Assessing the Impact of a Railway Tunnel on Groundwater Flow Regime in Urban Areas: A Case Study of Bratislava’s TEN-T Track and Proposed Mitigation Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological, Hydrogeological, and Geomorphological Conditions
2.2. Hydrological Conditions
2.3. Technical Solution for Protecting the Petržalka Region from Groundwater Flooding
2.4. Design and Assembly of the Conceptual Model
2.5. Modeling Process
3. Results
3.1. Modeling Results Calibration Process
3.2. Modeling Results Prognosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects; Department of Economic and Social Affairs: New York, NY, USA, 2005. [Google Scholar]
- Pokrajac, D.; Howard, K. Advanced Simulation and Modeling for Urban Groundwater Management—UGROW. Environ. Model. Softw. 2013, 39, 41–51. [Google Scholar] [CrossRef]
- Attard, G.; Winiarski, T.; Rossier, Y.; Eisenlohr, L. Review: Impact of Underground Structures on the Flow of Urban Groundwater. Water 2017, 9, 135. [Google Scholar] [CrossRef]
- Pujades, E.; López, A.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Barrier Effect of Underground Structures on Aquifers. Eng. Geol. 2012, 145–146, 41–49. [Google Scholar] [CrossRef]
- Attard, G.; Rossier, Y.; Eisenlohr, L. Underground Structures Increasing the Intrinsic Vulnerability of Urban Groundwater: Sensitivity Analysis and Development of an Empirical Law Based on a Groundwater Age Modeling Approach. J. Hydrol. 2017, 552, 460–473. [Google Scholar] [CrossRef]
- Font-Capo, J.; Pujades, E.; Vàzquez-Suñé, E.; Carrera, J.; Velasco, V.; Montfort, D. Assessment of the Barrier Effect Caused by Underground Constructions on Porous Aquifers with Low Hydraulic Gradient: A Case Study of the Metro Construction in Barcelona, Spain. Eng. Geol. 2015, 196, 238–250. [Google Scholar] [CrossRef]
- De Caro, M.; Crosta, G.B.; Previati, A. Modeling the Interference of Underground Structures with Groundwater Flow and Remedial Solutions in Milan. Eng. Geol. 2020, 272, 105652. [Google Scholar] [CrossRef]
- Ricci, G.; Enrione, R.; Eusebio, A.; Crova, R. Numerical Modeling of the Interference between Underground Structures and Aquifers in Urban Environment: The Turin Subway—Line 1. In Underground Space—The 4th Dimension of Metropolises; Barták, V., Hrdina, J., Romancov, M., Zlámal, J., Eds.; Taylor & Francis Group: London, UK, 2007; pp. 649–654. ISBN 978-0-415-40807-3. [Google Scholar]
- Shivaei, S.; Hataf, N.; Pirastehfar, K. 3D Numerical Investigation of the Coupled Interaction Behavior between Mechanized Twin Tunnels and Groundwater—A Case Study: Shiraz Metro Line 2. Tunn. Undergr. Space Technol. 2020, 103, 103458. [Google Scholar] [CrossRef]
- Xue, T.; Xue, X.; Long, S.; Chen, Q.; Lu, S.; Zeng, C. Effect of Pre-Existing Underground Structures on Groundwater Flow and Strata Movement Induced by Dewatering and Excavation. Water 2023, 15, 814. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Yang, X. The Study about the Integrated Planning Theory of Surface and Underground Urban Space. Procedia Eng. 2011, 21, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Bobylev, N. Mainstreaming Sustainable Development into a City’s Master Plan: A Case of Urban Underground Space Use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Kačo, I.; Chomová, V. The Concept of Interconnecting TEN-T Corridors with the Airport and Railway Network in Bratislava. In Slovak: Koncepcia projektu železničného prepojenia koridorov TEN-T s letiskom a železničnou sieťou v Bratislave. Tunnel 2009, 18, 3–6. [Google Scholar]
- Baroková, D. Impact Assessment of Proposed Underground Railway Line in Bratislava on Groundwater Regime. In Proceedings of the SGEM 2014, GeoConference on Science and Technologies in Geology, Exploration and Mining STEF92 Technology, Sofia, Bulgaria, 17 September 2014; pp. 495–502. [Google Scholar] [CrossRef]
- Available online: https://www.mapsofworld.com/ (accessed on 20 April 2023).
- ÚGKK SR. Map Klient ZBGIS—The Basic Base of the Geographic Information System. Available online: https://zbgis.skgeodesy.sk/mkzbgis/sk/zakladna-mapa/toc?pos=48.800000,19.530000,8 (accessed on 12 March 2021).
- Šoltész, A.; Baroková, D. Modeling Solution of the Impact of the Planned TEN-T Underground Railway Line on the Groundwater Flow Regime in the Bratislava Region. In Slovak: Modelové Riešenie Vplyvu Plánovanej Podzemnej Železničnej Trasy TEN-T na Režim Podzemných vôd v Oblasti Bratislavy; Scientific Report; Faculty of Civil Engineering, STU: Bratislava, Slovakia, 2007; 65p. [Google Scholar]
- Dopravoprojekt Bratislava. Project TEN-T Connection of the TEN-T Railway Corridor with the Airport and Railway Network in Bratislava; Documentation for Zoning Decision; Dopravoprojekt Bratislava: Bratislava, Slovakia, 2008. [Google Scholar]
- Škvarka, J.; Kupka, Š.; Takáčová, M.; Šikula, G. Study of the connection of the TEN-T railway corridor with the airport and the railway network in Bratislava—Section of the railway line Bratislava Predmestie—Bratislava Filiálka—Bratislava Petržalka. In Slovak: Štúdia Prepojenia Železničného Koridoru TEN-T s Letiskom a Železničnou Sieťou v Bratislave—Úsek Železničnej Trate Bratislava Predmestie—Bratislava Filiálka—Bratislava Petržalka; Final Report of Hydro-Geological Survey; Ekogeos: Bratislava, Slovakia, 2007; 35p. [Google Scholar]
- Hálek, V.; Kratochvíl, S. Protection of the Bratislava—Petržalka Region; Final Report; VUT Brno: Brno, Czechia, 1971; 44p. [Google Scholar]
- Hydrogeological Maps [Online]. Bratislava: State Geological Institute of Dionýz Štúr. 2008. Available online: http://apl.geology.sk/hydrogeol (accessed on 2 April 2021).
- Mucha, I.; Rodák, D.; Hlavatý, Z.; Banský, Ľ.; Kučárová, K. Development of ground water regime in the area of the Gabčíkovo Hydroelectric Power Project. Slovak Geol. Mag. 1999, 5, 151–167. [Google Scholar]
- SHMI Bratislava, Hydrological Yearbook of Surface Water. Delivered in Digital Form. Available online: https://www.shmu.sk/File/Hydrologia/Monitoring_PV_PzV/Monitoring_kvantity_PV/PVkvant2020/HR2020.pdf (accessed on 10 February 2021).
- SHMI Bratislava, Hydrological Yearbook of Ground Water. Delivered in Digital Form. Available online: https://www.shmu.sk/sk/?page=2649 (accessed on 7 February 2021).
- Říha, J.; Julínek, T.; Duchan, D. Quantification of Groundwater Hazards Related to Fluvial Floods via Groundwater Flow Modeling: A Review. Water 2023, 15, 1145. [Google Scholar] [CrossRef]
- Dulovičová, R.; Velísková, Y.; Schügerl, R. Assesment of Selected Empirical Formulas for Computation of Saturated Hydraulic Conductivity. Acta Hydrol. Slovaca 2021, 22, 78–87. [Google Scholar] [CrossRef]
- Gomboš, M.; Tall, A.; Trpčevská, J.; Kandra, B.; Pavelková, D.; Balejčíková, L. Sedimentation Rate of Soil Microparticles. Arab. J. Geosci. 2018, 11, 20. [Google Scholar] [CrossRef]
- GKÚ Geodetický a kartografický Ústav. Geodetic and Cartografic Institute in Bratislava. Ortofotomosaic SR. Bratislava. 2021. Available online: https://www.geoportal.sk/sk/udaje/ortofotomozaika/ (accessed on 23 February 2021).
- Royal Haskoning. Triwaco User’s Manual; Royal Haskoning: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Jazayeri, A.; Werner, A.D. Boundary Condition Nomenclature Confusion in Groundwater Flow Modeling. Groundwater 2019, 57, 664–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkyilmazoglu, M.; Siddiqui, A.A. The instability onset of generalized isoflux mean flow using Brinkman-Darcy-Bénard model in a fluid saturated porous channel. Int. J. Therm. Sci. 2023, 188, 108249. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press, Inc.: San Diego, CA, USA, 1992; 381p. [Google Scholar]
- Otto, S.A. How to Normalize the RMSE. [Blog Post]. 7 January 2019. Available online: https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/ (accessed on 14 June 2023).
- Waterloo Hydrogeologic. Visual MODFLOW Flex 9.0 Help—Calibration Statistics. Available online: https://www.waterloohydrogeologic.com/help/vmod-flex/index.html?vm_calibration_statistics.htm (accessed on 14 June 2023).
- Zatlakovič, M.; Krčmář, D.; Hodasová, K.; Sracek, O.; Marenčák, Š.; Durdiaková, Ľ.; Bugár, A. The Impact of Groundwater Model Parametrization on Calibration Fit and Prediction Accuracy—Assessment in the Form of a Post-Audit at the SLOVNAFT Oil Refinery Site, in Slovakia. Water 2023, 15, 839. [Google Scholar] [CrossRef]
- Švasta, J.; Malík, P. Priestorové rozloženie priemerných efektívnych zrážok na území Slovenska: Spatial Distribution of Mean Effective Precipitation over Slovakia. Podzemn. Voda 2006, 12, 65–77. Available online: http://www.sah-podzemnavoda.sk/cms/e107_plugins/content/content.php?content.295 (accessed on 8 February 2021).
Model | Average GWL | Maximum GWL |
---|---|---|
Minimum deviation (m) | −0.86 | −0.95 |
Maximum deviation (m) | +0.72 | +0.83 |
RMSE (m) | 0.127 | 0.288 |
NRMS (%) | 1.46 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroková, D.; Šoltész, A.; Červeňanská, M. Assessing the Impact of a Railway Tunnel on Groundwater Flow Regime in Urban Areas: A Case Study of Bratislava’s TEN-T Track and Proposed Mitigation Measures. Water 2023, 15, 2446. https://doi.org/10.3390/w15132446
Baroková D, Šoltész A, Červeňanská M. Assessing the Impact of a Railway Tunnel on Groundwater Flow Regime in Urban Areas: A Case Study of Bratislava’s TEN-T Track and Proposed Mitigation Measures. Water. 2023; 15(13):2446. https://doi.org/10.3390/w15132446
Chicago/Turabian StyleBaroková, Dana, Andrej Šoltész, and Michaela Červeňanská. 2023. "Assessing the Impact of a Railway Tunnel on Groundwater Flow Regime in Urban Areas: A Case Study of Bratislava’s TEN-T Track and Proposed Mitigation Measures" Water 15, no. 13: 2446. https://doi.org/10.3390/w15132446
APA StyleBaroková, D., Šoltész, A., & Červeňanská, M. (2023). Assessing the Impact of a Railway Tunnel on Groundwater Flow Regime in Urban Areas: A Case Study of Bratislava’s TEN-T Track and Proposed Mitigation Measures. Water, 15(13), 2446. https://doi.org/10.3390/w15132446