Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges
Abstract
:1. Introduction
2. Ecohydrological Processes
2.1. Ecological Processes
2.1.1. Ecosystem Structure and Function
2.1.2. Carbon Cycle
2.1.3. Ecological Restoration
2.2. Hydrological Processes
2.2.1. Watershed Water Cycle
2.2.2. Urbanization Effects on the Water Cycle
3. Ecohydrological Models
4. Integrated Watershed Management
5. Future Research Needs
5.1. Long-Term Datasets at Multiple Scales
5.2. Attribution Analysis and Scale Effect
5.3. Understanding the Response of Watersheds to Climate Change and Land Use Change
5.4. Integrated Watershed Management
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Flotemersch, J.E.; Leibowitz, S.G.; Hill, R.A.; Stoddard, J.L.; Thoms, M.C.; Tharme, R.E. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds. River Res. Appl. 2016, 32, 1654–1671. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Gemmer, M.; Bai, Y.G.; Su, B.D.; Mao, W.Y. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Wang, W.G.; Shao, Q.X.; Yang, T.; Peng, S.Z.; Xing, W.Q.; Sun, F.C.; Luo, Y.F. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Micklin, P.P. Desiccation of the Aral Sea: A water management disaster in the Soviet Union. Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, P.P.; Sun, Y.T.; Wang, S.T.; Wang, S.M.; Lyu, J.Q.; Zhou, M.M.; Nakagami, K.; Takara, K.; Nover, D. Historical assessment and future sustainability challenges of Egyptian water resources management. J. Clean. Prod. 2020, 263, 121154. [Google Scholar] [CrossRef]
- Day, J.W.; Lane, R.R.; D’Elia, C.F.; Wiegman, A.R.H.; Rutherford, J.S.; Shaffer, G.P.; Brantley, C.G.; Kemp, G.P. Large infrequently operated river diversions for Mississippi delta restoration. Estuar. Coast. Shelf Sci. 2016, 183, 292–303. [Google Scholar] [CrossRef]
- Luo, P.P.; Zhou, M.; Deng, H.; Lyu, J.; Cao, W.; Takara, K.; Nover, D.; Schladow, S.G. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018, 615, 1355–1363. [Google Scholar] [CrossRef]
- Yousefi, S.; Moradi, H.R.; Keesstra, S.; Pourghasemi, H.R.; Navratil, O.; Hooke, J. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran. Geocarto Int. 2019, 34, 276–292. [Google Scholar] [CrossRef]
- Wilcox, B.P. Transformative ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology 2010, 3, 126–130. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Sun, G.; McNulty, S.G.; Cohen, E.C.; Myers, J.A.M. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US. Hydrol. Earth Syst. Sci. 2012, 16, 2839–2857. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.R.; Levin, N.; Jones, K.R.; Abdullah, S.; Hongoh, J.; Hermoso, V.; Kark, S. Navigating the complexities of coordinated conservation along the river Nile. Sci. Adv. 2019, 5, eaau7668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council, N.R. Hydrologic Effects of a Changing Forest Landscape; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Smettem, K. Welcome address for the new’Ecohydrology’Journal. Ecohydrology 2008, 1, 1–2. [Google Scholar]
- Li, L.; Gou, M.; Wang, N.; Ma, W.; Xiao, W.; Liu, C.; La, L. Landscape configuration mediates hydrology and nonpoint source pollution under climate change and agricultural expansion. Ecol. Indic. 2021, 129, 107959. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, Z.Y.; Tong, L.J.; Khalifa, M.; Wang, Q.; Gang, C.C.; Wang, Z.Q.; Li, J.L.; Sun, Z.G. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Stosch, K.C.; Quilliam, R.S.; Bunnefeld, N.; Oliver, D.M. Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision. Water 2017, 9, 677. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liu, G.; Casazza, M.; Dumontet, S.; Yang, Z. Ecosystem restoration programs challenges under climate and land use change. Sci. Total Environ. 2022, 807, 150527. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.H.; Zhang, M.F.; Liu, W.F.; Fan, H.B.; Zhou, G.Y.; Giles-Hansen, K.; Liu, S.R.; Wang, Y. Forest cover change and water yield in large forested watersheds: A global synthetic assessment. Ecohydrology 2017, 10, e1838. [Google Scholar] [CrossRef]
- Wei, X.H.; Li, Q.; Zhang, M.F.; Giles-Hansen, K.; Liu, W.F.; Fan, H.B.; Wang, Y.; Zhou, G.Y.; Piao, S.L.; Liu, S.R. Vegetation cover-another dominant factor in determining global water resources in forested regions. Glob. Chang. Biol. 2018, 24, 786–795. [Google Scholar] [CrossRef]
- Alcamo, J.; Grassl, H.; Hoff, H.; Kabat, P.; Lansigan, F.; Lawford, R.; Lattenmaier, D.; Lévêque, C.; Meybeck, M.; Naiman, R.; et al. The Global Water System Project: Science Framework and Implementation Activities; GWSP/ESSP: Bonn, Germany, 2005. [Google Scholar]
- Montanari, A.; Young, G.; Savenije, H.; Hughes, D.; Wagener, T.; Ren, L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S. “Panta Rhei—Everything flows”: Change in hydrology and society—The IAHS scientific decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Griggs, D.; Smith, M.S.; Rockström, J.; Öhman, M.C.; Gaffney, O.; Glaser, G.; Kanie, N.; Noble, I.; Steffen, W.; Shyamsundar, P. An integrated framework for sustainable development goals. Ecol. Soc. 2014, 19, 49. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, H.-J.; Park, S.-Y.; Na, J.-M. Twenty-three unsolved problems in hydrology-a community perspective. Water Future 2020, 53, 44–65. [Google Scholar]
- Field, C.B.; Barros, V.R. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Huylenbroeck, L.; Latte, N.; Lejeune, P.; Georges, B.; Claessens, H.; Michez, A. What Factors Shape Spatial Distribution of Biomass in Riparian Forests? Insights from a LiDAR Survey over a Large Area. Forests 2021, 12, 371. [Google Scholar] [CrossRef]
- Good, S.P.; Caylor, K.K. Climatological determinants of woody cover in Africa. Proc. Natl. Acad. Sci. USA 2011, 108, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tietjen, B.; Jeltsch, F.; Zehe, E.; Classen, N.; Groengroeft, A.; Schiffers, K.; Oldeland, J. Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology 2010, 3, 226–237. [Google Scholar] [CrossRef]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodriguez-Gonzalez, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Adams, H.D.; Luce, C.H.; Breshears, D.D.; Allen, C.D.; Weiler, M.; Hale, V.C.; Smith, A.M.S.; Huxman, T.E. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology 2012, 5, 145–159. [Google Scholar] [CrossRef]
- Wood, P.J.; Hannah, D.M.; Sadler, J.P. Hydroecology and Ecohydrology: Past, Present and Future; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zalewski, M. Ecohydrology and Hydrologic Engineering: Regulation of Hydrology-Biota Interactions for Sustainability. J. Hydrol. Eng. 2015, 20, A4014012. [Google Scholar] [CrossRef]
- Hamel, P.; Riveros-Iregui, D.; Ballari, D.; Browning, T.; Celleri, R.; Chandler, D.; Chun, K.P.; Destouni, G.; Jacobs, S.; Jasechko, S.; et al. Watershed services in the humid tropics: Opportunities from recent advances in ecohydrology. Ecohydrology 2018, 11, e1921. [Google Scholar] [CrossRef]
- Rockstrom, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jagerskog, A.; Kummu, M.; Lannerstad, M.; Meybeck, M.; Molden, D.; et al. The unfolding water drama in the Anthropocene: Towards a resilience-based perspective on water for global sustainability. Ecohydrology 2014, 7, 1249–1261. [Google Scholar] [CrossRef]
- Msuya, T.S.; Lalika, M.C.S. Linking Ecohydrology and Integrated Water Resources Management: Institutional challenges for water management in the Pangani Basin, Tanzania. Ecohydrol. Hydrobiol. 2018, 18, 174–191. [Google Scholar] [CrossRef]
- Liu, Y.L.; Du, J.Q.; Ding, B.Y.; Liu, Y.X.; Liu, W.J.; Xia, A.Q.; Huo, R.; Ran, Q.W.; Hao, Y.B.; Cui, X.Y.; et al. Water resource conservation promotes synergy between economy and environment in China’s northern drylands. Front. Environ. Sci. Eng. 2022, 16, 28. [Google Scholar] [CrossRef]
- Carraro, L.; Toffolon, M.; Rinaldo, A.; Bertuzzo, E. SESTET: A spatially explicit stream temperature model based on equilibrium temperature. Hydrol. Process. 2020, 34, 355–369. [Google Scholar] [CrossRef]
- Ma, Y.M.A.; Yue, X.; Zhou, H.; Gong, C.; Lei, Y.D.; Tian, C.G.; Cao, Y. Identifying the dominant climate-driven uncertainties in modeling gross primary productivity. Sci. Total Environ. 2021, 800, 149518. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, J.; Li, X.; Yang, D.; Hu, Z.; Sun, S.; Sun, X. Critical advance in understanding ecohydrological process of terrestrial vegetation: From leaf to watershed scale. Chin. Sci. Bull. 2021, 66, 3667–3683. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Qigang, W.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar] [CrossRef]
- Huang, J.P.; Ji, M.X.; Xie, Y.K.; Wang, S.S.; He, Y.L.; Ran, J.J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.A.; Abd-Elrahman, A.; Escobedo, F.J.; Cropper, W.P., Jr.; Martin, T.A.; Timilsina, N. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 2017, 199, 158–171. [Google Scholar] [CrossRef]
- Medvigy, D.; Wofsy, S.C.; Munger, J.W.; Moorcroft, P.R. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc. Natl. Acad. Sci. USA 2010, 107, 8275–8280. [Google Scholar] [CrossRef] [Green Version]
- de Moraes, K.F.; Santos, M.P.D.; Goncalves, G.S.R.; de Oliveira, G.L.; Gomes, L.B.; Lima, M.G.M. Climate change and bird extinctions in the Amazon. PLoS ONE 2020, 15, e0236103. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, M.A.; Alaniz, A.J.; Vergara, P.M.; Hernandez-Valderrama, C.; Fierro, A.; Toledo, G.; Gamin, J. Climate-induced tree senescence leads to a transient increase in reproductive success of a large woodpecker species. Sci. Total Environ. 2022, 806, 150604. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Cerrillo, R.M.; Gonzalez-Moreno, P.; Ruiz-Gomez, F.J.; Sanchez-Cuesta, R.; Gazol, A.; Camarero, J.J. Drought stress and pests increase defoliation and mortality rates in vulnerable Abies pinsapo forests. For. Ecol. Manag. 2022, 504, 119824. [Google Scholar] [CrossRef]
- North, M.P.; Tompkins, R.E.; Bernal, A.A.; Collins, B.M.; Stephens, S.L.; York, R.A. Operational resilience in western US frequent-fire forests. For. Ecol. Manag. 2022, 507, 120004. [Google Scholar] [CrossRef]
- San-Jose, M.; Werden, L.; Peterson, C.J.; Oviedo-Brenes, F.; Zahawi, R.A. Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia 2021, 197, 795–806. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Hydrologic dynamics and ecosystem structure. Water Sci. Technol. 2003, 47, 18–24. [Google Scholar] [CrossRef]
- Wasser, L.; Chasmer, L.; Day, R.; Taylor, A. Quantifying land use effects on forested riparian buffer vegetation structure using LiDAR data. Ecosphere 2015, 6, 1–17. [Google Scholar] [CrossRef]
- Zavaleta, E.; Pasari, J.; Moore, J.; Hernández, D.; Suttle, K.B.; Wilmers, C.C. Ecosystem Responses to Community Disassembly. Ann. N. Y. Acad. Sci. 2009, 1162, 311–333. [Google Scholar] [CrossRef]
- Ekka, A.; Pande, S.; Jiang, Y.; der Zaag, P.V. Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective. Water 2020, 12, 2706. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Klimaszyk, P.; Goldyn, R. Water Quality of Freshwater Ecosystems in a Temperate Climate. Water 2020, 12, 2643. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Runting, R.K.; Bryan, B.A.; Dee, L.E.; Maseyk, F.J.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.P.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Chang. Biol. 2017, 23, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingjun, Z.; Lihua, Z. The influence of climate change on the value of Chinese forest ecosystem services. J. Arid Land Resour. Environ. 2004, 18, 40–43. [Google Scholar]
- Wu, K.-Y.; Ye, X.-Y.; Qi, Z.-F.; Zhang, H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Process. 2017, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Manizza, M.; Buitenhuis, E.T.; Le Quere, C. Sensitivity of global ocean biogeochemical dynamics to ecosystem structure in a future climate. Geophys. Res. Lett. 2010, 37, 37. [Google Scholar] [CrossRef] [Green Version]
- Hood, J.M.; Benstead, J.P.; Cross, W.F.; Huryn, A.D.; Johnson, P.W.; Gislason, G.M.; Junker, J.R.; Nelson, D.; Olafsson, J.S.; Tran, C. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Glob. Chang. Biol. 2018, 24, 1069–1084. [Google Scholar] [CrossRef]
- Lin, L.; Band, L.E.; Vose, J.M.; Hwang, T.; Miniat, C.F.; Bolstad, P.V. Ecosystem processes at the watershed scale: Influence of flowpath patterns of canopy ecophysiology on emergent catchment water and carbon cycling. Ecohydrology 2019, 12, e2093. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 112, 108834. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.; Camps-Valls, G.; Chirici, G.; Mauri, A. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef] [PubMed]
- Artz, R. Peatland Mapping and Monitoring-Recommendations and Technical Overview; Report to FAO; FAO: Rome, Italy, 2020. [Google Scholar]
- Escobar, D.; Belyazid, S.; Manzoni, S. Back to the Future: Restoring Northern Drained Forested Peatlands for Climate Change Mitigation. Front. Environ. Sci. 2022, 10, 834371. [Google Scholar] [CrossRef]
- Kempe, S. Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. J. Geophys. Res. 1984, 89, 4657–4676. [Google Scholar] [CrossRef]
- Ito, A.; Inatomi, M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles. J. Hydrometeorol. 2012, 13, 681–694. [Google Scholar] [CrossRef]
- Mayrinck, R.C.; Laroque, C.P.; Amichev, B.Y.; Van Rees, K. Above-and below-ground carbon sequestration in Shelterbelt trees in Canada: A review. Forests 2019, 10, 922. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zuo, X.; Zang, C. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agric. For. Meteorol. 2021, 303, 108377. [Google Scholar] [CrossRef]
- Yu, T.; Liu, P.; Zhang, Q.; Ren, Y.; Yao, J. Detecting Forest Degradation in the Three-North Forest Shelterbelt in China from Multi-Scale Satellite Images. Remote Sens. 2021, 13, 1131. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Zhao, Y.-G.; Zhang, J.-C. Ecological restoration projects did not increase the value of all ecosystem services in Northeast China. For. Ecol. Manag. 2021, 495, 119340. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46, W05301. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Wu, G.; Wu, Q.; Zhang, F.; Niu, Z.; Hu, H.-Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef] [Green Version]
- UNESCO (United Nations Educational, S.a.C.O.). Water for a Sustainable World. The United Nations World Water Development Report 2015; UNESCO: Paris, France, 2015. [Google Scholar]
- Loudiere, D.; Gourbesville, P. World Water Development Report—Water and Climate Change. Houille Blanche-Rev. Int. De L Eau 2020, 3, 76–81. [Google Scholar] [CrossRef]
- Young, M.; Esau, C. CHARTING OUR WATER FUTURE: Economic frameworks to inform decision-making. In Investing in Water for a Green Economy; Routledge: Abingdon, UK, 2015; pp. 67–79. [Google Scholar]
- Colloff, M.J.; Pittock, J. Mind the Gap! Reconciling Environmental Water Requirements with Scarcity in the Murray-Darling Basin, Australia. Water 2022, 14, 208. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Li, L.Q.; Liu, Z.H.; Chen, X.N.; Huang, H.Y. Real-Time Control of the Middle Route of South-to-North Water Diversion Project. Water 2021, 13, 97. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Z.L.; Zeng, Y.C.; Yan, H.Y.; Li, Y.P.; Yuan, W.H. Connection between Anthropogenic Water Diversion and Hydrodynamic Condition in Plain River Network. Water 2021, 13, 3596. [Google Scholar] [CrossRef]
- Yao, X.L.; Zhang, L.; Zhang, Y.L.; Du, Y.Y.; Jiang, X.Y.; Li, M. Water diversion projects negatively impact lake metabolism: A case study in Lake Dazong, China. Sci. Total Environ. 2018, 613, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-M.; Liu, W.-W.; Zhao, E.; Li, R.; Muñoz-Carpena, R. Water quality variability in the middle and down streams of Han River under the influence of the Middle Route of South-North Water diversion project, China. J. Hydrol. 2019, 569, 218–229. [Google Scholar] [CrossRef]
- Pederson, N.; Hessl, A.E.; Baatarbileg, N.; Anchukaitis, K.J.; Di Cosmo, N. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc. Natl. Acad. Sci. USA 2014, 111, 4375–4379. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Gillett, N.; Achutarao, K.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.; Kosaka, Y.; McGregor, S. Human Influence on the Climate System: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 423–552. [Google Scholar] [CrossRef]
- Fuglestvedt, J.; Masson-Delmotte, V.; Zhai, P.; Pirani, A. Towards the sixth assessment report of the intergovernmental panel on climate change (IPCC). Moscone West. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.J.; Wang, T.H.; Yang, D.W.; Yang, Y.T. Streamflow decline threatens water security in the upper Yangtze river. J. Hydrol. 2022, 606, 127448. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Asrar, G.R. Challenges and Opportunities in Water Cycle Research: WCRP Contributions. Surv. Geophys. 2014, 35, 515–532. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.L.; Wu, X.S.; Yin, J.B.; Qian, S.N.; Zhan, J. Changes in Extreme Precipitation across 30 Global River Basins. Water 2020, 12, 1527. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, G.; Liu, G. Evaluation of virtual water trade in the Yellow River Delta, China. Sci. Total Environ. 2021, 784, 147285. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.D.; Nunes, A.M.B.; Libonati, R.; Ambrizzi, T. Projections of subcontinental changes in seasonal precipitation over the two major river basins in South America under an extreme climate scenario. Clim. Dyn. 2022, 58, 1147–1169. [Google Scholar] [CrossRef]
- Li, J.J.; Huo, R.; Chen, H.; Zhao, Y.; Zhao, T.H. Comparative Assessment and Future Prediction Using CMIP6 and CMIP5 for Annual Precipitation and Extreme Precipitation Simulation. Front. Earth Sci. 2021, 9, 9. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Munoz, S.E.; Dee, S.G. El Nino increases the risk of lower Mississippi River flooding. Sci. Rep. 2017, 7, 1772. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A. Analysis of climatic trends in the upper Blue Nile basin based on homogenized data. Theor. Appl. Climatol. 2021, 146, 767–780. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.X.; Li, Z.B.; Li, P.; Xu, G.C.; Cheng, Y.T.; Zhang, X.; Yang, Z. The effect of meteorological drought on vegetation cover in the Yellow River basin, China. Int. J. Climatol. 2021. [Google Scholar] [CrossRef]
- Keellings, D.; Engstrom, J. The Future of Drought in the Southeastern US: Projections from Downscaled CMIP5 Models. Water 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Kumar, T.V.L.; Thakur, M.K.; Buriti, C.D. Long-Term Spatiotemporal Variation of Droughts in the Amazon River Basin. Water 2021, 13, 351. [Google Scholar] [CrossRef]
- Taye, M.; Sahlu, D.; Zaitchik, B.F.; Neka, M. Evaluation of Satellite Rainfall Estimates for Meteorological Drought Analysis over the Upper Blue Nile Basin, Ethiopia. Geosciences 2020, 10, 352. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, S.; Luo, P.; Zha, X.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D. A Quantitative Analysis of the Influence of Temperature Change on the Extreme Precipitation. Atmosphere 2022, 13, 612. [Google Scholar] [CrossRef]
- Sugg, M.; Runkle, J.; Leeper, R.; Bagli, H.; Golden, A.; Handwerger, L.H.; Magee, T.; Moreno, C.; Reed-Kelly, R.; Taylor, M.; et al. A scoping review of drought impacts on health and society in North America. Clim. Change 2020, 162, 1177–1195. [Google Scholar] [CrossRef]
- Jianzhong, W.; Georgakakos, K.P. Estimation of potential evapotranspiration in the mountainous Panama Canal watershed. Hydrol. Process. 2007, 21, 1901–1917. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Zhou, G.; Wan, J.; Zhang, L.; Niu, J.; Sang, Y.; He, J. Evapotranspiration and Soil Moisture Dynamics in a Temperate Grassland Ecosystem in Inner Mongolia, China. Trans. ASABE 2016, 59, 577–590. [Google Scholar] [CrossRef]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; Van Dijk, A.I.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Swann, A.L.; Hoffman, F.M.; Koven, C.D.; Randerson, J.T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA 2016, 113, 10019–10024. [Google Scholar] [CrossRef] [Green Version]
- Lemordant, L.; Gentine, P.; Swann, A.S.; Cook, B.I.; Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl. Acad. Sci. USA 2018, 115, 4093–4098. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Roderick, M.L.; Zhang, S.; McVicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Chang. 2019, 9, 44–48. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, X.C.; Werner, A.D.; Li, Y.L.; Yao, J.; Li, X.H.; Xu, C.Y. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts. J. Hydrol. 2014, 517, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Bargrizan, S.; Biswas, T.K.; Joehnk, K.D.; Mosley, L.M. Sustained high CO2 concentrations and fluxes from Australia’s largest river system. Mar. Freshw. Res. 2022. [Google Scholar] [CrossRef]
- Lei, T.; Pang, Z.; Wang, X.; Li, L.; Fu, J.; Kan, G.; Zhang, X.; Ding, L.; Li, J.; Huang, S.; et al. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review. Water 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Borris, M.; Viklander, M.; Gustafsson, A.M.; Marsalek, J. Modelling the effects of changes in rainfall event characteristics on TSS loads in urban runoff. Hydrol. Process. 2014, 28, 1787–1796. [Google Scholar] [CrossRef]
- Rui, Y.H.; Fu, D.F.; Minh, H.D.; Radhakrishnan, M.; Zevenbergen, C.; Pathirana, A. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know? Water 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Nagrodski, A.; Suski, C.D.; Cooke, S.J. Health, condition, and survival of creek chub (Semotilus atromaculatus) across a gradient of stream habitat quality following an experimental cortisol challenge. Hydrobiologia 2013, 702, 283–296. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Wu, S.; Wu, X.; Ptak, M.; Li, X.; Sojka, M.; Graf, R.; Dai, J.; Zhu, S. Quantifying the impacts of climate variation, damming, and flow regulation on river thermal dynamics: A case study of the Włocławek Reservoir in the Vistula River, Poland. Environ. Sci. Eur. 2022, 34, 3. [Google Scholar] [CrossRef]
- Wen, L.J.; Jin, J.M. Modelling and analysis of the impact of irrigation on local arid climate over northwest China. Hydrol. Process. 2012, 26, 445–453. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.-i.; Saito, M.; Shimizu, Y.; Iwata, T. Effects of forest growth in different vegetation communities on forest catchment water balance. Sci. Total Environ. 2022, 809, 151159. [Google Scholar] [CrossRef]
- Peng, W.; Sonne, C.; Lam, S.S.; Ok, Y.S.; Alstrup, A.K. The ongoing cut-down of the Amazon rainforest threatens the climate and requires global tree planting projects: A short review. Environ. Res. 2020, 181, 108887. [Google Scholar] [CrossRef] [PubMed]
- Qingming, W.; Shan, J.; Jiaqi, Z.; Guohua, H.; Yong, Z.; Yongnan, Z.; Xin, H.; Haihong, L.; Lizhen, W.; Fan, H.; et al. Effects of vegetation restoration on evapotranspiration water consumption in mountainous areas and assessment of its remaining restoration space. J. Hydrol. 2022, 605, 127259. [Google Scholar] [CrossRef]
- Odoulami, R.C.; Abiodun, B.J.; Ajayi, A.E. Modelling the potential impacts of afforestation on extreme precipitation over West Africa. Clim. Dyn. 2019, 52, 2185–2198. [Google Scholar] [CrossRef]
- Wang, S.; Cao, Z.; Luo, P.; Zhu, W. Spatiotemporal Variations and Climatological Trends in Precipitation Indices in Shaanxi Province, China. Atmosphere 2022, 13, 744. [Google Scholar] [CrossRef]
- Branch, O.; Wulfmeyer, V. Deliberate enhancement of rainfall using desert plantations. Proc. Natl. Acad. Sci. USA 2019, 116, 18841–18847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Sun, P.S.; Huettmann, F.; Liu, S.R. Where should China practice forestry in a warming world? Glob. Chang. Biol. 2021, 28, 2461–2475. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.L.; Li, L.Z.X.; Chen, A.P.; Wang, X.H.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.S.; Zeng, Z.Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Xu, C.Y.; Allen, C.D.; Hartmann, H.; Wei, X.H.; Yakir, D.; Wu, X.C.; Yu, P.T. Nature-based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 2021, 28, 2202–2220. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y. Contribution of human and climate change impacts to changes in streamflow of Canada. Sci. Rep. 2015, 5, 17767. [Google Scholar] [CrossRef]
- Spracklen, D.; Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 2015, 42, 9546–9552. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, J. Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming. Environ. Res. Lett. 2019, 14, 4011. [Google Scholar] [CrossRef]
- Levy, M.; Lopes, A.; Cohn, A.; Larsen, L.; Thompson, S. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 2018, 45, 3520–3530. [Google Scholar] [CrossRef]
- Dos Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic response to land use change in a large basin in eastern Amazon. Water 2018, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Pei, H.W.; Liu, M.Z.; Shen, Y.J.; Xu, K.; Zhang, H.J.; Li, Y.L.; Luo, J.M. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Sci. Total Environ. 2022, 809, 151153. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Vose, J.M.; Sun, G.; Ford, C.R.; Bredemeier, M.; Otsuki, K.; Wei, X.; Zhang, Z.; Zhang, L. Forest ecohydrological research in the 21st century: What are the critical needs? Ecohydrology 2011, 4, 146–158. [Google Scholar] [CrossRef]
- Fan, G.; Xia, J.; Song, J.; Sun, H.; Liang, D. Research on application of ecohydrology to disaster prevention and mitigation in China: A review. Water Supply 2021, 22, 2946–2958. [Google Scholar] [CrossRef]
- Gibson, A.J.; Verdon-Kidd, D.C.; Hancock, G.R.; Willgoose, G. Catchment-scale drought: Capturing the whole drought cycle using multiple indicators. Hydrol. Earth Syst. Sci. 2020, 24, 1985–2002. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.H.; Liu, Q.; Li, C.W.; Kharel, G.; An, L.X.; Stebler, E.; Zhong, Y.; Zou, C.B. Interactive Effect of Meteorological Drought and Vegetation Types on Root Zone Soil Moisture and Runoff in Rangeland Watersheds. Water 2019, 11, 2357. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Sheng, M.Y.; Yang, D.W.; Tang, L.H. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yi, Y.R.; Li, X.D.; Yuan, Y.J.; Yang, S.H.; Li, X.; Zhu, Z.Q.; Lei, M.Q.; Meng, Q.F.; Zhai, Y.Q. Detecting changes in water level caused by climate, land cover and dam construction in interconnected river-lake systems. Sci. Total Environ. 2021, 788, 147692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, G.H.; Tang, Z.Y.; Wen, X.; Zhang, H.R.; Ding, Z.Y.; Li, X.; Bian, X.S.; Hu, Z.Y. Changes in Flood Regime of the Upper Yangtze River. Front. Earth Sci. 2021, 9, 9. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Duan, Q.Y.; Li, J.H.; Zheng, H.Y.; Gou, J.J. Xiaolangdi Dam: A valve for streamflow extremes on the lower Yellow River. J. Hydrol. 2022, 606, 127426. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Jin, G.Q.; Tang, H.W.; Zhang, S.Y.; Zhu, D.; Xu, J. How does the three gorges dam affect the spatial and temporal variation of water levels in the Poyang Lake? J. Hydrol. 2022, 605, 127356. [Google Scholar] [CrossRef]
- Lyu, J.Q.; Mo, S.H.; Luo, P.P.; Zhou, M.M.; Shen, B.; Nover, D. A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quat. Int. 2019, 527, 1–11. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Penny, G.; Dar, Z.A.; Muller, M.F. Climatic and anthropogenic drivers of a drying Himalayan river. Hydrol. Earth Syst. Sci. 2022, 26, 375–395. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.T.; Wang, W.Z.; Ren, D.; Zhao, Y.B.; Wu, X.B. Separating climate change and human contributions to variations in streamflow and its components using eight time-trend methods. Hydrol. Process. 2019, 33, 383–394. [Google Scholar] [CrossRef]
- Zhao, F.F.; Xu, Z.X.; Zhang, L. Changes in streamflow regime following vegetation changes from paired catchments. Hydrol. Process. 2012, 26, 1561–1573. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.Y.; Singh, V.P.; Gu, X.H.; Chen, X.H. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrol. Process. 2016, 30, 2562–2576. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Lai, C.G.; Wang, Z.L.; Chen, X.H.; Zeng, Z.Y.; Chen, J.C.; Bai, X.Y. Quantitative Evaluation of the Impact of Climate Change and Human Activity on Runoff Change in the Dongjiang River Basin, China. Water 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Z.; Chang, J.X.; Huang, Q.; Chen, Y.T.; Leng, G.Y. Quantifying the Relative Contribution of Climate and Human Impacts on Runoff Change Based on the Budyko Hypothesis and SVM Model. Water Resour. Manag. 2016, 30, 2377–2390. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Zhan, C.S.; Jiang, S.S.; Sun, F.B.; Jia, Y.W.; Niu, C.W.; Yue, W.F. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, M.; Li, Z.J.; Li, Q.L.; Hashim, S.; Zaman, M. Quantifying the hydrological response to water conservation measures and climatic variability in the Yihe River Basin, China. Outlook Agric. 2015, 44, 273–282. [Google Scholar] [CrossRef]
- Nagy, R.C.; Lockaby, B.G.; Helms, B.; Kalin, L.; Stoeckel, D. Water Resources and Land Use and Cover in a Humid Region: The Southeastern United States. J. Environ. Qual. 2011, 40, 867–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Wang, K.B.; Lin, Y.S.; Shi, W.Y.; Song, Y.; He, X.H. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Overeem, I.; Kettner, A.J.; Gao, S.; Syvitski, J.P.M. Modeling flood dynamics along the superelevated channel belt of the Yellow River over the last 3000 years. J. Geophys. Res.-Earth Surf. 2015, 120, 1321–1351. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Lin, B.L.; Sun, J.; Nima, L.Z.; Da, P.; Dawa, J.M. Suspended Sediment Transport Responses to Increasing Human Activities in a High-Altitude River: A Case Study in a Typical Sub-Catchment of the Yarlung Tsangpo River. Water 2020, 12, 952. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yin, X.; Zhang, X.; Liu, B.; Wang, Z. Effect of soil and water conservation measures on the reduction of runoff and sediment load in a loess hilly-gully region. J. Soil Water Conserv. 2021, 76, 52–64. [Google Scholar] [CrossRef]
- Zhang, X.; She, D. Quantifying the sediment reduction efficiency of key dams in the Coarse Sandy Hilly Catchments region of the Yellow River basin, China. J. Hydrol. 2021, 602, 126721. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Chen, Z.Y.; Yu, S.; Zhang, Q.; Wang, Y.; Hao, J.W. Erosion-control mechanism of sediment check dams on the Loess Plateau. Int. J. Sediment Res. 2021, 36, 668–677. [Google Scholar] [CrossRef]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Borsuah, J.F.; Messer, T.L.; Snow, D.D.; Comfort, S.D.; Mittelstet, A.R. Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments. Water 2020, 12, 3388. [Google Scholar] [CrossRef]
- Chu, X.D.; Wu, D.S.; Wang, H.; Zheng, F.W.; Huang, C.; Hu, L. Spatial Distribution Characteristics and Risk Assessment of Nutrient Elements and Heavy Metals in the Ganjiang River Basin. Water 2021, 13, 3367. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Qian, Y.; Chakraborty, T.C.; Li, J.; Li, D.; He, C.; Sarangi, C.; Chen, F.; Yang, X.; Leung, L.R. Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions. Adv. Atmos. Sci. 2022, 39, 819–860. [Google Scholar] [CrossRef]
- Diem, J.E.; Pangle, L.A.; Milligan, R.A.; Adams, E.A. Intra-annual variability of urban effects on streamflow. Hydrol. Process. 2021, 35, e14371. [Google Scholar] [CrossRef]
- Han, L.; Yu, X.; Xu, Y.; Deng, X.; Yang, L.; Li, Z.; Lv, D.; Xiao, M. Enhanced Summertime Surface Warming Effects of Long-Term Urbanization in a Humid Urban Agglomeration in China. J. Geophys. Res. Atmos. 2021, 126, e2021JD035009. [Google Scholar] [CrossRef]
- Zhong, S.X.; Zhuang, Y.; Hu, S.; Chen, Z.T.; Ding, W.Y.; Feng, Y.R.; Deng, T.; Liu, X.T.; Zhang, Y.X.; Xu, D.S.; et al. Verification and Assessment of Real-time Forecasts of Two Extreme Heavy Rain Events in Zhengzhou by Operational NWP Models. J. Trop. Meteorol. 2021, 27, 406–417. [Google Scholar] [CrossRef]
- Visca, A.; Barra Caracciolo, A.; Grenni, P.; Rolando, L.; Mariani, L.; Rauseo, J.; Spataro, F.; Monostory, K.; Sperlagh, B.; Patrolecco, L. Legacy and Emerging Pollutants in an Urban River Stretch and Effects on the Bacterioplankton Community. Water 2021, 13, 3402. [Google Scholar] [CrossRef]
- Sah, R.; Baroth, A.; Hussain, S.A. First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River. Environ. Pollut. 2020, 263, 114229. [Google Scholar] [CrossRef]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.R.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Hasan Niloy, M.N.; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, Z.; He, C.; Peng, H.; Xia, P.; Nie, Y. The Regional Hydro-Ecological Simulation System for 30 Years: A Systematic Review. Water 2020, 12, 2878. [Google Scholar] [CrossRef]
- John, A.; Horne, A.; Nathan, R.; Stewardson, M.; Webb, J.A.; Wang, J.; Poff, N.L. Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk. Wiley Interdiscip. Rev.-Clim. Chang. 2021, 12, 12. [Google Scholar] [CrossRef]
- Poff, N.L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zheng, Y.; Yang, D.; Wu, F.; Tian, Y.; Han, F.; Gao, B.; Li, H.; Zhang, Y.; et al. Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: A watershed system model for the Heihe River basin. Environ. Model. Softw. 2021, 141, 105058. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Y.; Feng, Q.; Western, A.W.; Zhou, S. A framework for incorporating social processes in hydrological models. Curr. Opin. Environ. Sustain. 2018, 33, 42–50. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Zeiger, S.J. A Case-Study Application of the Experimental Watershed Study Design to Advance Adaptive Management of Contemporary Watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, G.S. Integrated management of the Ganga River: An ecohydrological approach. Ecohydrol. Hydrobiol. 2020, 20, 153–174. [Google Scholar] [CrossRef]
- Janker, J.; Mann, S.; Rist, S. What is Sustainable Agriculture? Critical Analysis of the International Political Discourse. Sustainability 2018, 10, 4707. [Google Scholar] [CrossRef] [Green Version]
- Sargac, J.; Johnson, R.K.; Burdon, F.J.; Truchy, A.; Risnoveanu, G.; Goethals, P.; McKie, B.G. Forested Riparian Buffers Change the Taxonomic and Functional Composition of Stream Invertebrate Communities in Agricultural Catchments. Water 2021, 13, 1028. [Google Scholar] [CrossRef]
- Nottingham, E.R.; Messer, T.L. A Literature Review of Wetland Treatment Systems Used to Treat Runoff Mixtures Containing Antibiotics and Pesticides from Urban and Agricultural Landscapes. Water 2021, 13, 3631. [Google Scholar] [CrossRef]
- Ayling, S.M.; Phillips, N.; Bunney, S. Allotments in the Future: Building Resilience to Climate Change through Improved Site Design and Efficient Water Practices. Water 2021, 13, 1457. [Google Scholar] [CrossRef]
- Zha, X.B.; Luo, P.P.; Zhu, W.; Wang, S.T.; Lyu, J.Q.; Zhou, M.M.; Huo, A.D.; Wang, Z.H. A bibliometric analysis of the research on Sponge City: Current situation and future development direction. Ecohydrology 2021, 14, e2328. [Google Scholar] [CrossRef]
- Euler, J.; Heldt, S. From information to participation and self-organization: Visions for European river basin management. Sci. Total Environ. 2018, 621, 905–914. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Huang, Y.; Walker, J.W. Long-term trends in streamflow from semiarid rangelands: Uncovering drivers of change. Glob. Chang. Biol. 2008, 14, 1676–1689. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Jin, Q.; Xu, E.; Zhang, X. A Fusion Method for Multisource Land Cover Products Based on Superpixels and Statistical Extraction for Enhancing Resolution and Improving Accuracy. Remote Sens. 2022, 14, 1676. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Van Osch, F.P.; Rietkerk, M.; Chen, J.; Gotsch, S.; Tobon, C.; Geissert, D.R. Ecohydrological advances and applications in plant–water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Fang, D.; Hao, L.; Cao, Z.; Huang, X.L.; Qin, M.S.; Hu, J.C.; Liu, Y.Q.; Sun, G. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. J. Hydrol. 2020, 587, 124869. [Google Scholar] [CrossRef]
- Shen, J.; Chen, C.; Wang, Y. What are the appropriate mapping units for ecosystem service assessments? A systematic review. Ecosyst. Health Sustain. 2021, 7, 1888655. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, J.; Guivarch, C.; Lempert, R.; Hallegatte, S. Building SSPs for climate policy analysis: A scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation. Clim. Chang. 2014, 122, 509–522. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Allan, A.; Barbour, E.; Nicholls, R.J.; Hutton, C.; Lim, M.; Salehin, M.; Rahman, M.M. Developing socio-ecological scenarios: A participatory process for engaging stakeholders. Sci. Total Environ. 2022, 807, 150512. [Google Scholar] [CrossRef]
- Dong, N.; You, L.; Cai, W.; Li, G.; Lin, H. Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario-based land-use change assessment framework. Glob. Environ. Chang. 2018, 50, 164–177. [Google Scholar] [CrossRef]
- Song, C. Preface to the special issue on the ecological-hydrological processes in the Heihe River Basin: Integrated research on observation, modeling and data analysis. J. Geogr. Sci. 2019, 29, 1437–1440. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Luo, P.P.; Mu, Y.; Wang, S.T.; Zhu, W.; Mishra, B.K.; Huo, A.D.; Zhou, M.M.; Lyu, J.Q.; Hu, M.C.; Duan, W.L.; et al. Exploring sustainable solutions for the water environment in Chinese and Southeast Asian cities. Ambio 2022, 51, 1199–1218. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.P.; Xu, C.Y.; Kang, S.X.; Huo, A.D.; Lyu, J.; Zhou, M.M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 2, 9. [Google Scholar] [CrossRef] [PubMed]
Method | Study Area | % Contribution of Climate Change to Change in Streamflow | % Contribution of Human Activities | Changes in Runoff from Base Period | |
---|---|---|---|---|---|
Experimental methods | Time trend methods | Heihe River Basin, China [149] | 8–76% | 24–92% | Increase |
Paired basin comparison methods | Small catchments in Australia, New Zealand, and South Africa [150] | 10–72% | 28–90% | Decrease | |
Basin models | Australia Water Balance Model | Poyang Lake catchment [151] | 26.8% | 73.2% | Increase |
SWAT | Dongjiang River Basin, China [152] | 58% | 42% | Increase | |
Conceptual methods | Budyko hypothesis | Weihe River Basin in China [153] | 34.7–65.3% | 30.5–69.8% | Decrease |
Tomer–Schilling framework | Midwest watersheds, US [154] | - | Mainly because of human activity | Decrease | |
Analytical methods | Climate elasticity methods | Weihe River Basin in China [155] | 22–29% | 71–78% | Decrease |
Hydrological sensitivity analysis | Yihe River Basin in China [156] | –19% | 119% | Increase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Wang, S.; Luo, P.; Xie, D.; Zhu, W. Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water 2022, 14, 1502. https://doi.org/10.3390/w14091502
Cao Z, Wang S, Luo P, Xie D, Zhu W. Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water. 2022; 14(9):1502. https://doi.org/10.3390/w14091502
Chicago/Turabian StyleCao, Zhe, Shuangtao Wang, Pingping Luo, Danni Xie, and Wei Zhu. 2022. "Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges" Water 14, no. 9: 1502. https://doi.org/10.3390/w14091502
APA StyleCao, Z., Wang, S., Luo, P., Xie, D., & Zhu, W. (2022). Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water, 14(9), 1502. https://doi.org/10.3390/w14091502