the auxiliary data.

Table 2. Detailed information on surface deformation impact factors and other data.

Data Name Data Time-Phase Data Type Data Scale Data Source

GACOS July 2019–April 2022 Raster 90 m Newcastle University, UK
ALOS DEM 2018 Raster 30 m Japan Aerospace Exploration Agency (JAXA)

Elevation 2018 Raster 30 m Japan Aerospace Exploration Agency (JAXA)
Slope 2018 Raster 30 m Japan Aerospace Exploration Agency (JAXA)

Aspect 2018 Raster 30 m Japan Aerospace Exploration Agency (JAXA)
Fractional Vegetation Cover July 2019–April 2022 Raster 30 m Google Earth Engine

Google Images 2021 - 0.2 m Google Earth

3. Materials and Methods

Figure 2 presents the overall technical process of this study. First, the visible area of
the SAR data was analyzed through the local incidence angle, and the shadow and layover
areas were masked. Next, using the LiCSBAS technology, the long-term deformation
information from July 2019 to April 2022 in the Baihetan reservoir area was obtained, and
the spatial distribution characteristics and temporal evolution of the surface deformation
in the reservoir area were analyzed. Finally, combining the TLCC model, the lag effect of
the reservoir bank landslide in the Baihetan reservoir was quantitatively analyzed, and
the factors for the lag effect of the reservoir bank landslide were further explored from a
multifactorial perspective.

3.1. Analysis of SAR Data Geometric Distortion

Under the particularity of radar side-looking imaging (Figure 3), three types of geo-
metric distortions (i.e., layover, foreshortening, and shadow) were produced in accordance
with the incident angle and different topographic features [13,14]. The mountain area of a
large hydroelectric dam reservoir was located in a high mountain canyon area. The terrain
was complex, and the mountains were steep, such that geometric distortion was generated
in some areas of the SAR image. To increase the accuracy of surface deformation analysis
results, the correlation between the satellite observation direction and the local incident
angle based on the LSM algorithm [37] and the R index [22,38] was developed in this study,
as expressed in Equation (1):

θ < 0◦, Layover
0◦ ≤ θ ≤ 90◦ and θ − α < 0◦, Foreshortening
0◦ ≤ θ ≤ 90◦ and θ − α > 0◦, Visibility

θ > 90◦, Shadow

(1)

In Equation (1), θ represents the local incidence angle; α denotes the incidence angle of
the Sentinel-1 satellite line of sight (LOS).

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.google.cn/intl/zh-CN/earth/
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Figure 4 presents the geometric distortion detection and recognition results of the SAR
data covering the research area analyzed based on the local incidence angle. As depicted in
the figure, the overlay and shadow areas of the ascending orbit data were concentrated on
the east bank of the research area, and the visibility was relatively better than that of the
descending orbit data. The geometric distortion areas of the descending orbit data were
largely overlays, and they were distributed on both sides of the Baihetan section of the
Jinsha River, suggesting that the adjacent mountains were steep in high mountain canyon
areas. When geometric distortions (e.g., overlays or shadows) occur, the surrounding area
and produced passive geometric distortions will be affected, which cannot be ignored.
A large area of perspective shrinkage and overlay will lead to the reduced accuracy of
InSAR deformation detection results and hinder the process of interpreting reservoir bank
landslides. In addition, it is almost unlikely to detect deformation signals in shadow areas,
making the interpretation process of landslides in this area impossible. Accordingly, in the
process of reservoir bank landslide identification, ascending and descending data should be
combined, and masking should be adopted to eliminate shadow areas to increase the highly
applicable areas that are not affected by geometric distortion and increase the accuracy of
surface deformation analysis results.
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Figure 4. Detection and identification of geometric distortion areas in the study area. ((a) for
ascending orbit results, (b) for descending orbit results).

3.2. GACOS Atmospheric Correction

GACOS tropospheric delay products were adopted to correct the atmospheric phase
arising from the special natural climatic conditions in the Baihetan reservoir area. GACOS
employs the European Centre for Medium-Range Weather Forecasts (ECMWF) weather
model with a resolution of 0.1◦ and 6 h to generate a 90 m resolution atmospheric correction
map with the Iterative Tropospheric Decomposition (ITD) model [36]. However, not all
GACOS products are capable of effectively correcting all interferograms. When correcting
some interferometric pairs, it is possible that the atmospheric effect will not be reduced,
and the phase error will be introduced. Thus, the phase standard deviation (STD) has
generally served as an indicator to evaluate the effect of atmospheric correction [24,25]. In
this study, the ITD model was used to separate the layered delay and turbulence delay
from the tropospheric zenith total delay (ZTD), where ZTD is defined as follows:

ZTDk = T(xk)
+ L0e−β

−
hk + εk (2)

where ZTDk denotes the zenith total delay at the k position, T(xk)
represents the turbulent

component under the xk coordinates, xk is the site coordinate component in the local
terrain center coordinate system, L0 expresses the sea level layered component delay; e−β
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is the layered component, εk denotes the remaining unmodeled residual error, including

unmodeled layered and turbulent signals, and
−
hk is the height scale, where

−
hk = (hk − hmin)/(hmax − hmin) (3)

ITD primarily uses Equation (2) to iteratively estimate the height scale function and
find the best parameter (L0, β). First, it is assumed that there is no turbulent signal and a pair
of (L0, β) is obtained, such that the turbulent signal is identified through the inverse distance
weighted regression (IDW) model, and the turbulent signal is removed from the total delay
to generate an updated layered delay. The above-mentioned steps are iterated multiple
times till a stable coefficient is obtained. Lastly, a set of specified coefficients (L0, β) for the
given area is output, along with the turbulence delay and the residuals of the respective
GPS station. All converged turbulence delay components and residuals are interpolated
to the k position, and the estimated coefficients (L0, β) are introduced into the layered

component delay at L0e−β
−
hk , and the two are introduced together to generate the relative

ZTD at each position [24], thus completing the removal of redundant atmospheric delay
phase. Figure 5 presents the phase standard deviation before and after the introduction of
the GACOS tropospheric delay correction product for atmospheric correction. As depicted
in Figure 5, the phase standard deviation is significantly reduced after correction with
GACOS data compared with prior to correction. As revealed by the mentioned result, in
the mountain area of a hydropower station reservoir with significant terrain fluctuations,
GACOS data are capable of effectively suppressing the effect of tropospheric atmospheric
delay errors.

Water 2023, 15, x FOR PEER REVIEW 11 of 26 
 

 

residuals are interpolated to the k  position, and the estimated coefficients ( )0 ,L β  are 

introduced into the layered component delay at 0
khL e β
−

− , and the two are introduced to-
gether to generate the relative ZTD at each position [24], thus completing the removal of 
redundant atmospheric delay phase. Figure 5 presents the phase standard deviation be-
fore and after the introduction of the GACOS tropospheric delay correction product for 
atmospheric correction. As depicted in Figure 5, the phase standard deviation is signifi-
cantly reduced after correction with GACOS data compared with prior to correction. As 
revealed by the mentioned result, in the mountain area of a hydropower station reservoir 
with significant terrain fluctuations, GACOS data are capable of effectively suppressing 
the effect of tropospheric atmospheric delay errors. 

 
Figure 5. Comparison of phase standard deviation before and after atmospheric correction. ((a) for 
ascending orbit results, (b) for descending orbit results). 

3.3. Phase Unwrapping Error Removal 
The LiCSAR product processed by GAMMA SAR only employs the statistical cost 

flow SNAPHU method for phase unwrapping in the spatial dimension when unwrapping 
the interferometric phase, without considering the phase information in the time dimen-
sion [14,25]. Moreover, under the effect of the geometric distortion during radar imaging, 
some areas cannot conform to the phase continuity condition, such that the unwrapping 
time series and the accuracy of the deformation parameter solution will be severely af-
fected. Accordingly, the unwrapped phase with large errors should be eliminated. In gen-
eral, the LiCSBAS method comprises two steps in eliminating phase unwrapping errors. 
First, a comprehensive interferometric pair quality inspection is conducted, with the av-
erage coherence and effective pixel rate (the number of effective pixels in each interfero-
gram/effective pixel total number) as the threshold to eliminate the interferometric pairs 
with low coherence and fewer effective pixels. Subsequently, a loop phase closure check 
is conducted for the interferograms that pass the quality inspection [24,25]. It is assumed 
that there are three images ( )1 2 3, ,ϕ ϕ ϕ   that can generate three pairs of unwrapped 

phases ( )12 13 23, ,ϕ ϕ ϕ , the loop closure phase is expressed in Equation (4): 

12 23 13ϕ ϕ ϕ ϕΔ = + −  (4)

If there is no phase unwrapping error in the three interferograms, Equation (4) should 
approach 0. However, under certain factors (e.g., multi-view, filtering, and coherence var-
iations), the loop closure phase is not entirely 0. If there is a phase unwrapping error in 
one or more interferograms, the loop closure phase should be an integer multiple of 2π  
[14,39]. LiCSBAS was adopted to calculate the loop closure phase and the root mean 
square error (RMSE) of the loop closure phase for the respective interferometric pair [24]. 
After identifying the loop closure phase with an RMSE larger than a predefined threshold 

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

ST
D

 a
fte

r G
A

C
O

S 
(r

ad
)

STD before GACOS (rad)

(a)

R2=0.84
RMSE=2.84

ST
D

 a
fte

r G
A

C
O

S 
(r

ad
)

STD before GACOS (rad)

(b)

R2=0.43
RMSE=3.29

Figure 5. Comparison of phase standard deviation before and after atmospheric correction. ((a) for
ascending orbit results, (b) for descending orbit results).

3.3. Phase Unwrapping Error Removal

The LiCSAR product processed by GAMMA SAR only employs the statistical cost
flow SNAPHU method for phase unwrapping in the spatial dimension when unwrapping
the interferometric phase, without considering the phase information in the time dimen-
sion [14,25]. Moreover, under the effect of the geometric distortion during radar imaging,
some areas cannot conform to the phase continuity condition, such that the unwrapping
time series and the accuracy of the deformation parameter solution will be severely affected.
Accordingly, the unwrapped phase with large errors should be eliminated. In general, the
LiCSBAS method comprises two steps in eliminating phase unwrapping errors. First, a
comprehensive interferometric pair quality inspection is conducted, with the average coher-
ence and effective pixel rate (the number of effective pixels in each interferogram/effective
pixel total number) as the threshold to eliminate the interferometric pairs with low coher-
ence and fewer effective pixels. Subsequently, a loop phase closure check is conducted for
the interferograms that pass the quality inspection [24,25]. It is assumed that there are three
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images (ϕ1, ϕ2, ϕ3) that can generate three pairs of unwrapped phases (ϕ12, ϕ13, ϕ23), the
loop closure phase is expressed in Equation (4):

∆ϕ = ϕ12 + ϕ23 − ϕ13 (4)

If there is no phase unwrapping error in the three interferograms, Equation (4) should
approach 0. However, under certain factors (e.g., multi-view, filtering, and coherence
variations), the loop closure phase is not entirely 0. If there is a phase unwrapping error
in one or more interferograms, the loop closure phase should be an integer multiple of
2π [14,39]. LiCSBAS was adopted to calculate the loop closure phase and the root mean
square error (RMSE) of the loop closure phase for the respective interferometric pair [24].
After identifying the loop closure phase with an RMSE larger than a predefined threshold
(the threshold in this study was set to 1.5 rad) and conducting a small baseline (SBAS)
inversion, it serves as the standard for masking pixels.

3.4. NSBAS Method to Invert Time Series Deformation Information in the Study Area

The NSBAS (the new small baseline subset) algorithm under the LiCSBAS technique
was introduced to invert the time series deformation information of the study area to obtain
the deformation time series of Baihetan Reservoir area from July 2019 to April 2022. Since
the interferometric pairs formed have a small spatial vertical baseline, the residual terrain
phase arising from the inaccurate external digital elevation model (DEM) is relatively small,
such that the NSBAS algorithm was used directly to calculate the deformation rate and
time series deformation of the respective pixel for the unwrapped phase [24,40,41]. It is
assumed that there are N images, with acquisition times expressed as (t1, t2, · · · , tN), and
M interferometric pairs denoted as (ϕ1, ϕ2, · · · , ϕM), such that the interferometric phase of
the respective pixel can be represented as shown in Equation (5): ϕij =

j−1
∑

k−i
∆ϕk

ϕ1 = 0
(5)

where ϕ1 denotes the interferometric phase of the first image in the N-image data set;
ϕij represents the interferometric phase formed by images acquired at times i and j; ∆ϕk
expresses the phase increment between the k − 1 and kth acquired images.

Notably, even if the fine network of interferograms is fully connected based on the
respective pixel, time gaps may remain in the interferogram network. When there exist
multiple subsets of interferograms, the coefficient matrix in Equation (5) may be rank
deficient [40]. Although the singular value (SVD) decomposition method can still be
employed for solving at this time, the minimum norm solution provided by SVD may
have a bias, further affecting the calculated deformation rate while affecting the time
characteristics of deformation information [41]. To obtain a more accurate and reliable
displacement time series, since the deformation of the reservoir bank landslide can conform
to the assumption of a long-term linear subsidence trend (d = vt + c) [42,43], the time
constraint equation is introduced based on the NSBAS method based on Equation (5):

[
d
0

]
=



[
G 0 0

]
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...
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1 · · · 1
. . .

...
...

...
...

...
. . . 0

...
...
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m

v
c

 (6)

where d denotes the collection of unwrapped interferograms obtained at time (t1, t2, · · · , tN);
r represents the weight factor of the time constraint equation; G expresses the interfero-
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metric pair connection matrix, composed of 0 and 1; m is the Nth displacement increment
vector matrix; v is the deformation rate; c is a constant.

The interferometric pairs after the GACOS atmospheric correction and phase unwrap-
ping error removal in Section 3.3 were employed for small baseline inversion to obtain the
surface time series deformation information of the Baihetan Reservoir area. The standard
deviation of the deformation rate was estimated based on the Bootstrap method [44]. As
indicated by the high estimated values of standard rate deviation, the surface deformation
time series information contained noise or shows non-linear variations [24,44], and it can
also characterize the measurement uncertainty of the deformation time series. Subsequently,
the space-time filter (high-pass filter in time and low-pass filter in space) was adopted to
separate the residual tropospheric noise, ionospheric noise, and orbit error noise pixels
from the displacement time series, such that the time series of surface deformation and rate
in the study area can be obtained (Figure 6).
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Figure 6. Time series information of surface deformation in the study area. ((a) represents the
average coherence of ascending orbit data, (b) represents the average coherence of descending orbit
data, (c) represents the annual average deformation rate of ascending orbit data, (d) represents the
annual average deformation rate of descending orbit data, (e) represents the deformation quantity of
ascending orbit data, (f) represents the deformation quantity of descending orbit data, (g) represents
the standard rate deviation of ascending orbit data results, and (h) represents the standard rate
deviation of descending orbit data results).

3.5. TLCC Model Analysis of Deformation Lag Effect

Hydrological factors are key inducers influencing reservoir bank landslide deforma-
tion, and the displacement rate of landslides has a certain lag to reservoir water level
variations [5,45]. To quantitatively analyze the lag effect of the water level variations
caused by the water storage stage and the deformation of the reservoir bank landslide in
the Baihetan Reservoir area, the Time-Lag Cross-Correlation (TLCC) model [46] is intro-
duced to analyze the water level variations and the deformation time series obtained by



Water 2023, 15, 2732 13 of 24

the LiCSBAS technique. The TLCC model has been extensively used to characterize the
numerical features of stochastic sequences and is an effective means to study the time lag
relationship between two time series [46]. It has been widely employed in certain fields
(e.g., acoustic ranging). For two discrete time series signals x1(k) and x2(k), their time-lag
cross-correlation function is as follows:

R(n) =
N

∑
k=0

x1(k)·x2(k + n) (7)

where k is the moment; N denotes the total time; n represents the delay time. If x1(k) and
x2(k) are respectively the displacement time series of the reservoir bank landslide and the
time series of reservoir water level variations caused by water storage, the lag response
time τ of the displacement time series to the change of the reservoir water level can be
obtained when the time-lag cross-correlation function Rn obtains the delay time with the
maximum value.

4. Results
4.1. Acquisition and Spatial Distribution Analysis of Ground Deformation Information

Figure 7 illustrates the time series ground deformation information (in the radar
line-of-sight direction) of Baihetan Reservoir from July 2019 to April 2022 obtained using
LiCSBAS technology. Here, positive values indicate moving towards the sensor direction,
and negative values indicate moving away from the sensor direction. As revealed by
the above result, the ground deformation information detected by the ascending and
descending data sets did not completely correspond. The maximum deformation rate in the
LOS direction of the ascending data was −125.5 mm/year whereas that of the descending
data set reached −87.5 mm/year. The reason for this difference is affected by the side-
looking imaging geometry of the Sentinel-1 satellite and the terrain fluctuation of the two
banks of Baihetan Reservoir area. In general, the flight direction of the ascending data was
roughly from southeast to northwest, and the radar line-of-sight direction was on the right,
whereas that of the descending data was the opposite. Thus, for complex mountain areas
where hydropower station reservoirs are located, deformation information detected by
different orbit data should be complemented to avoid geometric distortion problems arising
from single-orbit data, making the deformation detection results more comprehensive and
accurate.
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Moreover, as depicted in Figure 7, the ground deformation results in the Baihetan
Reservoir area show a clear spatial differentiation. Along the river flow direction of the
Jinsha River Baihetan section, the ground subsidence areas were mostly concentrated in the
upstream part of the reservoir, and the ground uplift areas were distributed in the down-
stream river section of the reservoir. The gradient change from high to low deformation
was opposite to the direction of river flow. The time series ground deformation information
of the research area was overlaid with faults and water systems for analysis (Figure 7) to
explore the degree of correlation between this phenomenon and hydrogeological factors.
As indicated by the analysis results, the development of ground deformation was highly
correlated with faults and water systems. The upstream part of the reservoir area was
primarily controlled by the Xiaojiang Fault Zone (Xundian section), with tributaries such as
the Matree River and Yili River distributed. The downstream river section of the reservoir
area develops the Xiaojiang Fault Zone (Dongchuan section), the Zhumu River Fault Zone,
the Lianfeng Fault Zone, and the Ganluo-Zhuhe Fault Zone, and so forth. The areas with
significant variations in ground deformation generally conformed to the distribution of
the fault zone and water system, suggesting a certain correlation with hydrological and
geological features.

4.2. Identification and Time Evolution Analysis of Reservoir Bank Landslide

The deformation signals detected by the combined ascending and descending data
sets were used, and the characteristics of Baihetan Reservoir bank landslide were identified
with the help of high-resolution optical images (Sentinel-2 and Google Earth). First, the
deformation area was delineated mainly based on the deformation results obtained by
LiCSBAS technology. To avoid the misjudgment of reservoir bank landslides attributed
to the geometric distortion of single-orbit data sets, the deformation signals detected by
different orbit data sets were superimposed and analyzed, and the areas with consistent
deformation trends were retained as the interpreted deformation areas; then, optical images
were employed to recognize reservoir bank landslides in conjunction with hue, structure,
morphology, landslide boundary, and cracks, and other landslide characteristics. After
a comprehensive recognition process combining InSAR deformation signals and optical
image features, and also for further analysis of the lag effect of reservoir bank landslides,
four typical reservoir bank landslides in the Baihetan Reservoir area were identified and
selected (Figure 8), following the opposite direction of the Jinsha River flow, from north to
south are the Miansha Village Landslide, Dawanzi Landslide, Wujiacun Village Landslide,
and Wuli Landslide, sequentially numbered L1 to L4, respectively.
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The field surveys of typical reservoir bank landslides that were identified using LiCS-
BAS technology were conducted through Drone photogrammetry. Figure 9 presents the
results of the field surveys of four typical reservoir bank landslides (the L4 landslide body
was not subjected to drone aerial imaging but only field observation, and it was replaced
by Google Earth high-resolution optical image), thus suggesting significant landslide fea-
tures (e.g., boundaries, flanks, cracks, strong deformation areas, and steep banks). The L1
landslide, located in Miansha Village in the downstream reservoir area on the east bank of
the Jinsha River, exhibits an irregular tongue-shaped morphology, significant depression
features on the slope, as well as broken surface rock bodies. As indicated by the result of the
field investigation, debris was moving on the surface, suggesting that the landslide body is
very likely in a state of long-term sliding. The L2 landslide was located in the middle of
the reservoir area on the west bank of the Jinsha River at the Dawanzi tunnel. The slope
body was irregularly pear-shaped, the upper part was covered with sparse vegetation,
and sliding traces existed at the lower edge of the slope body in an exposed state. The
field investigation suggested that this landslide developed ground cracks, the deformation
displayed an uneven spatial distribution, and fan-shaped deposits were formed at the
bottom of the landslide. The L3 landslide was located in the upstream western bank of the
reservoir area in Wujiacun Village. To be specific, it was irregularly tongue-shaped, with
significant depression features of the slope body. As revealed by the field investigation, the
deformation of this slope body was primarily attributed to squeezing deformation from
the edge to the center, and cracks and debris existed in the middle of the landslide. The L4
landslide was located on the downstream eastern bank of the reservoir area at Wuli Slope.
The slope body was irregularly shaped like a dustpan. The field investigation indicated
that fan-shaped deposits were formed at the bottom of the slope body, the deformation
displayed an uneven spatial distribution, and the strong deformation area was located in
the middle and lower parts of the slope body.
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Deformation characteristic points were selected in the strong deformation area of
typical reservoir bank landslides (Figure 9 for the position of the characteristic points) to
analyze the time evolution law of reservoir bank landslide deformation. The deformation
time series curve was drawn (Figure 10). As depicted in the figure, the typical reservoir bank
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landslides selected from the upstream, middle, and downstream of Baihetan Reservoir area
were all in a state of long-term sliding. The deformation time curves contained significant
seasonal fluctuations, and the cumulative displacement exceeded 15 mm in less than two
and a half years. As indicated by the above result, the creep of the reservoir bank landslide
largely arose from hydrological events and weathering [46,47]. The alternating dry and wet
climate, steep terrain, and water storage in the Baihetan Reservoir area contributed to the
development of landslide creep. Moreover, the comparison of before and after the water
storage stage of Baihetan Reservoir area (blue gradient area in Figure 10) suggested that the
deformation trend of the reservoir bank landslide changed after the water storage. Although
it still maintained an overall fluctuation trend, the deformation gradient variations to a
certain extent, which can be likely to be correlated with the variations in the water level
after the reservoir storage.
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Figure 10. Time series deformation curve of the deformation feature points of typical reservoir
bank landslides. ((a) represents L1 landslide, (b) represents L2 landslide, (c) represents L3 landslide,
(d) represents L4 landslide. The blue gradient square area in the figure represents the large-scale
water storage in the Baihetan Reservoir from April to October 2021. The red dashed line represents
the linear fitting of the time series deformation of the reservoir bank landslide).

4.3. Quantitative Analysis of the Lag Time of Reservoir Bank Landslide Deformation

Relevant research suggested that hydrological factors are important factors for the
deformation of reservoir bank landslides [45–47]. To gain more insights into the lag effect of
reservoir bank landslide deformation in the Baihetan Reservoir area, the deformation time
series during the water storage stage (April 2021 to October 2021) was cut from Figure 10,
and the time series curve of water level variations and rainfall during the reservoir water
storage was generated (Figure 11). As depicted in Figure 11, the increase in the water level
at the phase of water storage and rainfall changed synchronously, the rainfall effectively
replenished the storage capacity of Baihetan Reservoir, such that favorable conditions were
created for the increase in the water level. However, in the period of reservoir water storage,
the deformation of reservoir bank landslides displayed significant fluctuating variations.
The cumulative displacements of the four selected typical landslides exceeded 10 mm, and
the deformation curve was not consistent with the increase in the reservoir water level,
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suggesting that the reservoir bank landslides in the Baihetan Reservoir area show a notable
lag effect with the increase in the water level at the phase of water storage. The lower
edge of the landslide was subject to the seepage and erosion arising from the increase in
the water level, and other reservoir bank reconstruction actions had a certain lag time. To
quantitatively analyze the above lag time, the time series of typical landslide characteristic
point deformation and reservoir water level variations from April 2021 to October 2021
were calculated using the TLCC model. Figure 12 presents the calculation results. As
depicted in Figure 12, the lag times of the Miansha Village landslide, the Dawanzi landslide,
Wujiacun Village landslide, and Wuli landslide responding to the water level increase in
the Baihetan Reservoir reached 5 d, 7 d, 6 d, and 7 d, respectively, with an average lag time
of nearly 6 d, and the correlation coefficients exceeded 0.45 (the correlation coefficients
of the characteristic points of other landslides exceeded 0.5, with the exception of the
characteristic points of Wu Family Village landslide), and they passed the 95% significance
test, showing a significant correlation. As revealed by the above-mentioned result, the lag
time for reservoir water to seep into and erode the reservoir bank landslides, leading to
the sliding of reservoir bank landslides due to variations in reservoir water level, reached
5–7 d after the Baihetan Reservoir storage.
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Figure 11. Time series curves of typical landslide feature points, rainfall, and water level increase
during the water storage stage. ((a) represents L1 landslide, (b) represents L2 landslide, (c) represents
L3 landslide, (d) represents L4 landslide. The red curve represents the temporal deformation sequence
of the reservoir bank landslide during the reservoir impoundment period. The blue curve represents
the change in monthly average rainfall during the reservoir impoundment period. The light green
gradient area represents the change in reservoir water level during the reservoir impoundment period.
The red dashed line represents the time interval between the two stage impoundments within the
complete reservoir impoundment period at Baihetan reservoir area).
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Figure 12. Time lag cross-correlation sequence of deformation-reservoir water level increase. ((a) rep-
resents L1 landslide, (b) represents L2 landslide, (c) represents L3 landslide, (d) represents L4
landslide).

5. Discussion
5.1. Evaluation of LiCSBAS Technology Measurement Accuracy

In this study, LiCSBAS technology was adopted to obtain the time series deformation
information of the Baihetan Reservoir area, which was limited by the LiCSAR product
released by the COMET project of the NERC Earthquake and Volcano Structure Observation
and Modeling Center in the UK. Compared with ALOS PALSAR, TerraSAR-X-1, or other
data, LiCSBAS technology can more significantly apply to coping with Sentinel data [24]. In
this study, the surface deformation time series of the study area was mainly obtained based
on LiCSAR data and input into the TLCC model to quantitatively analyze the lag time
of reservoir bank landslides. Accordingly, the accuracy of InSAR technology monitoring
deformation results directly affects the accuracy of the quantitative analysis of lag effects.
Due to the lack of level measurement and GPS measurement data in the Baihetan Reservoir
area during the research period, we compared the InSAR results of this study with some
published InSAR research results during the approximate research period and summarized
the main differences in Table 3. It can be seen that although the InSAR results of this
study have some similarities with the InSAR results in Table 3, there are certain differences
in quantitative values. The main reason for this difference is that the research period
of Dun [13] and Wu [33] was mainly before the reservoir storage, and does not include
deformation information after storage. The research results of Dai et al. [48] merged the
deformation signals of ascending and descending tracks, and this study’s InSAR time series,
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in addition to including the period before storage and during reservoir storage, also used
ring phase closure difference checks and GACOS atmospheric data to weaken some errors
affecting the accuracy of InSAR results. In addition, to further evaluate the accuracy of
the deformation signal detected by LiCSBAS technology in this study, we computed and
analyzed the distribution trends of standard deviations of velocity points from ascending
and descending data sets within the study area (Figure 13). As depicted in Figure 13, the
velocity standard deviations from different orbital data are all less than 5 mm/year and
conform to a normal distribution. The probability density of velocity standard deviations
exceeding 3 mm/year is concentrated below 0.05, validating the accuracy of the InSAR
results in this study. It also underscores that reducing atmospheric delay errors and phase
unwrapping errors during InSAR surface deformation monitoring can effectively improve
the precision of the final results.

Table 3. Main differences in comparative research.

Comparative Study Dun, et al., 2022 [13]. Wu, et al., 2022 [33]. Dai, et al., 2023 [48]. This Study

SAR data Sentinel/PALSAR Sentinel Sentinel LiCSAR (Sentinel)
Orbital

direction
Ascending
Descending

Ascending
Descending

Ascending
Descending

Ascending
Descending

Processing Software SARscape SARscape SARscape LiCSBAS
Time span October 2014~August 2020 April 2014~March 2021 April 2020~October 2021 July 2019~April 2022

Ascending orbit (mm/year) −78~67 −41~68 −132~50 (Before water storage) −126~93
Descending orbit (mm/year) −56~10 −24~46 −145~45 (After water storage) −88~43
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Figure 13. Standard deviation of Velocity (VSTD), (a) represents the ascending orbit results, (b) rep-
resents the descending orbit results, the red dashed line represents the fitting curve of the normal
distribution, and the color transition from dark to light in the bar graph signifies a change in density
from low to high.

5.2. Analysis of Reservoir Bank Landslide Lag Effect

Certain studies suggest that deformation of reservoir bank landslides, triggered by
hydrological events (primarily including rainfall and water level fluctuations), is primarily
due to variation in pore water pressure on the landslide slip surface. This variation is caused
by changes in water levels [45–47]. However, during the storage phase, stability of the reser-
voir bank landslide is almost entirely regulated by water level fluctuations [45,46,49–51],
rendering the impact of rainfall negligible. Additionally, under varying storage conditions,
deformation signals of reservoir bank landslides exhibit different time-lag response pat-
terns. Interestingly, the response of the deformation of reservoir bank landslides in the
Baihetan reservoir area to the elevation in the reservoir water level during the storage
phase is not instantaneous. There exists a time lag between the deformation peak and the
reservoir water level peak, a phenomenon consistent with previous studies, suggesting a
lag effect of reservoir bank landslides to water level variations within the reservoir area.
The lag time for the response to the rise in the reservoir water level for the Miansha Village
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landslide, Dawanzi landslide, Wujiacun landslide, and Wuli landslide, determined from
a quantitative analysis using the TLCC model, are 5 d, 7 d, 6 d, and 7 d, respectively.
The average is around 6 d, showing a distinct disparity compared to previous studies on
landslide deformation response to periodic water levels. Huang and other researchers [28]
studied the Xinpuzi landslide in the Three Gorges reservoir area. They found the landslide’s
response lag time to the reservoir water level to be approximately 31 d. Wen et al. [45]
discovered that the deformation lag time of the reservoir bank landslide at the Maoergai
Hydropower Station was around 65~120 d. This quantitative numerical difference is very
likely connected with the different time lag response patterns of the deformation signals
of the reservoir bank landslides under varying storage conditions. Since April 2021, the
Baihetan reservoir area has been impounding water. By October 2021, the reservoir water
level had rapidly increased from 660 m to 812 m [33,48]. The large-scale and high-intensity
storage mode is a significant factor inducing the rapid response of the reservoir bank
landslides in this study. The difference in research periods also plays a crucial role in the
observed discrepancy. Huang and Wen et al. focused their study on the response time of
deformation to periodic water level variations. Conversely, this study aims to uncover the
lag phenomenon of reservoir bank landslides deformation during the storage period in
response to the rise in water level. Contrary to the impact of periodic water level changes
on reservoir bank landslides, during the storage period, the originally exposed lower edge
of the slope is subjected to river erosion [45]. The soil structure of the lower slope tends
towards a loose state under the action of dynamic water pressure. The balance between
the upper and lower edges of the slope changes, and the groundwater level inside the
reservoir bank landslide gradually rises [9]. This leads not only to a tendency towards
saturation within the landslide, but also increases the hydrostatic pressure on the slope sur-
face, reducing the effective stress of the soil and the shear strength of the slip surface. This
forces the landslide into an unstable state and naturally triggers rapid deformation [45,52].
Therefore, the reservoir bank landslides in the Baihetan reservoir area exhibit a shorter
time-lag response during the storage period compared to the period of periodic water level
changes. This understanding provides a vital supplement to the more accurate study of the
response pattern of reservoir bank landslide deformation to water level changes.

5.3. Analysis of the Causes of Reservoir Bank Landslide Deformation Lag

When the water level in the reservoir varies, the water content within the reservoir
bank landslide requires a certain time to reach a new equilibrium. The reason for this
result is that the change in pore water pressure in the landslide can exert a certain effect
on the stability of the soil, and the stress state of the soil should also adjust and adapt
to new pressure conditions, both of which can result in a lag effect in the reservoir bank
landslide. Relevant research has suggested that the lag effect comprises the time delay
in the process of landslide deformation and the irreversible plastic deformation of the
landslide geotechnical structure during the process of water level variations. Reservoir
bank landslides exhibit complex origins and varied types. Since the deformation process
of reservoir bank landslides can be based on the hypothesis consisting of seasonal non-
linear deformation and long-term linear subsidence trends, their lag effect on reservoir
water level variations may be correlated with the external environment of the landslide
(e.g., elevation, slope, aspect, and vegetation coverage) and the internal structure of the
soil (e.g., lithology). To explore whether the lag effect of the reservoir bank landslides
in the Baihetan reservoir area on the water level variations during the storage period
arises from the above reasons, the factors were extracted (e.g., elevation, slope, aspect,
lithology, and vegetation coverage of the Miansha Village landslide, Dawanzi landslide,
Wujiacun landslide, and Wuli landslide) (Table 4). As depicted in this table, the vegetation
coverage of the selected typical landslides was all below 0.2, i.e., low vegetation coverage,
probably correlated with the slow creep of the landslide. As indicated by the comparison
of the geological attributes of typical landslides, although the Dawanzi landslide and
Wuli landslide had the same lag time to the water level, their aspect and lithology were



Water 2023, 15, 2732 21 of 24

notably different. Although the Miansha Village landslide, the Dawanzi landslide, and the
Wujiacun landslide all exhibited the lithology of mixed sedimentary rocks with small slope
differences, the lag time was positively correlated with vegetation coverage and negatively
correlated with aspect. Furthermore, it is noteworthy that the Miansha Village landslide
and Wuli landslide are located on the east bank of the Jinsha River, whereas the Dawanzi
landslide and Wujiacun landslide are on the west bank of the Jinsha River. However, their
lag response patterns to water level variations were different, probably correlated with
the Coriolis force due to Earth’s rotation. The Baihetan section of the Jinsha River flowed
approximately from south to north, and the river water, affected by the rotational velocity
of the Earth, tended to erode more on the east bank of the Jinsha River. Thus, the Miansha
Village landslide located on the east bank exhibited the shortest lag time among all typical
landslides.

Table 4. Geological attributes of typical reservoir bank landslides.

Landslide (Number) Lagging Time/d Elevation/m Slope/(◦) Aspect/(◦) FVC Rockiness

Miansha Village (L1) 5 1231 48.43 200.53 0 Mixed sedimentary rocks
Dawanzi (L2) 7 869 37.19 106.43 0.19 Mixed sedimentary rocks

Wujia Village (L3) 6 808 41.93 160.63 0.10 Mixed sedimentary rocks
Wuli (L4) 7 964 33.24 288.69 0.14 Acidic deep-formed rocks

6. Conclusions

In this study, a method of combining LiCSBAS technology and TLCC model was
proposed to monitor the deformation of reservoir bank landslides and quantitatively
analyze their lag characteristics, such that some issues currently present in the monitoring
and lag analysis of reservoir bank landslide deformation can be addressed. First, the LSM
algorithm and R index were adopted to identify geometric distortion phenomena (e.g.,
shadow, layover, and foreshortening in the Baihetan reservoir area) to analyze geometric
distortion areas of SAR data and mask the shadow area. Subsequently, the deformation time
series of reservoir bank landslides were built, and the spatial distribution characteristics
and temporal evolution rules of reservoir bank landslide deformation in Baihetan Reservoir
were analyzed based on 576 ascending and descending orbit LiCSAR data from July 2019
to April 2022 and LiCSBAS technology. Lastly, the TLCC model was used to quantitatively
analyze the lag effect of the deformation time series of reservoir bank landslides on the
variations in reservoir water level at the reservoir storage phase in the Baihetan reservoir
area. The conclusions of this study are drawn as follows:

(1) LiCSBAS technology is capable of effectively monitoring the mountainous surface
deformation in the Baihetan reservoir area. The maximum surface deformation rate ob-
tained by LiCSBAS technology in the Baihetan reservoir area from July 2019 to April 2022
was −125.5 mm/year. The standard deviations of velocity from various orbital data were
all less than 5 mm/year, and the probability density for the standard deviation of velocity
exceeding 3 mm/year was concentrated below 0.05, consistent with the error distribution
rule. The surface deformation results of the Baihetan reservoir area exhibited significant
non-linear spatial distribution characteristics. Following the river direction of the Baihetan
section of the Jinsha River, the surface subsidence areas were primarily concentrated in
the upstream part of the reservoir area, and the surface uplift areas were distributed in the
downstream river sections. The gradient change of surface deformation from high to low
was opposite to the river direction, and the distribution was correlated with the distribution
of faults and water systems in the study area to a certain extent.

(2) The reservoir bank landslides in the Baihetan reservoir area detected by LiCSBAS
technology and assisted by optical image identification were at a long-term sliding state.
Significant landslide features (e.g., boundaries, flanks, cracks, strong deformation zones,
and steep slopes) can be identified from field surveys. The time-series deformation curve
covered significant seasonal fluctuations, and the selected typical reservoir bank landslides
showed accumulated displacements exceeding 15 mm in less than two and a half years.
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Moreover, the deformation trend of reservoir bank landslides before and after reservoir
impoundment varied notably, suggesting that variations in reservoir water level during
the impoundment stage can serve as the major factor inducing landslide instability.

(3) The deformation of reservoir bank landslides in the Baihetan reservoir area did not
vary synchronously with the increase in the reservoir water level at the impoundment stage,
whereas it exerted a significant lag effect. The lag response time of the deformation time
series of reservoir bank landslides and the time series of reservoir water level variations
was nearly 5–7 days, with an average lag time of approximately 6 days. The landslide
with the shortest lag response time was located on the east bank of the reservoir, i.e., an
important addition to the research on the response mode of reservoir bank landslide sliding
to water level variations. The lag response mode of the reservoir bank landslides in the
Baihetan reservoir area may be significantly correlated with the landslide’s elevation, slope,
aspect, lithology, vegetation coverage, and the Coriolis force arising from the rotation
of the Earth. Furthermore, the lag time of some typical reservoir bank landslides was
positively correlated with vegetation coverage and negatively correlated with aspect to a
certain extent.
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