Ice Phenology in Eurasian Lakes over Spatial Location and Altitude
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lakes
2.2. Data
2.3. Modelling Approach
3. Geography of Ice Phenology
4. Analytic Model
4.1. Freezing Date
4.2. Breakup Date
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Linearized Atmospheric Heat Flux
References
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and Evolution of Their Ice Cover, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 2006, 37, 347–363. [Google Scholar] [CrossRef]
- Leppäranta, M. Interpretation of statistics of lake ice time series for climate variability. Nord. Hydrol. 2014, 45, 673–683. [Google Scholar] [CrossRef]
- Salonen, K.; Leppäranta, M.; Viljanen, M.; Gulati, R.D. Perspectives in winter limnology: Closing the annual cycle of freezing lakes. Aquat. Ecol. 2009, 43, 609–616. [Google Scholar] [CrossRef]
- Bates, R.E.; Bilello, M.A. Defining the Cold Regions of the Northern Hemisphere; Technical Report 178; US Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1966. [Google Scholar]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Long, L.I.; Zhao, J.; Sun, M.; Jing, L.I.; Gong, P.; Lina, A.N. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. J. Geogr. Sci. 2015, 31, 70–82. [Google Scholar] [CrossRef]
- Karetnikov, S.; Leppäranta, M.; Montonen, A. A time series of over 100years of ice seasons on Lake Ladoga. J. Great Lakes Res. 2017, 43, 979–988. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Kropacek, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Ke, C.Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607–608, 120–131. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.Q.; Li, X.; Zhang, G.; Duan, Z.; Lee, H. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. J. Geophys. Res. 2019, 124, 825–843. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Bowling, L.C.; Huber, M. Lake ice phenology of small lakes: Impacts of climate variability in the Great Lakes region. Glob. Planet. Chang. 2011, 76, 166–185. [Google Scholar] [CrossRef]
- Bernhardt, J.; Engelhardt, C.; Kirillin, G.; Matschullat, J. Lake ice phenology in Berlin-Brandenburg from 1947–2007: Observations and model hindcasts. Clim. Chang. 2012, 112, 791–817. [Google Scholar] [CrossRef]
- Wang, C.; Shirasawa, K.; Leppäranta, M.; Ishikawa, M.; Huttunen, O.; Takatsuka, T. Solar radiation and ice heat budget during winter 2002–2003 in Lake Pääjärvi, Finland. Verh. Int. Verein Limnol. 2005, 29, 414–417. [Google Scholar] [CrossRef]
- Leppäranta, M.; Lindgren, E.; Shirasawa, K. The heat budget of Lake Kilpisjrvi in the Arctic tundra. Hydrol. Res. 2016, 48, 969–980. [Google Scholar] [CrossRef]
- Mironov, D.; Ritter, B.; Schulz, J.-P.; Buchhold, M.; Lange, M.; Machulskaya, E. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service. Tellus A 2012, 64, 17330. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.F.; Cheng, B.; Zhang, J.R.; Zhang, Z.; Vihma, T.; Li, Z.J.; Niu, F.J. Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai-Tibet Plateau: A case study. Hydrol. Earth Syst. Sci. 2019, 23, 2173–2186. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Li, C.Y.; Shi, X.H.; Zhao, S.N.; Tian, W.D.; Li, Z.J.; Bai, Y.L.; Cao, X.W.; Wang, Q.K.; Huotari, J.; et al. Under-ice metabolism in a shallow lake in a cold and arid climate. Freshw. Biol. 2019, 64, 1710–1720. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Drabkin, V.; Kostjukov, J.; Lebedev, A.; Leppäranta, M.; Mironov, Y.U.; Schmelzer, N.; Sztobryn, M. Baltic Sea ice seasons in the twentieth century. Clim. Res. 2004, 25, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Leppäranta, M.; Lindgren, E.; Wen, L.; Kirillin, G. Ice cover decay and heat balance in Lake Kilpisjrvi in Arctic tundra. J. Limnol. 2019, 78, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Rodhe, B. On the relation between air temperature and ice formation in the Baltic. Geogr. Ann. 1952, 34, 175–202. [Google Scholar]
- Barnes, H.T. Ice Engineering; Montreal Renouf Publishing Co.: Montreal, QC, Canada, 1928; pp. 1–364. [Google Scholar]
- Mueller, D.R.; Hove, P.V.; Antoniades, D.; Jeffries, M.O.; Vincent, W.F. High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol. Oceanogr. 2009, 54, 2371–2385. [Google Scholar] [CrossRef]
- Zhang, T.; Jeffries, M.O. Modeling interdecadal variations of lake-ice thickness and sensitivity to climatic change in northernmost Alaska. Ann. Glaciol. 2000, 31, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Ashton, G.D. Dynamics of Snow and Ice Masses; Academic Press: New York, NY, USA, 1980; pp. 261–304. [Google Scholar]
- Barańczuk, K.; Barańczuk, J. The ice regime of Lake Ostrzyckie (Kashubian Lakeland, northern Poland). Limnol. Rev. 2019, 19, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhang, Z.; Li, Z.; Leppäranta, M.; Arvola, L.; Song, S.; Lin, Z. Under-ice dissolved oxygen and metabolism dynamics in a shallow lake: The critical role of ice and snow. Water Resour. Res. 2021, 57, e2020WR027990. [Google Scholar] [CrossRef]
- Mietus, M. The Climate of the Baltic Sea Basin; WMO/TD-No. 933; MMROA Report-No. 41; World Meteorological Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Yang, F.; Li, C.Y.; Shi, X.H.; Zhao, S.N.; Hao, Y.Z. Impact of seasonal ice structure characteristics on ice cover impurity distributions in Lake Ulansuhai. J. Lake Sci. 2016, 28, 455–462. [Google Scholar]
- Kouraev, A.V.; Semovski, S.V.; Shimaraev, M.N.; Mognard, N.M.; Legrésy, B.; Rémy, F. The ice regime of Lake Baikal from historical and satellite data: Relationship to air temperature, dynamical, and other factors. Limnol. Oceanogr. 2007, 52, 1268–1286. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, H.; Ruan, Y.; Fu, X.; Shi, L.; Tian, B. A Dataset of Microwave Brightness Temperature and Freeze-Thaw for Medium-to-Large Lakes over the High Asia Region 2002–2016; Science Data Bank: Beijing, China, 2017. [Google Scholar] [CrossRef]
- Nolan, M.; Liston, G.; Prokein, P.; Brigham-Grette, J.; Sharpton, V.L.; Huntzinger, R. Analysis of lake ice dynamics and morphology on Lake El’gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat. J. Geophys. Res. 2002, 107, ALT 3-1–ALT 3-12. [Google Scholar] [CrossRef]
Lake | Latitude and Longitude | Altitude m | Area km2 | Depth m | Lake Type | Climate Zone |
---|---|---|---|---|---|---|
Kilpisjärvi | 69° 03′ N 20° 50′ E | 473 | 37 | 19.5 | Oligotrophic | Arctic tundra |
Kallavesi | 62° 46′ N 27° 47′ E | 82 | 478 | 9.7 | Oligotrophic | Boreal |
Pääjärvi | 61° 04′ N 25° 08′ E | 103 | 13 | 15.0 | Meso-oligotr. | Boreal |
Baikal | 53° 18′ N 108° 00′ E | 456 | 31,772 | 758 | Oligotrophic | Boreal |
Szczecin lagoon | 53° 49′ N 14° 08′ E | 0 | 687 | 4.6 | Eutrophic | Boreal |
Wuliansuhai | 40° 56′ N 108° 52′ E | 1019 | 233 | 1.1 | Eutrophic | Cold arid |
Qinghai | 36° 53′ N 100° 11′ E | 3260 | 4237 | 21.0 | Oligotrophic | Tibetan |
Gyaring | 34° 56′ N 97° 17′ E | 4294 | 526 | 8.9 | Oligotrophic | Tibetan |
Ngoring | 34° 54′ N 97° 42′ E | 4272 | 610 | 17.6 | Oligotrophic | Tibetan |
Lake | Freezing Date | December Mean Air Temperature | April Mean Air Temperature | Breakup Date |
---|---|---|---|---|
Kilpisjärvi | 8 Nov. ± 8 d | −12 °C | −5 °C | 18 Jun. ± 7 d |
Kallavesi | 30 Nov. ± 14 d | −6 °C | +1 °C | 8 May ± 8 d |
Pääjärvi | 13 Dec. ± 16 d | −5 °C | +4 °C | 5 May ± 6 d |
Szczecin lagoon [21,30] | 15 Jan. | −0.5 °C | +6 °C | 1 Mar. |
Wuliansuhai [31] | 7 Dec. | −10 °C | +4 °C | 31 Mar. |
Baikal [32] | 10 Jan. | −18 °C | +1 °C | 1 May. |
Gyaring [33] | 30 Nov. ± 21 d | −18 °C | −2 °C | 21 April ± 17 d |
Ngoring [33] | 15 Dec. ± 10 d | −17 °C | −2 °C | 1 May ± 8 d |
Qinghai [33] | 29 Dec. ± 4 d | −10 °C | +4 °C | 1 April ± 7 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leppäranta, M.; Wen, L. Ice Phenology in Eurasian Lakes over Spatial Location and Altitude. Water 2022, 14, 1037. https://doi.org/10.3390/w14071037
Leppäranta M, Wen L. Ice Phenology in Eurasian Lakes over Spatial Location and Altitude. Water. 2022; 14(7):1037. https://doi.org/10.3390/w14071037
Chicago/Turabian StyleLeppäranta, Matti, and Lijuan Wen. 2022. "Ice Phenology in Eurasian Lakes over Spatial Location and Altitude" Water 14, no. 7: 1037. https://doi.org/10.3390/w14071037
APA StyleLeppäranta, M., & Wen, L. (2022). Ice Phenology in Eurasian Lakes over Spatial Location and Altitude. Water, 14(7), 1037. https://doi.org/10.3390/w14071037