Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Season
2.2. Land Preparation and Transplanting
2.3. Installation of AWD Pipes and Water Flow Meter
2.4. Irrigation Management
2.5. Crop Management
2.5.1. Fertilizer Management
2.5.2. Cultural Management
2.6. Measurements
2.6.1. Yield Attributes and Yield
2.6.2. Greenhouse Gases (GHGs) and Other Indicators
- The emissions of CH4 and NO2 were measured using the Cool Farm Tool Beta-3 (CFT) protocol [24].
- The global warming potential (GWP, kg CO2 equivalent ha−1) was calculated using the formula [25]: GWP = CH4 × 28 + CO2 × 1 + N2O × 265 (where, the amount of CH4 and N2O emission is kg ha−1 and CO2 kg ha−1 over a 100-year time horizon)
- The intensity of greenhouse gas emission (GHGI, kg CO2 equivalent ton−1) was calculated using the following formula: GHGI = Total GWP/Grain yield [26].
2.6.3. Water Savings
2.7. Data Analysis
3. Results
3.1. Water Productivity and Irrigation Cost
3.2. Yield Attributes and Yield of Paddy
3.3. CH4 Emission
3.4. N2O Emission
3.5. The Global Warming Potential (GWP)
3.6. The Intensity of GHG Emission (GHGI)
4. Discussion
4.1. Impact of Irrigation Methods on Water Productivity
4.2. Impact of Irrigation Methods on Paddy Yield
4.3. Impact of Irrigation Methods on the Emission of GHGs and the Intensity of GHG
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Akter, M.; Al Mahmud, A.; Singh, U.; Sander, B.O. Effects of Water Management on Greenhouse Gas Emissions from Farmers’ Rice Fields in Bangladesh. Sci. Total Environ. 2020, 734, 139382. [Google Scholar] [CrossRef]
- Nasim, M.; Shahidullah, S.M.; Saha, A.; Muttaleb, M.A.; Aditya, T.L.; Ali, M.A.; Kabir, M.S. Distribution of Crops and Cropping Patterns in Bangladesh. Bangladesh Rice J. 2017, 21, 1–55. [Google Scholar] [CrossRef] [Green Version]
- BBS. Statistical Yearbook Bangladesh. Bangladesh Bureau of Statistics, 40th Edition. Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh. 2020; p. 569. Available online: www.bbs.gov.bd (accessed on 18 June 2021).
- Naher, U.A.; Shah, A.L.; Sarkar, M.I.U.; Islam, S.M.M.; Ahmad, M.N.; Panhwar, Q.A.; Othman, R. Fertilizer Consumption Scenario and Rice Production in Bangladesh. In Advances in Tropical Soil Science; Jol, H., Jusop, S., Eds.; UPM Press: Serdang, Malaysia, 2015; Volume 3, pp. 81–98. [Google Scholar]
- Adair, E.C.; Barbieri, L.; Schiavone, K.; Darby, H.M. Manure Application Decisions Impact Nitrous Oxide and Carbon Dioxide Emissions during Non-Growing Season Thaws. Soil Sci. Soc. Am. J. 2019, 83, 163–172. [Google Scholar] [CrossRef]
- Neogi, M.G.; Uddin, A.S.; Uddin, M.T.; Hamid, M.A. Alternate Wetting and Drying (AWD) Technology: A Way to Reduce Irrigation Cost and Ensure Higher Yields of Boro Rice. J. Bangladesh Agric. Univ. 2018, 16, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.; Hengsdijk, H.; Hardy, B.; Bindraban, P.S.; Tuong, T.P.; Ladha, J. Water-Wise Rice Production, 1st ed.; International Rice Research Institute: Los Baños, Philippines, 2002; p. 353. [Google Scholar]
- Kuerschner, E.; Henschel, C.; Hildebrandt, T.; Jülich, E.; Leineweber, M.; Paul, C. Water Saving in Rice Production–Dissemination, Adoption and Short Term Impacts of Alternate Wetting and Drying (AWD) in Bangladesh, 1st ed.; SLE Publication Series: Zerbe Druck & Werbung: Berlin, Germany, 2010; p. 126. [Google Scholar]
- USDA. Economic Research Service; United States Department of Agriculture: Washington, DC, USA, 2019. Available online: www.ers.usda.gov (accessed on 2 December 2021).
- Subedia, N.; Poudel, S. Alternate Wetting and Drying Technique and Its Impacts on Rice Production. Trop. Agrobiodivers. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Ciasis, P.; Sabine, C.; Bala, G. Carbon and Other Biogeochemical Cycles. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–570. [Google Scholar]
- FAO. FAOSTAT Data. 2020. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 7 November 2021).
- Wassmann, R.; Villanueva, J.; Khounthavong, M.; Okumu, B.O.; Vo, T.B.T.; Sander, B.O. Adaptation, Mitigation and Food Security: Multi-Criteria Ranking System for Climate-Smart Agriculture Technologies Illustrated for Rainfed Rice in Laos. Glob. Food Secur. 2019, 23, 33–40. [Google Scholar] [CrossRef]
- Price, A.H.; Norton, G.J.; Salt, D.E.; Ebenhoeh, O.; Meharg, A.A.; Meharg, C.; Islam, M.R.; Sarma, R.N.; Dasgupta, T.; Ismail, A.M.; et al. Alternate Wetting and Drying Irrigation for Rice in Bangladesh: Is It Sustainable and Has Plant Breeding Something to Offer? Food Energy Secur. 2013, 2, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing Greenhouse Gas Emissions, Water Use, and Grain Arsenic Levels in Rice Systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Siopongco, J.; Wassmann, R.; Sander, B. Alternate Wetting and Drying in Philippine Rice Production: Feasibility Study for a Clean Development Mechanism. IRRI Technical Bulletin No. 17; International Rice Research Institute: Los Baños, Philippines, 2013; p. 14. [Google Scholar]
- Peng, S.Z.; Yang, S.H.; Xu, J.Z.; Luo, Y.F.; Hou, H.J. Nitrogen and Phosphorus Leaching Losses from Paddy Fields with Different Water and Nitrogen Managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Waqas, M.A.; Cai, W.; Guo, C.; Zhou, S.; Su, R.; Qin, X.; et al. Combination of Modified Nitrogen Fertilizers and Water Saving Irrigation Can Reduce Greenhouse Gas Emissions and Increase Rice Yield. Geoderma 2018, 315, 1–10. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice Yields and Water Use under Alternate Wetting and Drying Irrigation: A Meta-Analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Yang, W.; Peng, S.; Laza, R.C.; Visperas, R.M.; Dionisio-Sese, M.L. Grain Yield and Yield Attributes of New Plant Type and Hybrid Rice. Crop Sci. 2007, 47, 1393–1400. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Agnelli, A.E.; Linquist, B.; Adviento-borbe, M.A.; Agnelli, A.; Gavina, G.; Ravaglia, S.; Ferrara, R.M. Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy. Pedosphere 2016, 26, 533–548. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and Economics of Alternate Wetting and Drying Water Management for Irrigated Lowland Rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- BRRI. Modern Rice Cultivation, 23rd ed.; Bangladesh Rice Research Institute: Joydebpur, Bangladesh, 2021; p. 131.
- Haque, M.; Biswas, J.; Maniruzzaman, M.; Choudhury, A.; Naher, U.; Hossain, M.; Akhter, S.; Ahmed, F.; Kalra, N. Greenhouse Gas Emissions from Selected Cropping Patterns and Adaptation Strategies in Bangladesh. Int. J. Dev. Res. 2017, 7, 16832–16838. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Group I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Haque, M.M.; Biswas, J.C. Emission Factors and Global Warming Potential as Influenced by Fertilizer Management for the Cultivation of Rice under Varied Growing Seasons. Environ. Res. 2021, 197, 111156. [Google Scholar] [CrossRef] [PubMed]
- IRRI. Statistical Tool for Agricultural Research (STAR); Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute: Los Baños, Philippines, 2014. [Google Scholar]
- Hossain, M.B.; Roy, D.; Paul, P.L.C.; Islam, M.T. Water Productivity Improvement Using Water Saving Technologies in Boro Rice Cultivation. Bangladesh Rice J. 2016, 20, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Anbumozhi, V.; Yamaji, E.; Tabuchi, T. Rice Crop Growth and Yield as Influenced by Changes in Ponding Water Depth, Water Regime and Fertigation Level. Agric. Water Manag. 1998, 37, 241–253. [Google Scholar] [CrossRef]
- Feng, L.; Bouman, B.A.M.; Tuong, T.P.; Cabangon, R.J.; Li, Y.; Lu, G.; Feng, Y. Exploring Options to Grow Rice Using Less Water in Northern China Using a Modelling Approach: I. Field Experiments and Model Evaluation. Agric. Water Manag. 2007, 88, 1–13. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field Water Management to Save Water and Increase Its Productivity in Irrigated Lowland Rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Chidthaisong, A.; Cha-un, N.; Rossopa, B.; Buddaboon, C.; Kunuthai, C.; Sriphirom, P.; Towprayoon, S.; Tokida, T.; Padre, A.T.; Minamikawa, K. Evaluating the Effects of Alternate Wetting and Drying (AWD) on Methane and Nitrous Oxide Emissions from a Paddy Field in Thailand. Soil Sci. Plant Nutr. 2018, 64, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhou, Q.; Zhang, J. Moderate Wetting and Drying Increases Rice Yield and Reduces Water Use, Grain Arsenic Level, and Methane Emission. Crop J. 2017, 5, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An Alternate Wetting and Moderate Soil Drying Regime Improves Root and Shoot Growth in Rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Devkota, K.P.; Manschadi, A.M.; Lamers, J.P.A.; Humphreys, E.; Devkota, M.; Egamberdiev, O.; Gupta, R.K.; Sayre, K.D.; Vlek, P.L.G. Growth and Yield of Rice (Oryza sativa L.) under Resource Conservation Technologies in the Irrigated Drylands of Central Asia. Field Crops Res. 2013, 149, 115–126. [Google Scholar] [CrossRef]
- Sharma, P.K.; Bhushan, L.; Ladha, J.K.; Naresh, R.K.; Gupta, R.K.; Balasubramanian, B.V.; Bouman, B.A.M. Crop-water relations in rice-wheat cropping under different tillage systems and water-management practices in a marginally sodic, medium-textured soil. In Water-Wise Rice Production; Bouman, B.A.M., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P., Ladha, J.K., Eds.; International Rice Research Institute: Los Banos, Philippines, 2002; pp. 223–235. [Google Scholar]
- Alam, M.S.; Islam, M.S.; Salam, M.A.; Islam, M.A. Economics of Alternate Wetting and Drying Method of Irrigation: Evidences from Farm Level Study. Agriculturists 2009, 7, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Chu, G.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Alternate Wetting and Moderate Drying Increases Rice Yield and Reduces Methane Emission in Paddy Field with Wheat Straw Residue Incorporation. Food Energy Secur. 2015, 4, 238–254. [Google Scholar] [CrossRef]
- Zhou, Q.; Ju, C.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain Yield and Water Use Efficiency of Super Rice under Soil Water Deficit and Alternate Wetting and Drying Irrigation. J. Integr. Agric. 2017, 16, 1028–1043. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Involvement of Cytokinins in the Grain Filling of Rice under Alternate Wetting and Drying Irrigation. J. Exp. Bot. 2010, 61, 3719–3733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Li, H.; Yuan, L.; Wang, Z.; Yang, J.; Zhang, J. Post-Anthesis Alternate Wetting and Moderate Soil Drying Enhances Activities of Key Enzymes in Sucrose-to-Starch Conversion in Inferior Spikelets of Rice. J. Exp. Bot. 2012, 63, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, D.; Duan, H.; Tan, G.; Zhang, J. Alternate Wetting and Moderate Soil Drying Increases Grain Yield and Reduces Cadmium Accumulation in Rice Grains. J. Sci. Food Agric. 2009, 89, 1728–1736. [Google Scholar] [CrossRef]
- Howell, K.R.; Shrestha, P.; Dodd, I.C. Alternate Wetting and Drying Irrigation Maintained Rice Yields despite Half the Irrigation Volume, but Is Currently Unlikely to Be Adopted by Smallholder Lowland Rice Farmers in Nepal. Food Energy Secur. 2015, 4, 144–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Pausch, J.; Fan, M.; Li, X.; Tang, Q.; Kuzyakov, Y. Allocation and Dynamics of Assimilated Carbon in Rice-Soil System Depending on Water Management. Plant Soil 2013, 363, 273–285. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain Yield, Water and Nitrogen Use Efficiencies of Rice as Influenced by Irrigation Regimes and Their Interaction with Nitrogen Rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; de Neergaard, A. Organic Matter and Water Management Strategies to Reduce Methane and Nitrous Oxide Emissions from Rice Paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Peng, S.; Bouman, B.A.M. Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations; Spiertz, J.H.J., Struik, P.C., Van Laar, H.H., Eds.; Springer: Ordrecht, The Netherlands, 2007; pp. 251–266. [Google Scholar]
- Rahman, M.R.; Bulbul, S.H. Effect of Alternate Wetting and Drying (AWD) Irrigation for Boro Rice Cultivation in Bangladesh. Agric. For. Fish. 2014, 3, 86. [Google Scholar] [CrossRef] [Green Version]
- Ku, H.H.; Hayashi, K.; Agbisit, R.; Villegas-Pangga, G. Evaluation of Fertilizer and Water Management Effect on Rice Performance and Greenhouse Gas Intensity in Different Seasonal Weather of Tropical Climate. Sci. Total Environ. 2017, 601–602, 1254–1262. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of Water-Saving Irrigation Practices and Drought Resistant Rice Variety on Greenhouse Gas Emissions from a No-till Paddy in the Central Lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P.; Singh, R.P. Influence of Pyrite and Farmyard Manure on Population Dynamics of Soil Methanotroph and Rice Yield in Saline Rain-Fed Paddy Field. Agric. Ecosyst. Environ. 2010, 139, 74–79. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N.; Yagi, K. Methane Emission from Paddy Fields and Its Mitigation Options on a Field Scale. Microbes Environ. 2006, 21, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Methods to Estimate On-Field Nitrogen Emissions from Crop Production as an Input to LCA Studies in the Agricultural Sector. Int. J. Life Cycle Assess. 2000, 5, 349. [Google Scholar] [CrossRef]
- Baggs, E.M.; Rees, R.M.; Smith, K.A.; Vinten, A.J.A. Nitrous Oxide Emission from Soils after Incorporating Crop Residues. Soil Use Manag. 2000, 16, 82–87. [Google Scholar] [CrossRef]
- Yano, M.; Toyoda, S.; Tokida, T.; Hayashi, K.; Hasegawa, T.; Makabe, A.; Koba, K.; Yoshida, N. Isotopomer Analysis of Production, Consumption and Soil-to-Atmosphere Emission Processes of N2O at the Beginning of Paddy Field Irrigation. Soil Biol. Biochem. 2014, 70, 66–78. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-Year Field Measurement of Methane and Nitrous Oxide Emissions from Rice Paddies in China: Effects of Water Regime, Crop Residue, and Fertilizer Application. Glob. Biogeochem. Cycles 2005, 19, 2021–2029. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and Nitrous Oxide Emissions from Flooded Rice Fields as Affected by Water and Straw Management between Rice Crops. Geoderma 2014, 235–236, 355–362. [Google Scholar] [CrossRef]
- Janz, B.; Weller, S.; Kraus, D.; Racela, H.S.; Wassmann, R.; Butterbach-Bahl, K.; Kiese, R. Greenhouse Gas Footprint of Diversifying Rice Cropping Systems: Impacts of Water Regime and Organic Amendments. Agric. Ecosyst. Environ. 2019, 270–271, 41–54. [Google Scholar] [CrossRef]
- Sander, B.O.; Wassmann, R.; Palao, L.K.; Nelson, A. Climate-Based Suitability Assessment for Alternate Wetting and Drying Water Management in the Philippines: A Novel Approach for Mapping Methane Mitigation Potential in Rice Production. Carbon Manag. 2017, 8, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and Nitrous Oxide Emissions from Conventional and Modified Rice Cultivation Systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Islam, S.F.; van Groenigen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The Effective Mitigation of Greenhouse Gas Emissions from Rice Paddies without Compromising Yield by Early-Season Drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
Properties | Feni | Chattogram |
---|---|---|
pH | 7.2 | 7.42 |
OM (%) | 1.6 | 1.7 |
Total N (%) | 0.13 | 0.14 |
Available P (ppm) | 10.8 | 11.5 |
Available S (ppm) | 77 | 82.8 |
Exchangeable K (Cmol kg−1) | 0.16 | 0.18 |
Irrigation Methods | Number of Irrigations ha−1 | Amount of Irrigation (m3 ha−1) | Water Productivity (kg m−3) | |||
---|---|---|---|---|---|---|
Feni | Chattogram | Feni | Chattogram | Feni | Chattogram | |
Continuous flooding | 85 a | 73 a | 5153 a | 4454.5 a | 1.21 b | 1.36 b |
Alternate wetting and drying | 65 b | 56 b | 3873 b | 3381.7 b | 1.53 a | 1.84 a |
Co-efficient of variance (%) | 31.35 | 25.71 | 31.64 | 28.80 | 10.95 | 9.81 |
Least significant variance (0.05) | 3.93 | 3.77 | 234.21 | 202.27 | 0.16 | 0.17 |
Standard deviation | 23.52 | 16.60 | 1428.25 | 1128.66 | 0.57 | 0.61 |
Irrigation Methods | Growth Duration (Days) | Productive Tillers m−2 (no.) | Grains per Panicle (no.) | 1000-Grain Weight (g) | Grain Yield (t ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Feni | Chattogram | Feni | Chattogram | Feni | Chattogram | Feni | Chattogram | Feni | Chattogram | |
CF | 142 a | 145 a | 979 b | 1045 b | 109 | 115 | 22.5 | 22.4 | 5.78 b | 6.06 b |
AWD | 135 b | 137 b | 1233 a | 1311 a | 114 | 113 | 22.6 | 22.5 | 5.96 a | 6.24 a |
CV (%) | 0.84 | 0.95 | 0.46 | 1.01 | 5.69 | 7.31 | 5.57 | 4.04 | 6.91 | 3.79 |
LSD (0.05) | 1.20 | 1.16 | 5.13 | 12.06 | 6.04 | 5.87 | 0.08 | 0.21 | 0.07 | 0. 08 |
Stdv. | 5.30 | 4.99 | 129.60 | 137.01 | 19.52 | 18.33 | 0.32 | 0.24 | 0.44 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.M.; Islam, M.R. Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh. Water 2022, 14, 1056. https://doi.org/10.3390/w14071056
Hossain MM, Islam MR. Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh. Water. 2022; 14(7):1056. https://doi.org/10.3390/w14071056
Chicago/Turabian StyleHossain, Mohammad Mobarak, and Mohammad Rafiqul Islam. 2022. "Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh" Water 14, no. 7: 1056. https://doi.org/10.3390/w14071056
APA StyleHossain, M. M., & Islam, M. R. (2022). Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh. Water, 14(7), 1056. https://doi.org/10.3390/w14071056